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ON I-ASYMMETRY

Abstract

Sets of approximative asymmetry in the sense of category are intro-
duced. The following theorem is proved.

If f : R → R is a function, then the set of I-asymmetry points of f
is of the type Fσδσ and is σ-well-porous.

This illustrates the difference between measure and category. We
give an example of a function with the set of I-asymmetry points of the
cardinality of the continuum.

In this paper we shall consider basic properties of the category analogue
of one-sided density points. This notion is based upon the notion of I-density
point which was introduced in [14].

The well-know Young’s “Rome Theorem” is the most important theorem
giving a relationship between two one-sided cluster (in some sense) sets. Be-
lowska, Kulbacka, Matysiak, Goffman, Jasku la, Kempisty, Lipiński, Światko-
ski and Zajiček have collected some relations about “Essential asymmetry”.
In this paper we shall consider category analogues of these relations.

Throughout this paper B denotes the family of all subsets of R, the real
line, having the Baire property, I denotes the σ-ideal of all meager sets in R.
For a ∈ R and A ⊆ R we put aA = {ax : x ∈ A} and A− a = {x− a : x ∈ A}.

We say that a sequence of functions fn converges with respect to I to the
function f if for every increasing sequence {nm}m∈N of positive integers there
exists a subsequence {nmp

}p∈N and A ∈ I such that fnmp
(x) converges to

f(x) for all x ∈ R \A.
According to [14], 0 is a I-density point from the right of a set A ∈ B if

and only if the sequence of characteristic functions χnA∩[0,1] converges with
respect to I to χ[0,1]. We write then I-d+ ( 0, A ) = 1. A point x0 ∈ R is a
right I-density point of a set A ∈ B (written I-d+ (x0, A) = 1) if and only
if I-d+ (0, A− x0) = 1. If I-d+ (x0,R \A) = 1, then say that x0 is a right
I-dispersion point of a set A and we write I-d+ (x0, A) = 0. It is easy to see
that I-d+ (0, A) = 0 if and only if the sequence {χnA∩[0,1]}n∈N converges with
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respect to I to zero. The notion of left I-density point and of left I-dispersion
point are defined in an analogous manner.

We shall need the following lemmas.

Lemma 1. ([14]) Let A ∈ B. Then I-d+ (0, A) = 0 ( I-d+ (0, A) = 1) if
and only if for every sequence {rn}n∈N of real numbers converging to +∞ the
sequence {χrnA∩[0,1]}n∈N converges with respect to I to zero (resp. to χ[0,1]).

Lemma 2. ([11]) Let G be an open (resp. closed) set. Then I-d+(0, G) = 0
(resp. I-d+(0, G) = 1) if and only if for every positive integer n there exist a
positive integer k and a positive number δ such that for every h ∈ (0, δ) and
every i ∈ {1, . . . , n} there exists a integer j ∈ {1, . . . , k} such that(( i− 1

n
+
j − 1
nk

)
,

(
i− 1
n

+
j

nk

)
h

)
∩G = ∅

(resp.
[(

i− 1
n

+
j − 1
nk

)
h,

(
i− 1
n

+
j

nk

)
h

]
⊆ G)

Lemmas 1 and 2 have the left version.

Definition 1. Let f : R → R be a Baire function (for every open set G ⊆ R
the set f−1(G) has the Baire property) and let x0 ∈ R. We define the right
(resp. left) I-cluster set I-W+(f, x0) (resp. I-W−(f, x0)) of f at x0 as the set
of all point y ∈ R ∪ {−∞,+∞} such that x0 is not the right (resp. left) I
-dispersion point of f−1(U) for any neighborhood U of y.

Definition 2. Let f : R→ R be a Baire function. Then the set I-A(f) of all
points x ∈ R for which I-W−(f, x) 6= I-W+(f, x) we call the set of points of
I-asymmetry of f .

Definition 3. Let f : R→ R be a Baire function. Then the set I-A∅(f) of all
points x ∈ R for which I-W−(f, x) ∩ I-W+(f, x) = ∅ we call the set of points
of strong asymmetry f.

This notion is due to the approximate asymmetry introduced in [19]. We
shall use the following theorems concerning the boundary behavior of asym-
metry, these theorems we formulate in terms of I-density.

