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THE STOKES THEOREM FOR THE
GENERALIZED RIEMANN INTEGRAL

Abstract

In Rm, we define the generalized Riemann integral over normal m-
dimensional currents with compact support and bounded multiplicities,
and prove the Stokes theorem for continuous (m − 1)-forms that are
pointwise Lipschitz outside sets of σ-finite (m−1)-dimensional Hausdorff
measure. In addition, we show that the usual transformation formula
holds for local lipeomorphisms, which need not be injective.

1 Introduction

Using the change of variables formula of [6, Theorem 6.7] and standard tech-
niques [8, Chapter 5], it is easy to lift the generalized Riemann integral defined
in [6, Definition 5.1] to a compact oriented Lipschitz manifold M with bound-
ary and establish the Stokes theorem for pointwise Lipschitz (m−1)-forms on
M . In this note we prove that the same is true for certain top-dimensional
currents. We also show that the generalized Riemann integral transforms well
with respect to local lipeomorphisms, which need not be injective. It is our
hope that eventually similar results may be obtained in middle dimensions.

2 Preliminaries

The set of all real numbers is denoted by R, and the ambient space of this
note is Rm where m ≥ 1 is a fixed integer. The open ball of radius r > 0
about x ∈ Rm is denoted by B(x, r). The symbols clE, ∂E, and d(A) denote,
respectively, the closure, boundary, and diameter of a set E ⊂ Rm.

Lebesgue measure in Rm is denoted by Lm; however, for E ⊂ Rm we write
|E| instead of Lm(E). The essential closure cl∗E and essential boundary ∂∗E
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of a measurable set E ⊂ Rm are the sets of all x ∈ Rm at which the density
of E lies in (0, 1] and (0, 1), respectively [4, Section 1.7.1]. A thin set is a set
S ⊂ Rm whose (m− 1)-dimensional Hausdorff measure Hm−1 is σ-finite.

Unless specified otherwise, all functions we consider are real-valued. By
χE we denote the indicator of a set E ⊂ Rm. If E ⊂ Rm is a measurable
set and f ∈ L1(E), we denote by (L)

∫
E
f dLm or (L)

∫
E
f(x) dx the Lebesgue

integral of f over E.
The linear space of all locally bounded locally BV functions in Rm is de-

noted by BV∞loc(Rm), and the linear space of all bounded BV functions in Rm
with compact support is denoted by BV∞c (Rm). If g ∈ BV∞c (Rm), we denote
by |g|1, |g|∞, Dg, and ‖g‖ the L1 norm, L∞ norm, distributional gradient,
and total variation of g, respectively. If g ∈ BV∞loc(Rm) and v : Rm → Rm is
a C1 vector field with compact support, then∫

Rm
gdiv v dLm = −

∫
Rm

v · d(Dg) . (2.1)

For n = 1, 2, . . . , the L1 norm | · |1 gives the family

BVn :=
{
g ∈ BV∞c (Rm) : supp g ⊂ clB(0, n) and ‖g‖+ |g|∞ ≤ n+ 1

}
a compact topology. The largest topology τ in BV∞c (Rm) for which all in-
clusion maps BVn ↪→ BV∞c are continuous is a nonmetrizable locally convex
Hausdorff topology that is sequential and sequentially complete. Given a lo-
cally BV set E ⊂ Rm, we denote by BV(E) the family of all bounded BV
subsets of E. Identifying each A ∈ BV(E) with its indicator χA ∈ BV∞c (Rm),
we view BV(E) as a closed subspace of

(
BV∞c (Rm), τ

)
.

Remark 2.1. A clear self-contained exposition of BV functions and BV sets
can be found in Chapter 5 of [4] or [9]. As usual, when we talk about spaces
of BV functions or BV sets, their elements are the equivalence classes of BV
functions or BV sets, respectively. On the other hand, an individual BV
function or BV set is normally not identified with its equivalence class.

