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F-CONNECTIVITY AND STRONG
F-CONNECTIVITY OF MULTIVALUED

MAPS

Abstract

In the paper the general connectivity property is given for multival-
ued maps and the Darboux property, the intermediate value property,
functional connectivity property, connectivity property etc. are consid-
ered as subcases of this property.

This general property is characterized locally, so as corollaries we
obtain local characterization of the Darboux property, the intermediate
value property etc. for multivalued maps and for real functions those
classical results given by Bruckner, Ceder [2] and Garret, Nelms and
Kellum [5].

Characterization of the sets of Darboux points, the intermediate
value property points etc. for multivalued maps and for real functions
are straightforward corollaries from one general theorem (Theorem 11).

1 Preliminaries

Let R denote the set of real numbers, I any interval contained in R. If A ⊂ I,
let A denote the closure of the set A in I and Ac = I \ A. For a non-empty
set A ⊂ R2 and a number ε > 0 we denote

Kε(A) = {x ∈ R2 : there exists y ∈ A such that |x− y| < ε}.

For any sets A,B ⊂ R and any number a ∈ R we define

a < A (a > A)⇐⇒ a < y (a > y) for any y ∈ A,

A < B (A > B)⇐⇒ x < y (x > y) for any x ∈ A, y ∈ B.
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For M ⊂ X × Y , where X,Y ⊂ R, we put

π(M) = {x ∈ X : there exists y ∈ Y such that (x, y) ∈M},

Mx = {y ∈ Y : (x, y) ∈M}.

By Li
n→∞

An ( Ls
n→∞

An) we denote a lower (upper) limit of a sequence of sets

An ⊂ R (Kuratowski [7]).
In this paper F : I → R denote a multivalued map which to each point

x ∈ I assigns a non-empty subset F (x) ⊂ R. By the graph of F we mean
the following set

⋃
{(x, y) : y ∈ F (x)}. We make no distinction between a

map and its graph. For a set A ⊂ I let F (A) =
⋃
{F (x) : x ∈ A}. F has

the Darboux property if the image F (E) is connected for any connected set
E ⊂ I.

We say that g ∈ R is a left (right) limit number of a multivalued map F
at a left (right) accumulation point x of the set I, if for any open set V ⊂ R
such that g ∈ V and for any ε > 0

F−(V ) ∩ (x− ε, x) 6= ∅ (F−(V ) ∩ (x, x+ ε) 6= ∅)

or equivalently, if there exist sequences (xn)∞n=1 ⊂ I and (yn)∞n=1 such that
xn < x (xn > x) and yn ∈ F (xn) for n ∈ N , lim

n→∞
xn = x and lim

n→∞
yn = g.

The set of all left (right) limit numbers of F at a point x is denoted by L−(F, x)
(L+(F, x)) and

L(F, x) = L−(F, x) ∪ L+(F, x).

Remark 1. (Bruckner, [1]) Let I = A ∪ B where A, B are non–empty, dis-
joint, bilaterally dense–in–itself sets. Then the frame K = FrI(A) = FrI(B)
is a perfect set in I and the sets K ∩A and K ∩B are dense in K.

Lemma 1. Let M ⊂ I×R be a continuum. Then for any two different points
a, b ∈ π(M) there exists a continuum C ⊂M such that π(C) = [a, b].

Proof. Assume that for some a, b ∈ π(M), a < b the assertion of the lemma
does not hold and denote

M̃ = M ∩ ([a, b]×R),
M1 = M ∩ ((−∞, a]× R),
M2 = M ∩ ([b,+∞)× R).

The set M̃ is a continuum so any component C of M̃ is a continuum too and

C ∩M1 6= ∅ or C ∩M2 6= ∅.
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Let us define the following disjoint families of sets

C1 = {C : C is a component of the set M̃ such that C ∩M1 6= ∅},
C2 = {C : C is a component of the set M̃ such that C ∩M2 6= ∅}.

Let us put

X1 =
⋃
{C : C ∈ C1},

X2 =
⋃
{C : C ∈ C2}.

Let us see that
(X1 ∩X2) ∪ (X1 ∩X2) 6= ∅.

In the opposite case, since

X1 ∩M2 ⊂ X1 ∩X2,

X2 ∩M1 ⊂ X2 ∩X1,

then the sets M1 ∪X1, M2 ∪X2 will be the decomposition of the set M .
Assume that X1 ∩X2 6= ∅ and select any z0 ∈ X1 such that z0 ∈ X2. The

point z0 does not belong to any component of the family C2, so there exists a
sequence (zn)∞n=1, zn ∈ Cn, where Cn ∈ C2 such that

lim
n→∞

zn = z0.