Theorem Z1. ([19] Th.1 p. 200.) If f : R → R is a Baire function, then
I-A(f) =

⋃∞
n=1 I-A(Mn) ∩ I-A(Ln), where Mn, Ln ∈ B for all n ∈ N and if

M ∈ B, then I-A(M) denotes the set of of all x ∈ R for which I-d+(x,M) = 0
and I-d−(x,M) 6= 0 or I-d+(x,M) 6= 0 and I-d−(x,M) = 0.
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Theorem Z2. ([19] Th. 8 p. 209). If f : R → R is a Baire function, then
I-A∅(f) ⊆

⋃∞
n=1 I-A∅(Mn), where Mn ∈ B for all n ∈ N and if M ∈ B,

then I-A∅(M) denotes the set of all x ∈ R for which I-d+(x,M) = 0 and
I-d−(x,M) = 1.

The assumption of Th. 8 of [19] is that the set of values of f is compact
space. We extend the range of f to R ∪ {−∞,+∞}. Th. 8 of [19] has a
stronger conclusion. In our paper we need only inclusion.

Theorem 1. There exists a Baire function f : R → R such that I-A(f) has
the cardinality of the continuum.

Proof. Let {εn}n∈N be a sequence of real numbers from the interval (0, 1/4)
such that limn→∞ εn = 0. We define the following contiguous intervals P and
noncontiguous intervals T.

T0 = [0, ε1], T1 = [1− ε1, 1], P−1 = (ε1, 1− ε1)
T0,0 = [0, ε1ε2], T0,1 = [ε1 − ε1ε2, ε1], P0 = (ε1ε2, ε1 − ε1ε2)
T1,0 = [1− ε1, 1− ε1 + ε1ε2], T1,1 = [1− ε1, ε2, 1]
P1 = (1− ε1 + ε1ε2, 1− ε1ε2) and so on.

If for some integer n > 1 we have noncontiguous closed intervals Tα1,...,αn and
open contiguous intervals Pα1,...,αn−1 (αi ∈ {0, 1}), we construct Tα1,...,αn+1

and Pα1,...,αn
as follows. If Tα1,...,αn

= [a, b], then

Tα1,...,αn,0 = [a, a+ εn+1(b− a)] , Tα1,...,αn
, 1 = [b− εn+1(b− a), b] ,

and
Pα1,...,αn

= Tα1,...,αn
\
(
Tα1,...,αn,0,∪Tα1,...,αn,1,

)
.

The intervals of the form Tα1,...,αn
(Pα1,...,αn−1) we call T -intervals (P -intervals)

of order n, for n ∈ N.
Let C = [0, 1] \

(
P−1 ∪

⋃∞
n=1

⋃
α1,...,αn

αi∈{0,1}
Pα1,...,αn

)
. Now we construct an

open set G such that

C \ {1} ⊆ A1(G) = {x : I-d−(x,G) = 0 and I-d+(x,G) 6= 0}.

If Pα1,...,αn−1 = (a, b) is a P -interval of order n, then let

Gα1,...,αn
=
(
a, a+ |Tα1,...,αn−1,0|

)
,

where |Tα1,...,αn−1,0| denotes the length of the T -interval of the order n, and
let G =

⋃
n>1

⋃
α1,...,αn

αi∈{0,1}
Gα1,...,αn−1 . Let x ∈ C \ {1}. If x is a left endpoint



596 Mariusz Strześniewski

of some P -interval, then I-d+(x,G) 6= 0. If x is not a left endpoint of some
P -interval, then let {Pn}n∈N be a sequence of P -intervals which “converges
from the right” to x and Pn ∩G = ∅ for all n ∈ N, and in (x, inf Pn) there are
no P -intervals with length greater than or equal to |Pn| . Let Gx = ∪∞n=1 Gn,
where Gn = G ∩ Pn for all n ∈ N. Let δn = sup(Gn)− x.

The sequence of characteristic functions {χδ−1
n

(Gx − x) ∩ [0, 1]}n∈N con-
verges to 1 on (1/2, 1) and has no subsequence which converges to zero on
[0, 1] \ A, where A ∈ I. Thus by Lemma 1 we have that I-d+(x,Gx) 6= 0.
Now we show that I-d−(x,Gx) 6= 0. The case when x = 0 or x is right
endpoint of some P -interval is obvious. In the other cases let {Pn}n∈N be a
sequence of P -interval which “converges from the left” to x and every n ∈ N
in (supPn, x) there are not P -interval with length greater than or equal to
|Pn| . Let C1 = C − x, G1 = G− x, P 1

n = Pn− x = (an, bn) for all n ∈ N. Let
{kn} n ∈ N be an increasing sequence of positive integers. For every n ∈ N let
jn denote an index such that ajn<− 1/kn≤ ajn + 1.