The unit exterior normal of a BV set A is denoted by νA. The Gauss-Green
formula ∫

A

div v dLm =
∫
∂∗A

v · νA dHm−1 (2.2)

holds for each C1 vector field v : Rm → Rm with compact support. The
perimeter of a bounded BV set A is denoted by ‖A‖, and the number

r(A) :=

{
|A|

d(A)‖A‖ if d(A)‖A‖ > 0,

0 otherwise

is called the regularity of A.
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3 The R-Integral

A charge is an additive τ -continuous function defined on BV(Rm). Explicitly,
a charge is an additive function F on BV(Rm) having the following property:
given ε > 0, there is a δ > 0 such that

∣∣F (A)
∣∣ < ε for each BV set A ⊂

B(0, 1/ε) with ‖A‖ < 1/ε and |A| < δ. If F is a charge and E ⊂ Rm is a
locally BV set, the function F LE defined by

(F LE)(A) := F (A ∩ E)

for each A ∈ BV(Rm) is also a charge. We say F is a charge in E whenever
F = F LE. Typical examples of a charge are an absolutely continuous signed
measure and the flux of a continuous vector field.

A nonnegative function δ defined on a set E ⊂ Rm is called a gage on E
whenever {δ = 0} is a thin set. A partition is a collection (possibly empty)

P :=
{

(A1, x1), . . . , (Ap, xp)
}

where A1, . . . , Ap are disjoint bounded BV sets, and x1, . . . , xp are points of
Rm. Given ε > 0 and a gage δ on E ⊂ Rm, the partition P is called

• ε-regular if r
(
Ai ∪ {xi}

)
> ε for i = 1, . . . , p,

• δ-fine if xi ∈ E and d
(
Ai ∪ {xi}

)
< δ(xi) for i = 1, . . . , p.

Definition 3.1. Let E be a locally BV set. A function f defined on cl∗E is
called R-integrable in E whenever there is a charge F in E having the following
property: given ε > 0, we can find a gage δ on B(0, 1/ε) ∩ cl∗E so that

p∑
i=1

∣∣f(xi)|Ai| − F (Ai)
∣∣ < ε

for each ε-regular δ-fine partition
{

(A1, x1), . . . , (Ap, xp)
}

.

The charge F from Definition 3.1 is called the R-primitive of f . For a
bounded BV set A ⊂ E, we denote F (A) by the symbol (R)

∫
A
f dLm, or

(R)
∫
A
f(x) dx, and call this number the R-integral of f over A. According to

[6, Corollary 5.9], the R-integrability of f and the R-primitive of f depend
only on the values f takes almost everywhere in E. In particular, we can talk
about the R-integrability, R-primitive, and R-integral of a function defined
only almost everywhere in E. The linear space of all R-integrable functions in
E is denoted by R(E).



626 W. F. Pfeffer

It follows from [6] that the R-integral has the usual properties such as
linearity, monotonicity, etc., associated with the word “integral.” If f is a
function defined on E and f ∈ L1(A) for each bounded BV set A ⊂ E, then
f ∈ R(E) and the Lebesgue primitive of f

F : A 7→ (L)
∫
A∩E

f dLm : BV(Rm)→ R

coincides with the R-primitive of f . For this reason we often denote by
∫

both
symbols (L)

∫
and (R)

∫
.

We say a charge F is derivable at x ∈ Rm if a finite lim
[
F (Bn)/|Bn|

]
exists

for each sequence {Bn} in BV such that

lim d
(
Bn ∪ {x}

)
= 0 and inf r

(
Bn ∪ {x}

)
> 0 .

If all these limits exist, they have the same value called the derivate of F at
the point x, denoted by F ′(x).

For a charge F and a set E ⊂ Rm, let

V∗F (E) := sup
ε>0

inf
δ

sup
P

p∑
i=1

∣∣F (Ai)
∣∣

where δ is a gage on E, and P =
{

(A1, x1), . . . , (Ap, xp)
}

is an ε-regular δ-fine
partition. It was shown in [1] that the extended real-valued function

V∗F : E 7→ V∗F (E)

is a Borel regular measure in Rm that coincides with the classical variation of
F on each compact interval.

A charge F in a locally BV set E is called, respectively, AC∗ or AC if
the measure (V∗F ) L cl∗E is absolutely continuous or absolutely continuous
and locally finite. According to [2], each AC∗ charge, and a fortiori each AC
charge, in E is derivable almost everywhere in E. Moreover, the following
theorem holds.

Theorem 3.2. If F is a charge in a locally BV set E, then

(i) F is AC if and only if F is the Lebesgue primitive of F ′;

(ii) F is AC∗ if and only if F is the R-primitive of F ′.