We may assume that Ck 6= Cl for k 6= l.
Since z0 ∈ Li

n→∞
(Cn) and for any n ∈ N the sets Cn are compact and

connected, then the upper limit

K = Ls
n→∞

(Cn) =
∞⋂
n=1

∞⋃
k=n

Ck

is a compact and connected set (Kuratowski, [7] p.180). Denote z0 = (x0, y0)
and let us see that for any x ∈ (x0, b] there exists nx ∈ N such that for
any n > nx the sections (Cn)x are non–empty, compact sets contained in the
compact set Mx. Then

∞⋂
n=1

∞⋃
k=n

(Ck)x 6= ∅ and
∞⋂
n=1

∞⋃
k=n

(Ck)x ⊂ Kx,

so Kx 6= ∅ for any x ∈ (x0, b]. Since z0 ∈ K, then [x0, b] ⊂ π(K). The
set K ∪ C0, where C0 ∈ C1 and z0 ∈ C0 is a continuum contained in M with
projection π(K∪C0) = [a, b]. This is a contradiction and the lemma is proved.
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Lemma 2. Let O1, O2 ⊂ I × R be disjoint, open subsets of I × R. Then
for any right (left) accumulation point x0 ∈ I of the set I and for any points
a, b ∈ R such that (x0, a) ∈ O1 and (x0, b) ∈ O2, there exist a continuum
C ⊂ (I × R) \ (O1 ∪O2) and a number δ > 0 such that

π(C) = [x0, x0 + δ] (π(C) = [x0 − δ, x0]) and Cx0 ⊂ (a, b).

Proof. Without loss of generality we may assume that x0 ∈ Int(I). Let
(x0, a) ∈ O1, (x0, b) ∈ O2 and assume that a < b. There exist some positive
numbers δ and ε such that

P1 = [x0, x0 + δ]× [a− ε, a+ ε] ⊂ O1,

P2 = [x0, x0 + δ]× [b− ε, b+ ε] ⊂ O2.

Let us denote
X = [x0, x0 + δ]× [a− ε, b+ ε].

Select a component O of the set O1 ∩X such that P1 ⊂ O. If the set X \ O
is connected then we put

X1 = O and X2 = X \O.

In the opposite case let X2 be a component of X \O such that P2 ⊂ X2 and

X1 = X \X2.

The set X1 is connected (Kuratowski, [7] p.149). Then

X = X1 ∪X2,

the sets X1 X2 are compact and connected so the set

C = X1 ∩X2

is a continuum (Kuratowski, [7] p.171, 435).
Since P1 ⊂ X1, P2 ⊂ X2 and P1 ∩ P2 = ∅, then

π(C) = [x0, x0 + δ],
C ⊂ [x0, x0 + δ]× [a+ ε, b− ε],

and
Cx0 ⊂ (a, b).

It is easy to show that C ∩ (O1 ∪ O2) = ∅. In the same way we may show
that there exists a continuum C with projection π(C) = [x0 − δ, x0] for some
positive number δ.
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Lemma 3. Let F : I → R and let B ⊂ R be a bilaterally dense–in–itself set.
Then for any x ∈ B \ B and for any n ∈ N, there exists a closed interval J
such that x ∈ Int(J) and

F |B∩J ⊂ K 1
n

({x} × L(F |B , x)) ∪ (I × ((−∞,−n) ∪ (n,+∞))).

Proof. Let us assume that for some x ∈ B \ B and n0 ∈ N, the assertion
of the lemma is false. Then, there exist sequences (zn)∞n=1 and (yn)∞n=1 such
that zn ∈ B,

lim
n→∞

zn = x, yn ∈ F (zn)

and

(zn, yn) 6∈ K 1
n0

({x} × L(F |B , x)) ∪ (I × ((−∞,−n0) ∪ (n0,+∞))).

Without loss of generality we may assume that zn > x for any n ∈ N. The
sequence (yn)∞n=1 is bounded, so it contains convergent subsequence (ynk

)∞k=1.
We obtain a contradiction that y = lim

k→∞
ynk

is right limit number of F |B at

the point x and (x, y) 6∈ K 1
n0

({x} × L(F |B , x)).

Theorem 1. Let F : I → R has connected values and let the following condi-
tions hold.

(i) F (x) ∩ L−(F, x) 6= ∅ and F (x) ∩ L+(F, x) 6= ∅ for any x ∈ I.

(ii) There exist disjoint, open sets O1, O2 ⊂ I × R such that F ⊂ O1 ∪ O2,
F ∩O1 6= ∅ and F ∩O2 6= ∅.

Then for some x0 ∈ I there exist limit numbers g1, g2 ∈ L−(F, x0) or g1, g2 ∈
L+(F, x0) such that (x0, g1) ∈ O1 and (x0, g2) ∈ O2.

Proof. At the beginning we show that for some point x0 ∈ I there exist limit
numbers g1, g2 ∈ L(F, x0) such that (x0, g1) ∈ O1 and (x0, g2) ∈ O2. Let us
define the sets A,B as

A = {x ∈ I : {x} × F (x) ⊂ O1},
B = {x ∈ I : {x} × F (x) ⊂ O2}.

They are non-empty, disjoint and A ∪ B = I. Since the sets O1, O2 are open
in I × R, then from (i) we get that A and B are bilaterally dense–in-it-self.
By Remark (1), the frame K = FrI(A) = FrI(B) is a perfect set in I and the
sets K ∩A, K ∩B are dense in K. Let us define the set

M = (I × R) \ (O1 ∪O2)
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and assume contrary that for any x ∈ I

(1) L(F, x) ⊂ R \ (O1)x or L(F, x) ⊂ R \ (O2)x.

For a ∈ K ∩ A, since {a} × F (a) ⊂ O1 and F (a) ∩ L(F, a) 6= ∅ then by (1)
L(F, a) ⊂ R \ (O2)a. Let us note that ({a} × L(F |B , a)) ∩O1 = ∅. From this

(2) L(F |B , a) ⊂Ma.