The set knG1∩[−1, 0] is contained in the sum of three intervals V n1 , V
n
2 , V

n
3 ,

where V n1 = kn(G1 ∩ P 1
jn

), V n2 = [knbjn , sup(kn(G1 ∩ P 1
jn+1))] and V n3 =

[knbjn + 1, 0]. Since {εn}n∈N converges to zero, lengths |V n1 ∩ [−1, 0]| , |V n2 | ,

and |V n3 | converge to zero. We have −1 ∈
(

inf V n1 , kn ajn + 1
]

for all n ∈ N.
There exists a sequence of positive integers {mn}n∈N such that the sequence
{V mn

2 }n∈N “converges” to some point p ∈ [−1, 0] (i.e., the sequence of left
endpoints and right endpoints of these intervals converge to p). Thus, if x 6∈
{−1, p}, then limn→∞ χ

kmnG
1∩[−1,0](x) = 0.

This completes the proof that I-d−(x,G) = 0. Taking f as the character-
istic function of G we obtain that I-A(f) ⊇ C \ {1} and this completes the
proof of the theorem.

We remark that in our proof we obtain the convergence except in at most
two points. Therefore almost everywhere in the sense of category and of
measure.

Before the next theorem we introduce the following definition.

Definition 4. For x ∈ R and A ⊇ R let

p(x,A) = lim
δ→0+

sup
|γ(x,A, δ)|

δ
p
+

(x,A) = lim
δ→0+

inf
|γ+(x,A, δ)|

δ

p−(x,A) = lim
δ→0+

inf
|γ−(x,A, δ)|

δ
p(x,A) = max

(
p−(x,A), p

+
(x,A)

)
where γ(x,A, δ), (resp. γ+(x,A, δ), and γ−(x,A, δ)) denotes the longest open
interval included in (x− δ, x+ δ) \A (resp. (x, x+ δ) \A, (x− δ, x) \A)
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We say that a set A ⊆ R is porous (well porous) if p(x,A) > 0 (resp
p(x,A) > 0) at every x ∈ A. If A is a countable union of porous (resp. well
porous) sets, then we say that A is σ-porous (resp. σ-well porous).

Theorem 2. If f : R→ R is a Baire function, then the set I-A(f) is σ-well
porous and of the type Fσδσ.

Proof. By Theorem Z1 it is sufficient to prove that I-A(M) is well porous
and of the type Fσδσ for every set M ∈ B. Let M ∈ B. Then there exist an
open set G and a meager set F such that M = G∆F . By definition we have
that I-A(M) = I-A(G). Let

A1(G) = {x : I-d+(x,G) = 0 and I-d−(x,G) 6= 0}
A2(G) = {x : I-d+(x,G) 6= 0 and I-d−(x,G) = 0}

and let x ∈ A1(G). By Lemma 2 there exist a natural number kx and a real
number δx > 0 such that for every h ∈ (0, δx) there exists ihx ∈ {1, . . . , kx} such
that

(
x+

((
ihx − 1

)
/kx
)
h, x+

(
ihx/kx

)
h
)
∩ G = ∅. Because I-d−(x,G) 6= 0

we have that x ∈ G. Consequently p
+

(x, I-A(G)) ≥ p
+

(
x,G

)
≥ 1
kx

> 0.

Similarly if x ∈ A2(G), then p−

(
x,G)

)
> 0. Since I-A(G) = A1(G) ∪

A2(G), we must show that I-A(G) is well porous. To prove that I-A(G) is of
the type Fσδσ we shown first that F1 = {x : I-d+(x, F ) = 1} is of the type
Fσδ for every closed set F . By the Lemma 2, x ∈ F1 if and only if

for every n ∈ N there exist a positive integer kx and real number δx > 0
such that for every h ∈ (0, δx) and every i ∈ {1, . . . , n} there exists

j ∈ {1, . . . , kx} such that
[( i− 1

n
+
j − 1
nkx

)
h,
( i− 1

n
+

j

nkx

)
h
]
⊆ F − x.