Let E ⊂ Rm be a measurable set. We say a vector field v : E → Rm is
differentiable relative to E at x ∈ int∗E if there is a linear map DEv(x) :
Rm → Rm satisfying the following condition: given ε > 0, there is a δ > 0
such that ∣∣v(y)− v(x)−DEv(x)(y − x)

∣∣ < ε|y − x|
for each y ∈ E ∩ B(x, δ). Suppose v is differentiable relative to E at x ∈



Stokes Theorem for the Generalized Riemann Integral. 627

int∗E. Then v is approximately differentiable at x and DEv(x) = apDv(x);
in particular, DEv(x) is unique [5, Section 3.1]. The trace of DEv(x) is called
the divergence of v at x relative to E, still denoted by div v(x).

If C ⊂ Rm is a closed set, and if v : C → Rm is a continuous vector field
that is Lipschitz at each point of a set S ⊂ int∗C, then using a weak version of
Whitney’s extension theorem [7, Proposition 13.4.4] and Stepanoff’s theorem
[5, Theorem 3.1.9], it is easy to see that v is differentiable relative to C at
almost all points of S.

The following version of the Gauss-Green theorem has been established in
[6, Theorem 5.19].

Theorem 3.3. Let A be a bounded BV set, and let v : clA → Rm be a
continuous vector field. If v is Lipschitz at each x ∈ A− S where S is a thin
set, then div v belongs to R(A) and

(R)
∫
A

div v dLm = (L)
∫
∂∗A

v · ν dHm−1 .

4 The Stokes Theorem

We shall need a result established in [3, Proposition 3.5].

Proposition 4.1. Let F be a charge in a locally BV set E ⊂ Rm, and let A
be a set in BV(Rm+1). For L1-almost all t ∈ R, the section

At :=
{
x ∈ Rm : (x, t) ∈ A

}
belongs to BV(Rm), and the function t 7→ F (At) belongs to L1(R). Letting

(F × L1)(A) :=
∫

R
F (At) dt

for each A ∈ BV(Rm+1) defines a charge F × L1 in E × R.

For a nonnegative function g ∈ BV∞c (Rm), the set

Σg :=
{

(x, t) ∈ Rm × R : 0 < t < g(x)
}

belongs to BV(Rm+1), and (Σg)t = {g > t} for every t > 0. We let

〈F, g〉 := (F × L1)(Σg+)− (F × L1)(Σg−)

=
∫ ∞

0

F
(
{g > t}

)
dt−

∫ ∞
0

F
(
{−g > t}

)
dt

for each charge F and each g ∈ BV∞c (Rm). For the proof of the next propo-
sition we refer to [3, Proposition 4.1].
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Proposition 4.2. For each charge F , the map Θ(F ) : g 7→ 〈F, g〉 is a τ -
continuous linear functional on BV∞c (Rm). The map F 7→ Θ(F ) is a linear
bijection from the space of all charges onto the dual space of

(
BV∞c (Rm), τ

)
.

If g ∈ BV∞loc(Rm), then gχA ∈ BV∞c (Rm) for each A ∈ BV(Rm). Thus
given a charge F and a g ∈ BV∞loc(Rm), we can define a charge

F L g : A 7→ 〈F, gχA〉 : BV(Rm)→ R.

It is easy to see that (F L g) Lh = F L (gh) for each h ∈ BV∞loc(Rm), and the
following theorem follows from [3, Section 6].

Theorem 4.3. Let E be a locally BV set, and let g ∈ BV∞loc(Rm). If F is an
AC∗ charge in E, then so is F L g and (F L g)′(x) = F ′(x)g(x) for almost all
x ∈ E.

As usual we denote by dx1, . . . , dxm the dual base to the standard base
of Rm, and orient Rm by the volume element dx := dx1 ∧ · · · ∧ dxm. The
m-form θ := f dx defined almost everywhere in a locally BV set E is called
R-integrable whenever f ∈ R(E). Let

ω :=
m∑
i=1

(−1)i−1wi dx1 ∧ · · · d̂xi · · · ∧ dxm (4.1)

where wω = (w1 . . . , wm) is a vector field defined on a locally BV set E. We
say ω is C∞, or continuous, or pointwise Lipschitz whenever wω is C∞, or
continuous, or pointwise Lipschitz, respectively. If wω is differentiable relative
to E at an x ∈ int∗E, we let

dω(x) := divwω(x) dx .

We shall use freely the notation of [5, Chapter 4]. For a set E ⊂ Rm, we
denote by Nc,∞

m (E) the algebra of allm-dimensional currents Em L g associated
with those g ∈ BV∞c (Rm) for which {g 6= 0} ⊂ E. Identifying Em L g with g,
we view Nc,∞

m (E) as a closed subspace of
(
BV∞c (Rm), τ

)
.