In the same way we can show that if b ∈ K ∩B then L(F |A, b) ⊂Mb.
We now construct a sequence of closed intervals {In}∞n=1 such that for any

n ∈ N ,

K ∩ In+1 ⊂ K ∩ In and F |K∩In
⊂ Dn,

where
Dn = K 1

n
(M) ∪ (I × ((−∞,−n) ∪ (n,+∞))).

Let us take x1 ∈ K ∩ A ∩ Int(I). Then by (2), L(F |B , x1) ⊂ Mx1 and by
Lemma (3), there exists a closed interval J1 ⊂ I such that x1 ∈ Int(J1) and
F |K∩B∩J1 ⊂ D1. Let y1 ∈ K ∩B∩ Int(J1). In this case L(F |A, y1) ⊂My1 and
by Lemma (3), there exists a closed interval I1 ⊂ J1 such that y1 ∈ Int(I1)
and F |K∩A∩I1 ⊂ D1. Consequently F |K∩I1 ⊂ D1.

Let us assume that we have the closed intervals I1, I2, ..., In−1 such that

K ∩ Ii+1 ⊂ K ∩ Ii and K ∩ Ii ⊂ Di

for i = 1, 2, ..., n− 1.
Select xn ∈ K ∩ A ∩ Int(In−1). Similarly, there exists a closed interval

Jn ⊂ In−1 such that xn ∈ Int(Jn) and F |K∩B∩Jn
⊂ Dn. Let us put yn ∈ K ∩

B ∩ Int(Jn). There exists interval In ⊂ Jn, yn ∈ Int(In) and F |K∩A∩In
⊂ Dn.

Then F |K∩In ⊂ Dn and the sequence {In}∞n=1 is defined.
Then the set

C =
∞⋂
n=1

(K ∩ In)

is non-empty. If x ∈ C, then {x} × F (x) ⊂ Dn for any n ∈ N , and from this

{x} × F (x) ⊂
∞⋂
n=1

Dn = M.

This contradicts that M ∩ F = ∅. It was shown then, that for some point
x0 ∈ I, there exist limit numbers g1, g2 ∈ L(F, x0) such that (x0, g1) ∈ O1 and
(x0, g2) ∈ O2.
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Since F has connected values, then two cases are possible

{x0} × F (x0) ⊂ O1 or {x0} × F (x0) ⊂ O2.

Let us assume that the first of the cases holds. Then by (i), we can choose
numbers y′ ∈ F (x0) ∩ L−(F, x0) and y′′ ∈ F (x0) ∩ L+(F, x0). Then if g2 is
left or right limit number the y′, g2 or y′′, g2 are required limit numbers .

2 F-connectivity Property

We introduce the following denotations

M =
{
M ⊂ I×R : M is a continuum with non degenerate projection π(M)

}
,

P =
{
P ∈M : P is a horizontal interval contained in I × R

}
,

G =
{
M ⊂ I × R : M is the graph of the continuous function f : [a, b] →

R, where [a, b] ⊂ I, a < b
}
.

Point 1. Let F be any family of subsets of the family M for which the fol-
lowing conditions hold

(1) P ⊂ F

(2) If M ∈ F , C ⊂M and C ∈M, then C ∈ F .

In the paper by F we mean the subfamily of M for which the conditions (1)
and (2) hold.

Let us introduce for multivalued map the following definition of F- con-
nectivity property.

Definition 1. A multivalued map F : I → R with connected values is F-
connected, if for any distinct points x1, x2 ∈ I and for any subset M ∈ F such
that π(M) = [x1, x2], if

F (x1) < Mx1 and F (x2) > Mx2

or F (x1) > Mx1 and F (x2) < Mx2

then M ∩ F |(x1,x2) 6= ∅.
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If F : I → R is a real function, then taking in Definition (1) as F the
families P, M or G we obtain a Darboux function, function with connected
graph (Garrett, Nelms, Kellum, [5]) or respectively functionally connected
function (Jastrzȩbski, Jȩdrzejewski [6]).

It is easy to see that for multivalued maps, if F = P then F-connectivity
is equivalent to the Darboux property. If F = M or F = G it will be said
that F is connected or is functionally connected.

Definition 2. A multivalued map F : I → R, with connected values is right
F-connected at a point x0 if

(i) F (x0) ∩ L+(F, x0) 6= ∅

(ii) for any two numbers g1, g2 ∈ L+(F, x0) and any set M ∈ F , if π(M) =
[x0, x0 +ε], for some ε > 0 and Mx0 ⊂ (g1, g2), then M ∩F |(x0,x0+ε) 6= ∅.

We define left F-connectivity at a point in a similar way. A multivalued
map which is both left and right F-connected at a certain point is called
F-connected at this point.

By C−F (F ) and C+

F (F ) we denote the sets of left and respectively right
F-connectivity points and by CF (F ) the set of F-connectivity points.

Notice that if F : I → R is a real function then taking in Definition (2) as
F the families P, M or G, we obtain respectively the Darboux property at a
point (Bruckner, Ceder, [2]), connectivity at a point (Garrett, Nelms, Kellum,
[5]) or functional connectivity at a point (Jastrzȩbski, Jȩdrzejewski, [6]).

If F : I → R is a multivalued map then in this three cases it will be said,
that F has the Darboux property at a point, is connected at a point or is
functionally connected at a point.

Theorem 2. If a multivalued map F : I → R with connected values is F-
connected at each point, then it is F-connected.