(1)

Let n, k ∈ N, w ∈ Q∩ (0,∞), where Q denotes the set of rational numbers,
and let i ∈ {1, . . . , n}, j ∈ {1, . . . , k}, q ∈ Q ∩ (0, w). Let

En,k,w,q,i,j = {x :
[(

i− 1
n

+
j − 1
nk

)
q,

(
i− 1
n

+
j

nk

)
q

]
⊆ F − x}

and
B =

⋂
n∈N

⋃
k∈N

⋃
w∈Q

⋂
q∈Q∩(0,w)

⋂
i∈{1,...,n}

⋃
j∈{1,...,k}

En,k,w,q,i,j .

We show that F1 = B. Let x ∈ F1. We can assume that the real number δx
from (1) is rational number and therefore x ∈ B. Now let x ∈ B and n ∈ N.
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By the definition of B there exist k and w such that

x ∈
⋂

q∈Q∩(0,w)

⋂
i∈{1,...,n}

⋃
j∈{1,...,k}

En,k,w,q,i,j .

Let h ∈ (0, w) and {qm}m∈N be a sequence of rational numbers such that
limm→∞ qm = h and qm ∈ (0, w) for all m ∈ N. For every m ∈ N we denote
by jm a positive integer from the set {1, . . . , k} such that[(

i− 1
n

+
jm − 1
nk

)
qm,

(
i− 1
n

+
jm
nk

)
qm

]
⊆ F − x

the sequence {jm}m∈N is a bounded sequence of positive integers. Hence there
exists a subsequence {jmk

}k∈N which is constant. We assume that {qm}m∈N
is such one that jm = j is constant for all m ∈ N. Let

y ∈ [a, b] =
[(

i− 1
n

+
j − 1
nk

)
h,

(
i− 1
n

+
j

nk

)
h

]
y = a + t(b − a), where t ∈ [0, 1]. Let ym = am + t(bm − am), where am =(
i− 1
n

+
j − 1
nk

)
qm, bm = am +

(
1
nk

)
gm

for all m ∈ N. Since ym ∈ F − x

and F − x is closed, we have that y ∈ F − x. Because y ∈ [a, b] and h ∈ (0, w)
were arbitrary, we conclude, from Lemma 2 that x ∈ F1. Because F is closed,
we have that En,k,w,q,i,j is closed. By definition of B we conclude that F1 is a
set of type Fσδ. Because

{x : I-d−(x,G) = 0} = {x : I-d−(x,R \G) = 1}

and
{x : I-d+(x,G) = 0} = {x : I-d+(x,R \G) = 1},

we have that for an open set G

X1 = {x : I-d+(x,G) = 0} is of the type Fσδ
X2 = {x : I-d+(x,G) 6= 0} is of the type Gδσ
Y1 = {x : I-d−(x,G) 6= 0} is of the type Gδσ
Y2 = {x : I-d−(x,G) = 0} is of the type Fσδ.

By the equality I-A(G) = (X1 ∩ Y1)∪ (X2 ∩ Y2) we infer that the set I-A(G)
is of the type Fσδσ.

Theorem 3. Let B ⊆ R. There exists a Baire function f : R→ R such that
I-A∅(f) = B if and only if the set B is countable.
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Proof. It is easy to see, that if B is a countable set of all points of disconti-
nuity, then f is a Baire function and B = I-A∅(f). For proof of Theorem 3, by
the Theorem Z2, it is sufficient to prove that I-A∅(G) is countable for every
open set G. Let G be an open set and let B = I-A∅(G) = {x : I-d+(x,G) =
0 and I-d−(x,G) = 1}. If x ∈ B, then by the Lemma 2

there exist a positive integer kx and a real number δx > 0
such that for every h ∈ (0, δx) there exists a positive integer

ihx ∈ {1, . . . , kx} such that

((
ihx − 1

)
h

kx
,

(
ihx
)
h

kx

)
∩ (G− x) = ∅.

(2)

For k, j are positive integers let Ek,j be the set of all points x ∈ B for which

kx = k and
(

1
j

)
< δx, where kx, δx are numbers from (2). Evidently B =⋃

k,j Ek,j . We show that every set Ek,j is countable. For this it suffices to prove
that if {xn}n∈N is an increasing sequence in Ek,j , then limn→∞ xn 6∈ Ek,j . Let
{xn}n∈N be a sequence such that xn ↑ x and xn ∈ Ek,j for all n ∈ N. We

can assume that x − xn <
(

1
j

)
for all n ∈ N. Let ihxn

be a positive integer
of {1, . . . , k} with respect to (2) for the point xn, the set G and h = x − xn.
Then there exists a subsequence {xkn}n∈N such that ihxkn