Let E be a locally BV set, and let T := Em L g belong to Nc,∞
m (E). If

θ := f dx is an R-integrable m-form in E, we find a bounded BV set A ⊂ E
with {g 6= 0} ⊂ A and let ∫

T

θ :=
∫
A

fg dLm .

Note that fg ∈ R(A) by Theorem 4.3, and that the definition of
∫
T
θ does not

depend on the choice of A. Moreover,
∫
T
θ = 〈T, θ〉 for each C∞ m-form θ in

Rm with compact support.
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Given a vector-valued Radon measure µ in Rm, we denote by Tµ the
(m− 1)-dimensional current defined by the formula

〈Tµ, ω〉 :=
∫

suppµ

wω · dµ

for each C∞ (m − 1)-form ω in Rm with compact support that is defined
by (4.1). Obviously T−µ = −Tµ. For a continuous (m− 1)-form ω in Rm with
compact support defined by (4.1), we let∫

Tµ

ω :=
∫

suppµ

wω · dµ ;

in particular,
∫
Tµ
ω = 〈Tµ, ω〉 whenever ω is C∞.

Let ω be a C∞ (m−1)-form in Rm with compact support defined by (4.1),
and let T := Em L g be in Nc,∞

m (Rm). Since ∂T = −TDg = T−Dg according to
[5, Section 4.5.7], we obtain immediately∫

T

dω = 〈T, dω〉 = 〈∂T, ω〉 =
∫
∂T

ω .

Our goal is to extend the Stokes equality
∫
T
dω =

∫
∂T
ω to every continuous

(m− 1)-form ω that is pointwise Lipschitz outside a thin set.

Proposition 4.4. If g ∈ BV∞c (Rm), then∫
suppDg

w · d(Dg) = −
∫

R

(∫
∂∗{g>t}

w · ν{g>t} dHm−1

)
dt

for each continuous vector field w : cl {g 6= 0} → Rm.

Proof. If w : Rm → Rm is C∞ and has compact support, then∫
Rm

divw(x) dx = 0 (4.2)

by the Gauss-Green theorem. Fubini’s theorem implies∫
Rm

g+(x)divw(x) dx =
∫ ∞

0

(∫
{g>t}

divw(x) dx

)
dt .

Applying Fubini’s theorem again and using (4.2),
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∫
Rm

g−(x)divw(x) dx =
∫ ∞

0

(∫
{−g≥t}

divw(x) dx

)
dt

=
∫ ∞

0

(∫
Rm−{g>−t}

divw(x) dx

)
dt

=
∫ ∞

0

(∫
{g>−t}

divw(x) dx

)
dt

= −
∫ 0

−∞

(∫
{g>t}

divw(x) dx

)
dt .

The previous two equalities together with (2.1) and (2.2) yield∫
Rm

w · d(Dg) = −
∫

Rm
g(x)divw(x) dx = −

∫
R

(∫
{g>t}

divw(x) dx

)

= −
∫

R

(∫
∂∗{g>t}

w · ν{g>t} dHm−1

)
dt .

Now suppose w : cl {g 6= 0} → Rm is continuous. Extend w to a continuous
vector field v : Rm → Rm with compact support, and find a sequence {vk}
of C∞ vector fields with compact support defined on Rm that converges to v
uniformly. As Dg is a finite measure,∫

Rm
v · d(Dg) = lim

∫
Rm

vk · d(Dg) (∗)

by the dominated convergence theorem. Letting

J(t) :=
∫
∂∗{g>t}

v · ν{g>t} dHm−1 and Jk(t) :=
∫
∂∗{g>t}

vk · ν{g>t} dHm−1 ,

observe that∣∣J(t)− Jk(t)
∣∣ =

∣∣∣∣∫
∂∗{g>t}

(v − vk) · ν{g>0} dHm−1

∣∣∣∣ ≤ ∥∥{g > t}
∥∥ · |v − vk|∞

for k = 1, 2, . . . , and L1-almost all t ∈ R. In view of the coarea theorem for
BV functions [4, Section 5.5], the dominated convergence theorem yields∫

R
J(t) dt = lim

∫
R
Jk(t) dt . (∗∗)
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Combining (∗) and (∗∗) with the first part of the proof,∫
Rm

v · d(Dg) =
∫

R

(∫
∂∗{g>t}

v · ν{g>t} dHm−1

)
dt .