Let us assume that F has connected and compact values. If F is F- con-
nected then it is F-connected at each point.

Proof. Assume contrary that F is F-connected at each point and it is not
F-connected. Then there exists a set M ∈ F such that π(M) = [x1, x2]

F (x1) < Mx1 , F (x2) > Mx2 and M ∩ F |(x1,x2) = ∅.

Since M is a continuum, then there exist disjoint, open sets O1, O2 such that

F ⊂ O1 ∪O2,
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O1 ∩ F |[x1,x2] 6= ∅ and O2 ∩ F |[x1,x2] 6= ∅.

F is F-connected at each point, so

F (x) ∩ L−(F, x) 6= ∅,
F (x) ∩ L+(F, x) 6= ∅

for each x ∈ [x1, x2]. By Theorem (1), there exists a point x0 ∈ [x1, x2] and
two limit numbers g1, g2 ∈ L(F, x0) – let assume that g1, g2 ∈ L+(F, x0) –
such that

(x0, g1) ∈ O1 and (x0, g2) ∈ O2.

By Lemma (2), there exists a continuum C ⊂ (I ∗R)/(O1 ∪O2) such that

Cx0 ⊂ (g1, g2) and π(C) = [x0, x3],

where x0 < x3 ≤ x2. Since C ∈ F and C ∩ F |(x0,x3) = ∅ then F is not right
F-connected at the point x0, a contradiction. This finishes the proof of the
first part of the theorem.

Now, assume that F is F-connected and for some x0 ∈ I

F (x0) ∩ L+(F, x0) = ∅.

Denote F (x0) = [a, b], and assume that a ≤ b. There exist positive numbers
δ, ε such that

((x0, x0 + δ)× (a− ε, b+ ε)) ∩ F = ∅.

Select x1 ∈ (x0, x0 + δ) and assume that F (x1) < a− ε. In the case, when
F (x1) > b + ε the proof is similar. Let M be a horizontal interval such that
π(M) = [x0, x1] and M ⊂ [x0, x1]× (a− ε, a). Then

F (x0) > Mx0 and F (x1) < Mx1

and M ∩ F |(x0,x1) = ∅. We get a contradiction that F is not F-connected. In
the same way we can show that F (x0) ∩ L−(F, x0) 6= ∅.

Let us assume now that for some x0 ∈ I there exist two limit numbers
g1, g2 ∈ L+(F, x0) and there exists a set M ∈ F such that π(M) = [x0, x0 +δ];
for some δ > 0, Mx0 ⊂ (g1, g2) and M ∩ F |(x0,x0+δ) = ∅. Without loss of
generality we may assume that g1 < g2. Since M is a compact set and F has
connected values, then there exist two different points a, b ∈ (x0, x0 + δ) such
that a < b,

F (a) < Ma and F (b) > Mb.
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By Lemma (1), there exists a continuum C ⊂M such that π(C) = [a, b]. Then
C ∈ F ,

F (a) < Ca and F (b) > Cb

and C ∩ F |(a,b) = ∅. It means that F is not F-connected, a contradiction.
The following theorem is straightforward corollary from Theorem 2.

Theorem 3. Let a multivalued map F : I → R has connected values. If F
has the Darboux property or respectively is functionally connected at each point
then it has the Darboux property or respectively is functionally connected.

If we assume that the values are compact then the inverse implication is
true.

Corollary 1. (Bruckner, Ceder, [2]) The function f : I → R has the Darboux
property if and only if it has the Darboux property at each point.

Corollary 2. (Jastrzȩbski, Jȩdrzejewski, [6]) The function f : I → R is
functionally connected if and only if f is functionally connected at each point.

Theorem 4. Let F : I → R has connected values and let F = M. The
following conditions are equivalent

(i) F is F-connected at each point,

(ii) F has connected graph.

Proof. (i)⇒ (ii) Assume contrary that F is F-connected at each point
and the graph of F is not connected. Then

F (x) ∩ L−(F, x) 6= ∅ and F (x) ∩ L+(F, x) 6= ∅

for any x ∈ I. There exist disjoint, open sets O1, O2 ⊂ I × R such that

F ⊂ O1 ∪O2,

F ∩O1 6= ∅ and F ∩O2 6= ∅.

By Theorem (1), for some point x0 ∈ I there exist limit numbers g1, g2 ∈
L(F, x0) such that

(x0, g1) ∈ O1 and (x0, g2) ∈ O2.

Let us assume that g1, g2 ∈ L+(F, x0) and g1 < g2. By Lemma (2), there
exists a continuum C ⊂ (I × R) \ (O1 ∪O2) such that

Cx0 ⊂ (g1, g2)
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and π(C) = [x0, x0 +δ], where δ is positive number. Since C∩F |(x0,x0+δ) = ∅,
we get a contradiction that F is not connected at the point x0 from the right
side.

(ii) ⇒ (i) Let us assume contrary that F has connected graph and
F (x0) ∩ L+(F, x0) = ∅ for some x0 ∈ I. Then for any y ∈ F (x0), there exist
positive numbers δy, εy such, that Uy ∩ F = ∅, where

Uy = [x0, x0 + δy)× (y − εy, y + εy).

Let us define open in I × R sets O1, O2 as follows

O1 = ((x0,+∞) ∩ I)× R,

O2 = (((−∞, x0) ∩ I)× R) ∪
⋃
{Uy : y ∈ F (x0)}.