= i is constant for
all n ∈ N. We examine a sequence of characteristic functions

{χ(x−xn)−1(G− x) ∩ [−1, 0]}n∈N. (3)

If a point y ∈ N∩
(
−k − (i− 1)

k
,−k − i

k

)
, then the sequence (3) is convergent

at this point to zero. We conclude that the sequence (3) converges on an open
interval. Hence there exists no subsequence of (3) which converges I- a.e. to
χ

[−1,0]. Therefore x 6∈ B and x 6∈ Ek,j .
We remark that in Theorem 2 we can assume that f is a function from R

into a topological space X, where X is locally compact and has countable basis
of open sets. Moreover, if f : R→ X is Baire function and X is compact with
a countable basis of open sets, then I-A∅(f is countable. This is a consequence
of results by Zajiček [19].

Supplement. In this part we formulate Theorems 2 and 3 for an arbitrary
function using some definition of L. Zajiček [20] of I-density, which is equiva-
lent to our definition if we consider Baire functions.

Definition 5. [property 5, Th., page 59, [20]]. Let A ⊆ R. We say that
I-d+(0, A) = 1 if and only if for any 0 < c < 1 there exist ε > 0 and
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δ > 0 such that for any 0 < x < δ there exists open interval J such that
J ⊂∗ A ∩ (x − cx, x) and |J | ≥ εx, where B ⊂∗ D denotes B \D is meager.
Analogously I-d−(0, A) = 1 if I-d+(0, (−1)A) = 1.

The order notions of I-density is identical as in begin of our paper.

Lemma 3. Let 0 < c < 1, ε > 0, δ > 0 and Ec,ε,δ = {y ∈ R : for any 0 < x <
δ there exist open interval J such that J ⊂∗ A∩ (y+x− cx, y+x), |J | ≥ εx}.
Then Ec,ε,δ is closed.

Proof. Let yn ∈ Ec,ε,δ, yn → y and 0 < x < δ. For n ∈ N let In = (an, bn)
be such that In ⊂∗ A ∩ (yn + x − cx, yn + x), |In| ≥ εx. We can assume
that an, bn converge. Let J = (limn→∞ an, limn→∞ bn). Clearly |J | ≥ εx and
J ⊂ ((y+x−cx), y+x). If z ∈ J \A, then there is n ∈ N such that z ∈ In \A.
Hence J \A ⊂

⋃
nIn \A, where In \A is meager for all n ∈ N. It means that

J ⊂∗ A and ends the proof.

Lemma 4. Let A ⊆ R, let ε > 0, δ ≥ 0, let B = {x ∈ R : I-d+(x,A) =
1 and I-d−(x,A) = 0} and Eε,δ = {x ∈ B : for any 0 < h < δ there exists

open interval Inx such that Ihx ⊂∗ A ∩
(
x+

h

2
, x+ h

)
,
∣∣Ihx ∣∣ ≥ εh}. Then Eε,δ

is countable.

Proof. We show that if xk ∈ Eε,δ and xk ↑ x, then x 6∈ Eε,δ. Let xk ∈ Eε,δ,
xk ↑ x and x − xk < δ for all k. Let Ihxk

be an open interval with respect to
definition of Eε,δ for x = xk, h = x − xk, and let Ihxk

= (ak, bk). We have

that 1 >
bk − ak
x− ak

>
bk − ak
h/2

≥ ε > 0. Let 0 < c < lim inf
bk − ak
x− ak

. Then we

have that for this c the property of definition that I-d−(x,R \ A) = 1 is not
satisfied.

These lemmas are essentially important and sufficient to prove our asym-
metry theorems for an arbitrary functions.
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[7] J. Jedrzejewski, On the limit numbers of real functions, Fund. Math., 83
(1973/74), 269–281.

[8] S. Kempisty, Sur les functions approximativement discontinues, Fund.
Math., 6 (1924), 6–8.

[9] M. Kulbacka, Sur l’ensemble des points de l’asymetrie approximative,
Acta Sci. Math. Szeged, 21 (1960), 90–93.

[10] J. S. Lipiński, Sur la discontinuite approximative et le derivee approxima-
tive, Colloq. Math. 10 (1963), 103–109.

[11] E.  Lazarow, On the Baire class of I-approximate derivatives, Proc. Amer.
Math. Soc., 100 (1987), 669–674.
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