Since ∂∗{g > t} ∪ suppDg ⊂ cl {g 6= 0}, the proposition follows.

Theorem 4.5. Let E be a locally BV set, and let ω be a continuous (m− 1)-
form in clE. If ω is Lipschitz at each x ∈ E − S where S is a thin set, then
dω is R-integrable in E and

∫
T
dω =

∫
∂T
ω for each T ∈ Nc,∞

m (E).

Proof. Let wω be the vector field associated with ω according to (4.1), and
choose an m-dimensional current T := Em L g in Nc,∞

m (E). In view of linearity,
we may assume that g ≥ 0. According to Theorem 3.3, the divergence divwω
of wω relative to E is R-integrable in E, which means dω is R-integrable in
E. Denote by F the R-primitive of divwω, and find a bounded BV set A ⊂ E
containing {g 6= 0}. Theorems 3.3 and 4.3 together with Proposition 4.4 imply∫

T

dω =
∫
A

g(x) divwω(x) dx = (F L g)(A) = 〈F, g〉

=
∫ ∞

0

F
(
{g > t}

)
dt =

∫ ∞
0

(∫
{g>t}

divwω dLm
)
dt

=
∫ ∞

0

(∫
∂∗{g>t}

vω · ν{g>t} dHm−1

)
dt

= −
∫

suppDg

wω · d(Dg) =
∫

supp (−Dg)
wω · d(−Dg) =

∫
∂T

ω .

5 Change of Variables

A local lipeomorphism of a set E ⊂ Rm is a proper Lipschitz map φ : E → Rm
having the following property: for each x ∈ clE there is an r > 0 such that φ
restricted to E∩B(x, r) is a lipeomorphism. Note that φ has a unique Lipschitz
extension φ̄ : clE → Rm, and that proper means φ̄−1(K) is a compact set for
each compact set K ⊂ Rm. A simple compactness argument shows that for
each compact set C ⊂ clE there is a positive integer n = n(C) such that the
map φ̄ restricted to C is at most n-to-one. In particular, φ̄ is a finite-to-one
map.

Throughout the remainder of this paper, we select a fixed locally bounded
BV set E ⊂ Rm, and a local lipeomorphism φ : E → Rm. If g ∈ BV∞c (Rm),
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then
deg(φ, g)(y) :=

∑
x∈φ−1(y)

g(x) sign detDφ(x).

is defined for almost all y ∈ Rm by Rademacher’s theorem [4, Section 3.1.2].
Given Em L g in Nc,∞

m (E), it follows from [5, Section 4.1] that

φ#(Em L g) = Em L deg(φ, g) . (5.1)

As g has compact support,
{

deg(φ, g) 6= 0
}

is a bounded subset of φ(E); in
particular, deg(φ, g) has compact support. Since there is an integer n ≥ 1
such that φ is at most n-to-one on {g 6= 0}, the function deg(φ, g) is essen-
tially bounded. Finally, as Em L g is a normal m-dimensional current, so is
Em L deg(φ, g) by [5, Section 4.1]. Moreover, it follows from [5, Section 4.5]
that Em L deg(φ, g) belongs to Nc,∞

m

[
φ(E)

]
. The linear map

φ# : Em L g 7→ Em L deg(φ, g) : Nc,∞
m (E)→ Nc,∞

m

[
φ(E)

]
is τ -continuous. Indeed, if c is the Lipschitz constant of φ and M(T ) denotes
the mass of a current T as defined in [5, Section 4.1.7], then∣∣deg(φ, g)

∣∣
1

= M
[
Em L deg(φ, g)

]
= M

[
φ#(Em L g)

]
≤ cmM(Em L g) = cm|g|1 ,∥∥deg(φ, g)

∥∥ = M
(
∂
[
Em L deg(φ, g)

])
= M

[
∂φ#(Em L g)

]
= M

(
φ#

[
∂(Em L g)

])
≤ cm−1M

[
∂(Em L g)

]
= cm−1‖g‖ .

If A is a bounded BV set, we write Em LA and deg(φ,A) instead of Em LχA
and deg(φ, χA), respectively.

Proposition 5.1. The set φ(E) is locally BV, and if A ⊂ E is a bounded BV
set, then so is φ(A).