Then
F = (F ∩O1) ∪ (F ∩O2),

F ∩O1 6= ∅ and F ∩O2 6= ∅
and

(F ∩O1) ∩ (F ∩O2) = ∅.

This contradicts the connectivity of the graph of F .
In the same way we can show that the set F (x) ∩ L−(F, x) 6= ∅ for any

x ∈ I.
Let us assume now that there exists a point x0 ∈ I and two limit numbers

g1, g2 ∈ L+(F, x0), g1 < g2 and there exists a continuum M ∈ F such that
π(M) = [x0, x0 + δ]; for some δ > 0, Mx0 ⊂ (g1, g2) and M ∩ F |(x0,x0+δ) = ∅.
Since M is a compact set and F has connected values, there exist two different
points a, b ∈ (x, x0 + δ) such that a < b, F (a) < Ma and F (b) > Mb.
By Lemma (1), there exists a continuum C ⊂ M such that π(C) = [a, b],
F (a) < Ca and F (b) > Cb and C ∩ F |(a,b) = ∅. Then we get a contradiction
that the graph F |[a,b] is not connected.

Corollary 3. (Garrett, Nelms, Kellum [5]) A function f : I → R has con-
nected graph if and only if f is connected at each point.

Theorem 5. Let F : I → R has connected values. If F is F-connected, where
F =M, and

F (x) ∩ L−(F, x) 6= ∅ and F (x) ∩ L+(F, x) 6= ∅

for any x ∈ I, then F has connected graph.
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Proof. We show that F is F-connected at each point x ∈ I. Assume contrary
that for some x0 there exist two limits numbers g1, g2 ∈ L+(F, x0) and there
exists a set M ∈ F such that π(M) = [x0, x0 + δ]; for some δ > 0, Mx0 ⊂
(g1, g2) and M ∩ F |(x0,x0+δ) = ∅. As in proof of Theorem (4), we get a
contradiction that there exists a continuum C ⊂M , C ∈ F , such that π(C) =
[a, b],

F (a) < Ca and F (b) > Cb

and C ∩ F |(a,b) = ∅. Thus F is F-connected at each point x ∈ I and by
Theorem (4), it has connected graph.

3 Strong F-connectivity Property

Let us introduce for multivalued maps the following definition of strong F-
connectivity property.

Definition 3. A multivalued map F : I → R is strongly F-connected if
for any two different points x1, x2 ∈ I and for any y1 ∈ F (x1), there exists
y2 ∈ F (x2) such that for any set M ∈ F , if π(M) = [x1, x2] and

y1 < Mx1 and y2 > Mx2

or y1 > Mx1 and y2 < Mx2 ,

then M ∩ F |(x1,x2) 6= ∅.

For real functions F-connectivity and strong F-connectivity are equivalent.

Lemma 4. If F : I → R is strongly F-connected then for any x0 ∈ I

F (x0) ⊂ L−(F, x0) ∩ L+(F, x0).

Proof. Assume that there exist x0 ∈ I and y0 ∈ F (x0) such that y0 is not
a right limit number – we consider one of the two possible cases. There exist
then positive numbers δ, ε such that

F ∩ ((x0, x0 + δ)× (y0 − ε, y0 + ε)) = ∅.

Select any x′ ∈ (x0, x0+δ). Then for any y ∈ F (x′) we may choose a horizontal
interval M ∈ F such that π(M) = [x0, x

′] and

M ⊂ [x0, x
′]× (y0, y0 + ε) if y > y0 + ε

or
M ⊂ [x0, x

′]× (y0 − ε, y0) if y < y0 − ε.
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In this two cases
M ∩ F |(x0,x′) = ∅.

It means that contrary to the assumption, F is not strongly F-connected.

Remark 2. A map F : I → R, with connected values, is strongly F-connected
iff and only iff for any two different points x1, x2 ∈ I and for any set M ∈ F ,
with projection π(M) = [x1, x2] if there exist y1 ∈ F (x1), y2 ∈ F (x2) such that

y1 < Mx1 and y2 > Mx2

or y1 > Mx1 and y2 < Mx2 ,

then M ∩ F |(x1,x2) 6= ∅.

Proof. Assume that F is strongly F-connected and there exist two different
points x1, x2 ∈ I, x1 < x2 and y1 ∈ F (x1), y2 ∈ F (x2) such that for some set
M ∈ F with projection π(M) = [x1, x2] we have

y1 < Mx1 and y2 > Mx2

— we consider one of the two possible cases — and M ∩ F |(x1,x2) = ∅. By
Lemma (4), y2 ∈ L−(F, x2), so there exists x′ ∈ (x1, x2) such that

F (x′) > Mx′ .

By Lemma (1), there exists a continuum C ⊂ M such that π(C) = [x1, x
′].

Then C ∈ F and for any y ∈ F (x′) we have

y1 < Cx1 and y > Cx′

and
C ∩ F |(x1,x′) = ∅.

Then contrary to the assumption, F is not strongly F-connected. The inverse
implication is obvious.

It follows from Remark (2), that strongly F-connected multivalued map
with connected values is F-connected. If we put as F the family P then we
obtain the intermediate value property of multivalued maps which is equivalent
to those given by Ceder ([3]). Taking by F the families G or M we obtain
strong functional connectivity or respectively strong connectivity.

Theorem 6. A map F : I → R, with connected values, is strongly F-
connected iff and only iff for any two different points a, b ∈ I a map F̃ :
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[a, b]→ R defined as follows

F̃ (x) =

{
F (x); x ∈ (a, b)
yx; x ∈ {a, b}, where yx is any element of F (x),

is F̃a,b-connected, where

F̃a,b = {M ⊂ [a, b]× R : M ∈ F}.

Proof. Let us assume that F is strongly F-connected. Select two different
points a, b ∈ I and let ya ∈ F (a), yb ∈ F (b). Let us put

F̃ (x) =


F (x); x ∈ (a, b)
ya; x = a

yb; x = b.

Select the set M ∈ F̃a,b such that π(M) = [x1, x2],

F̃ (x1) < Mx1 and F̃ (x2) > Mx2 .

We consider one of the cases, in the second one the proof is similar. Since
F̃ (x) ⊂ F (x) for any x ∈ [a, b], M ∈ F and F is strongly F-connected, then

M ∩ F |(x1,x2) 6= ∅.

Since F |(x1,x2) = F̃ |(x1,x2), then

M ∩ F̃ |(x1,x2) 6= ∅.

It means that F̃ is F̃a,b-connected.
Let us take now the set M ∈ F , such that π(M) = [x1, x2],

y1 < Mx1 and y2 > Mx2

for some y1 ∈ F (x1) and y2 ∈ F (x2). Let F̃ : [x1, x2] → R be a map defined
as follows

F̃ (x) =


F (x); x ∈ (x1, x2)
y1; x = x1

y2; x = x2.

The map F̃ is F̃x1,x2-connected, M ∈ F̃x1,x2 ,

F̃ (x1) < Mx1 and F̃ (x2) > Mx2 ,
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so
M ∩ F̃ |(x1,x2) 6= ∅.

Then
M ∩ F |(x1,x2) 6= ∅

which means, that F is stro ngly F-connected.

From Theorem (6) we get the following theorems as corollaries.

Theorem 7. A map F : I → R with connected values, has the intermediate
value property iff and only iff for any two different points a, b ∈ I and for any
ya ∈ F (a), yb ∈ F (b) the set

F ((a, b)) ∪ {ya, yb}

is connected.

Theorem 8. A map F : I → R, with connected and compact values, is
strongly connected iff and only iff for any two different points a, b ∈ I and for
any ya ∈ F (a), yb ∈ F (b) a map F̃ : [a, b]→ R defined as follows

F̃ (x) =


F (x); x ∈ (a, b)
ya; x = a

yb; x = b

has connected graph.

Let us introduce for multivalued maps the following definition of strongly
F-connectivity at a point.

Definition 4. A map F : I → R, with connected values, is strongly F-
connected from the right side at a point x0 ∈ I if

(i) F (x0) ⊂ L+(F, x0),

(ii) for any two different points g1, g2 ∈ L+(F, x0) and for any set M ∈ F , if
π(M) = [x0, x0 +ε], for some positive number ε > 0, and Mx0 ⊂ (g1, g2),
then M ∩ F |(x0,x0+ε) 6= ∅.

In the same way we define left strong F-connectivity at the point x0 and
we say that F is strongly F-connected at x0 if it is strongly F-connected both
from the left and right side at this point.
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By S−F (F ) and S+

F (F ) we denote the sets of left and respectively right
strong F-connectivity points and by SF (F ) the set of all strong F-connectivity
points. Notice that

SF (F ) ⊂ CF (F ).

If we put in Definition (4) as F the families P, G or M, then we obtain
the intermediate value property, strong functional connectivity or respectively
strong connectivity at a point.

Theorem 9. A map F : I → R, with connected values, is strongly F- con-
nected iff and only iff it is strongly F-connected at each point.

Proof. Assume that F is strongly F-connected. By Lemma (4), F (x) ⊂
L−(F, x) ∩ L+(F, x) for any x ∈ I. Let us assume now that for some x0 ∈
I there exist two limit numbers g1, g2 ∈ L+(F, x0) and there exists a set
M ∈ F such that π(M) = [x0, x0 + δ]; for some δ > 0, Mx0 ⊂ (g1, g2) and
M ∩ F |(x0,x0+δ) = ∅. Without loss of generality we may assume that g1 < g2.
Since M is a compact set and F has connected values, then there exist two
different points a, b ∈ (x0, x0 + δ) such that a < b and

F (a) < Ma and F (b) > Mb.

By Lemma (1), there exists a continuum C ⊂M such that π(C) = [a, b]. Then
C ∈ F ,

F (a) < Ca and F (b) > Cb

and C ∩ F |(a,b) = ∅. It means that F is not strongly F-connected, a contra-
diction.

Let us assume now that F is strongly F-connected at each point. Then F
is F-connected at each point and by Theorem (2), F is F-connected. Assume
contrary that F is not strongly F-connected. By Remark (2), there exist
two different points a, b ∈ I, a < b and the set M ∈ F with projection
π(M) = [a, b], such that for some two points y1 ∈ F (a), y2 ∈ F (b),

y1 < Ma and y2 > Mb

— we consider one of the two possible cases —

M ∩ F |(a,b) = ∅.