Proof. Choose a bounded BV set A ⊂ E, and an x ∈ clA. There is an r > 0
so that φ is a lipeomorphism on the BV set B = A ∩B(x, r). Now

deg(φ,B)(y) =

{
sign detDφ

[
φ−1(y)

]
if y ∈ φ(B),

0 if y ∈ Rm − φ(B),

and detφ(x) 6= 0 for almost all x ∈ B. Thus χφ(B) =
∣∣deg(φ,B)

∣∣ almost
everywhere. Since Em L deg(φ,B) = φ#(Em LB) belongs to Nc,∞

m

[
φ(E)

]
, we
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infer that φ(B) is a bounded BV set. As clA is compact, the set φ(A) is
the union of a finite family of bounded BV sets. This implies φ(A) is itself a
bounded BV set.

As φ is a proper map, given r > 0, there is an s > 0 such that φ−1
[
φ(E)∩

B(0, r)
]

is contained in the bounded BV set E ∩ B(0, s). By the first part
of the proof D := φ

[
E ∩ B(0, s)

]
is a bounded BV subset of φ(E) containing

φ(E) ∩B(0, r). Hence

φ(E) ∩B(0, r) = D ∩ φ(E) ∩B(0, r) = D ∩B(0, r)

is a BV set, and the proposition follows from the arbitrariness of r.

For a charge F in E and Em L g in Nc,∞
m (E), let

〈F,Em L g〉 = 〈F, g〉 . (5.2)

It follows from Proposition 4.2 that Em L g 7→ 〈F,Em L g〉 is a τ -continuous
linear functional on Nc,∞

m (E), and that all τ -continuous linear functionals on
Nc,∞
m (E) have this form. Consequently the dual map φ# of φ#, defined by

the identity
〈φ#F,Em L g〉 =

〈
F, φ#(Em L g)

〉
, (5.3)

maps charges in φ(E) to charges in E.

Proposition 5.2. If F is a charge in φ(E), then φ#F (A) =
〈
F,deg(φ,A)

〉
for each A ∈ BV(Rm). If E is a bounded BV set and φ is a lipeomorphism,
then φ#F (A) =

[
F L deg(φ,E)

][
φ(A)

]
for each A ∈ BV(E).

Proof. Let A be a bounded BV set, and B = A ∩ E. Identities (5.1)–(5.3)
yield

φ#F (A) = φ#F (B) = 〈φ#F, χB〉 = 〈φ#F,Em LB〉 =
〈
F, φ#(Em LB)

〉
=
〈
F,Em L deg(φ,B)

〉
=
〈
F,deg(φ,B)

〉
=
〈
F,deg(φ,A)

〉
.

If E is a bounded BV set and φ is a lipeomorphism, then

deg(φ,A) =

{
sign detDφ

[
φ−1(y)

]
if y ∈ φ(A ∩ E),

0 otherwise

for each bounded BV set A and almost all y ∈ Rm; in particular, this is true
when A = E. Thus for every bounded BV set A, deg(φ,A) = deg(φ,E)χφ(A) .
An application of the first part of the proof completes the argument.
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Proposition 5.3. If F is an AC∗ charge in φ(E), then φ#F is an AC∗ charge
in E and (φ#F )′(x) = F ′

[
φ(x)

]
detφ(x) for almost all x ∈ E.

Proof. Cover clE by open balls B1, B2, . . . so that φ is a lipeomorphism on
each Bi ∩ E. For i = 1, 2, . . . , let

φi := φ � (Bi ∩ E) and Fi := F Lφi(Bi ∩ E) .

By our assumption, the charge Fi is AC∗ in φi(Bi ∩ E), and by (5.1) and
Theorem 4.3, so is the charge Gi := Fi L deg(φi, Bi ∩ E). Proposition 5.2
implies φ#

i Fi(A) = Gi
[
φ(A)

]
for each BV set A ⊂ Bi ∩ E. According to [1,

Propositions 3.7 and 4.14], the charge φ#
i Fi is AC∗ in Bi ∩ E and

(φ#
i Fi)

′(x) = G′i
(
φi(x)

) ∣∣Dφi(x)
∣∣ (5.4)

for almost all x ∈ Bi ∩ E.
As φ−1

i (y) = Bi∩φ−1(y) for each y ∈ Rm, we have deg(φi, A) = deg(φ,A∩
Bi) for each bounded BV set A. Thus if G := φ#F , then Proposition 5.2
implies GLBi = φ#Fi. Consequently, GLBi is AC∗ in Bi ∩ E. Choose a
negligible set N ⊂ cl∗E. Since each Bi is an open set, it is easy to see that

V∗G(N ∩Bi) = V∗(GLBi)(N ∩Bi) = 0

for i = 1, 2, . . . . As N ⊂
⋃
iBi, we conclude that G is AC∗ in E.

Fix a ball Bi, and choose an x ∈ Bi ∩ E so that (5.4) holds, and the
derivatives G′(x) and F ′

[
φ(x)

]
= F ′i

[
φi(x)

]
exist. In view of the first part of

the proof and [3, Lemma 7.10], almost all x ∈ Bi ∩ E have these properties.
As Bi is an open set, G′(x) = (GLBi)′(x). Now by (5.4) and Theorem 4.3,

G′(x) = (φ#
i Fi)

′(x) = G′i
(
φi(x)

) ∣∣Dφi(x)
∣∣

= F ′i
[
φi(x)

]
deg(φi, Bi ∩ E)

[
φi(x)

]
·
∣∣Dφi(x)

∣∣
= F ′i

[
φi(x)

]
sign detDφi(x)

∣∣Dφi(x)
∣∣ = F ′

[
φ(x)

]
detDφ(x) .

As E =
⋃
i(Bi ∩ E), the theorem follows.

Theorem 5.4. Let g ∈ BV∞loc(Rm), and let f be an R-integrable function in
φ(E). The following statements are true.

(i) The function (f ◦ φ)(detDφ)g is R-integrable in E.

(ii) For each bounded BV set A ⊂ E, the function fdeg(φ, gχA) is R-
integrable in φ(A) and∫

φ(A)

f(y)deg(φ, gχA)(y) dy =
∫
A

f
[
φ(x)

]
detDφ(x)g(x) dx .
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Proof. Denote by F the R-primitive of f . According to Theorem 4.3 and
Proposition 5.3, the charge φ#F L g is the R-primitive of (f ◦ φ)(detDφ)g.
Choose a bounded BV set A ⊂ E and observe that G := F L deg(φ, gχA) is
the R-primitive of fdeg(φ, gχA) by Theorem 4.3. Identities (5.1)–(5.3) imply[

(φ#F ) L g
]
(A) = 〈φ#F, gχA〉 =

〈
φ#F,Em L (gχA)

〉
=
〈
F, φ#

[
Em L (gχA)

]〉
=
〈
F,Em L deg(φ, gχA)

〉
=
〈
F,deg(φ, gχA)

〉
=
〈
F,deg(φ, gχA)χφ(A)

〉
= G

[
φ(A)

]
,

and the theorem follows.

In analogy with C∞ m-forms, if θ = f dx is any m-form in φ(E), we let

φ#θ := (f ◦ φ) detDφdx .

The m-form φ#θ is defined almost everywhere in E.

Corollary 5.5. If θ is an R-integrable m-form in φ(E), then φ#θ is an R-
integrable m-form in E, and for each m-dimensional current T ∈ Nc,∞

m (E) we
have

∫
T
φ#θ =

∫
φ#T

θ .

Proof. Let θ := f dx, and choose a T := Em L g in Nc,∞
m (E). Then

φ#θ = (f ◦ φ) detDφdx and φ#T = Em L deg(φ, g) .

If A ⊂ E is a bounded BV set containing {g 6= 0}, then φ(A) is a bounded BV
subset of φ(A) containing

{
deg(φ, g) 6= 0

}
. As gχA = g, Theorem 5.4 implies∫

T

φ#θ =
∫
A

f
[
φ(x)

]
detDφ(x)g(x) dx

=
∫
φ(A)

f(y)deg(φ, g)(y) dy =
∫
φ#T

θ .

Remark 5.6. A proper Lipschitz map ψ : A→ Rm of a set A ⊂ Rm is called

• regular if it is injective, ψ−1(S) is a thin set whenever S ⊂ Rm is a thin
set, and

∣∣ψ(B)
∣∣ ≥ c|B| for a c > 0 and all B ⊂ A.

• locally regular if for each x ∈ clA there is an r > 0 such that ψ restricted
to A ∩B(x, r) is regular.

Clearly, each local lipeomorphism is a regular map, but the converse is false.
Notwithstanding, it is easy to show that the results of Section 5, together with
their proofs, remain valid when the fixed local lipeomorphism φ : E → Rm is
replaced by a locally regular map.
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