Since F has connected values and y1 ∈ L+(F, a), y2 ∈ L−(F, b), then there
exist points x1, x2 ∈ (a, b), x1 < x2 such that

F (x1) < Mx1 and F (x2) > Mx2 .
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By Lemma (1), there exists a continuum C ⊂ M such that π(C) = [x1, x2].
Then C ∈ F ,

F (x1) < Cx1 and F (x2) > Cx2

and C ∩ F |(x1,x2) = ∅, which contradicts that F is F-connected.
From Theorem (9) we get the following corollaries.

Corollary 4. Czarnowska [4]) A map F : I → R has the intermediate value
property iff and only iff it has the intermediate value property at each point.

Corollary 5. (Czarnowska [4]) A map F : I → R is strongly functionally
connected iff and only iff it is strongly functionally connected at each point.

4 Characterization of the Sets of F- connectivity and
Strong F-connectivity Points

Lemma 5. (Czarnowska [4]) For any multivalued map F : I → R the set

{x ∈ I : L−(F, x)÷ L+(F, x) 6= ∅}

is countable.

Lemma 6. For any F : I → R the set

{x ∈ I : F (x) 6⊂ L−(F, x) ∩ L+(F, x)}

is countable.

Proof. Let us denote

E = {x ∈ I : F (x) 6⊂ L−(F, x) ∩ L+(F, x)},
B1 = {x ∈ I : L−(F, x)÷ L+(F, x) 6= ∅},
B2 = {x ∈ I : L−(F, x) = L+(F, x)}.

Notice that E = (E ∩B1)∪ (E ∩B2). By Lemma (5), the set B1 is countable.
Now we show that the set E ∩B2 is countable. To do this, select x0 ∈ E ∩B2.
There exists element y0 ∈ F (x0) such that y0 6∈ L−(F, x0) and y0 6∈ L+(F, x0).
Let us take rational numbers q0, q1, q2, q3 such that q0 < x0 < q1, q2 < y0 < q3
and

((q0, q1)× (q2, q3)) ∩ F ⊂ {x0} × F (x0).

Thus four rational numbers are assigned to each point in E ∩ B2. It is not
difficult to see that this is an injective mapping so the set E ∩B2 is countable
and the set E is countable too.
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Lemma 7. For any multivalued map F : I → R the set

CF (F )÷ SF (F )

is countable.

Proof. The assertion of the lemma follows from the Lemma (6) and the
following inclusions.

SF (F ) ⊂ CF (F ),

CF (F ) \ SF (F ) ⊂ {x ∈ I : F (x) 6⊂ L−(F, x) ∩ L+(F, x)}.

Theorem 10. Let F : I → R be a map with connected values. Then the sets

C−F (F )÷ C+
F (F ),

S−F (F )÷ S+
F (F )

are countable.

Proof. Now we show that the set A = C−F (F ) \ C+
F (F ) is countable. Let us

denote
B = {x ∈ I : L−(F, x)÷ L+(F, x) 6= ∅}.

By Lemma (5) the set B is countable. Thus it is enough to show that the set
A \B is countable. To do this, select x0 ∈ A \B. Let us see that

F (x0) ∩ L+(F, x0) 6= ∅.

Thus there exist limit numbers g1, g2 ∈ L+(F, x0) and a set M ∈ F such that
π(M) = [x0, x0 + ε], for some ε > 0, Mx0 ⊂ (g1, g2) and

M ∩ F |(x0,x0+ε) = ∅.

There exist rational numbers q0, q1, q2 such that

g1 < q1 < Mx0 < q2 < g2, x0 < q0 < x0 + ε,

M ∩ ([x0, q0]× R) ⊂ [x0, q0]× [q1, q2],
M ∩ F |(x0,q0) = ∅.

So three rational numbers are assigned to each point in A\B. Let us show that
this is an injective mapping. Suppose, on the contrary, that the same triple
(q0, q1, q2) is assigned to x0 and x1 from A \ B, and assume that x1 < x0.
Then there exists a set P ∈ F such that
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(1) P ∩ ([x1, q0]× R) ⊂ [x1, q0]× [q1, q2], [x1, q0] ⊂ π(P ),

(2) P ∩ F |(x1,q0) = ∅.

By Lemma (1), there exists a continuum C ⊂ P such that π(C) = [x1, x0].
From (1), we get that Cx0 ⊂ (g1, g2). Since L−(F, x0) = L+(F, x0), then
g1, g2 ∈ L−(F, x0)nd by (2), C ∩ F |(x1,x0) = ∅. Since C ∈ F , then contrary to
the assumption x0 6∈ C−F (F ).

In the same way we can show that the set C+
F (F ) \ C−F (F ) is countable.

By Lemma (6) the set

E = {x ∈ I : F (x) 6⊂ L−(F, x) ∩ L+(F, x)}

is countable. Since

S−F (F ) \ E = C−F (F ) \ E,
S+
F (F ) \ E = C+

F (F ) \ E,

then
S−F (F )÷ S+

F (F ) ⊂ (C−F (F )÷ C+
F (F )) ∪ E.

Finally the set S−F (F )÷ S+
F (F ) is countable too.

Theorem 11. For any map F : I → R, CF (F ) and SF (F ) are Gδ-sets.

Proof. Without loss of generality we may assume that the set I is open. Let
x ∈ CF (F ). For any n ∈ N , there exists an open interval Uxn with diameter
less than 1

n , contained x such that

L(F, z) ∪ F (z) ⊂ K 1
n

(L(F, x)) ∪ (−∞,−n) ∪ (n,+∞)

for any z ∈ Uxn . Let us define for any n ∈ N the open sets

Un =
⋃
{Uxn : x ∈ CF (F )}.

We have CF (F ) ⊂
∞⋂
n=1

Un. It is enough to show that

(1)
∞⋂
n=1

Un ⊂ CF (F ) ∪ (C−F (F )÷ C+
F (F ),

since CF (F ) will be Gδ-set as a different CF (F ) =
∞⋂
n=1

Un \ B of Gδ-set and

countable set B ⊂ C−F (F )÷ C+
F (F ).
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Let us show the inclusion (1). Select x0 ∈
∞⋂
n=1

Un and assume that x0 6∈ CF (F ).

It means that for any n ∈ N , there exists an element xn ∈ CF (F ), xn 6= x0

such that x0 ∈ Uxn
n . Then for any n ∈ N we have

(2) |xn − x0| < 1
n and L(F, x0) ∪ F (x0) ⊂ K 1

n
(L(F, xn)) ∪ (−∞,−n) ∪

(n,+∞).

There exists a subsequence of the sequence (xn)∞n=1 convergent to x from
the left or right sight. Let us assume that the second of the cases holds.
Without loss of generality we may assume that xn > x for any n ∈ N . Now
we show that x0 ∈ C+

F (F ). From (2) we get

(3) F (x0) ⊂ L+(F, x0).

Let y0 ∈ F (x0). There exists k ∈ N such that y0 ∈ K 1
n

(L(F, xn)) for any
n > k. Then for any n > k there exists gn ∈ L(F, xn) such that |gn− y0| < 1

n .
Then lim

n→∞
gn = y0 and y0 ∈ L+(F, x0).

Assume that there exist limit numbers g1, g2 ∈ L+(F, x0), g1 < g2 and
there exists a set M ∈ F such that π(M) = [x0, x0 + δ], for some δ > 0,
Mx0 ⊂ (g1, g2) and M ∩ F |(x0,x0+δ) = ∅. There exist then positive numbers
δ1, ε such that δ1 < δ and

M ∩ ([x0, x0 + δ1]× R) ⊂ [x0, x0 + δ1]× [g1 + ε, g2 − ε].

From (2), we get that g1, g2 ∈ K 1
n

(L(F, xn)) ∪ (−∞,−n) ∪ (n,+∞) for any
n ∈ N . There exists l ∈ N such that g1, g2 ∈ K 1

n
(L(F, xn)) for any n > l. Let

us take n0 ∈ N such that n0 > l and 1
n0
< min(δ1, ε). Then xn0 ∈ (x0, x0 +δ1)

and
g1, g2 ∈ K 1

n0
(L(F, xn0)).

There exist limit numbers y′, y′′ ∈ L(F, xn0) such that |g1 − y′| < 1
n0

and
|g2 − y′′| < 1

n0
. So

y′ < Mxn0
and y′′ > Mxn0

.

The set F (xn0) is connected, then

F (xn0) < Mxn0
or F (xn0) > Mxn0

.

Let us assume that the first of the cases holds — in the second one the proof is
similar. Suppose that y′′ ∈ L+(F, xn0). Since xn0 ∈ CF (F ), then there exists
y ∈ L+(F, xn0)∩F (xn0). By Lemma (1), there exists a continuum C ⊂M such
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that π(C) = [xn0 , x0 + δ1]. Then C ∈ F , Cxn0
⊂ (y, y′′), y, y′′ ∈ L+(F, xn0)

and
C ∩ F |(xn0 ,x0+δ1) = ∅,

which contradicts that xn0 ∈ C+
F (F ).

If y′′ ∈ L−(F, xn0), then we can take y ∈ L−(F, xn0) ∩ F (xn0) and a
continuum C ⊂ M such that π(C) = [x0, xn0 ], and we obtain that C ∈ F ,
Cxn0

⊂ (y, y′′), y, y′′ ∈ L−(F, xn0) and

C ∩ F |(x0,xn0 ) = ∅.

This contradicts that xn0 ∈ C−F (F ). From (3), we get that x0 ∈ C+
F (F ).

If there exist a subsequence of the sequence (xn)∞n=1 convergent to x from
the left side, then in a similar way we may show that x0 ∈ C−F (F ). Thus the
proof that CF (F ) is Gδ-set is finished. By Lemma (6), the set E = {x ∈ I :
F (x) 6⊂ L−(F, x) ∩ L+(F, x)} is countable. Since SF (F ) = CF (F ) \ E, then
SF (F ) is Gδ-set.

From Theorem (11), we get the following corollaries.

Corollary 6. The sets of Darboux points, connectivity points, functional con-
nectivity points, the intermediate value property points (Czarnowska [4]) or
strongly functional connectivity points (Czarnowska [4]) are Gδ.

Theorem 12. (Rosen [9]) The sets of Darboux points or connectivity points
of real function are Gδ.

Theorem 13. (Jastrzȩbski, Jȩdrzejewski [6]) The set of functional connectiv-
ity points of real function is Gδ.

J. S. Lipiński ([8]) has shown that for any Gδ-sets G and H such that
G ⊂ H, there exists function f : R → R such that H is the set of Darboux
points and G is the set of connectivity points of f . From Theorem (11) we get
the following corollary.

Theorem 14. The set G ⊂ R is the set of F-connectivity points or strong
F-connectivity points for some multivalued map iff and only iff it is Gδ − set.
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