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A NOTE ON THE ABSOLUTE
SUMMABILITY OF FOURIER SERIES BY

BOSANQUET-LINFOOT METHOD

Abstract

In this note we show that a theorem due to L.I. Holder on the ab-
solute summability of Fourier series by the Bosanquet-Linfoot method
|α, β|, can be improved upon. Our theorem then provides a better re-
finement to the classical theorem of Bosanquet on summability |C, γ| of
Fourier series.

1 Introduction

With intentions to make refinements on results familiar on Cesàro summability
of Fourier series, Bosanquet and Linfoot [4, 5] introduced the concept of a new
summability method that they termed as the method (α, β) :

Definition 1. Let α > 0, β a real number, or α = 0, and β ≥ 0. A series∑
un is said to be summable (α, β) to a sum s, if

lim
ω→∞

∑
n<ω

B
(

1− n

ω

)α(
log

C

1− n
ω

)−β
un = s,

for all sufficiently large values of C and B = (logC)β . The method (0, 0) is
thus defined as the convergence.
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The absolute summability method |α, β| was introduced much later by
Boyer and Holder [6]. Indeed the series

∑
un is said to be absolutely summable

(α, β), or just summable |α, β|, if∫ ∞
A

∣∣∣∣∣ ddω
(∑
n<ω

B
(

1− n

ω

)α(
log

C

1− n
ω

)−β
un

)∣∣∣∣∣ dω <∞,
where A > 0 and the parameters α, β and the constants B and C are as
for the method (α, β). The method |0, 0| is again taken to define the absolute
convergence.

We may note that for β = 0 the method (α, β) is the same as the Riesz
method (R,n, α). Similarly, for β = 0 the method |α, 0| is the Riesz method
|R,n, α|. As these Riesz methods are equivalent to the corresponding Cesàso
methods of ‘order’ α, results for summability (α, β) and summability |α, β|
relate to results on Cesàso summability.

For the method |α, β|, Boyer and Holder (loc.cit.) gave the following con-
sistency results:
|α, β| ⊂ |α′, β′| where either (i) α′ > α (and any β and β′), or (ii) α′ = α

and β′ ≥ β.
(As usual, over here by ‘|T |’ we also mean the vector space of series summable
by the method |T |.)

In particular, then |α, β| ⊂ |C,α′|, for α′ > α and β any real number.

2 Notation

Let f ∈ L(−π, π) and be a periodic function of period 2π and let

f(x) ∼ 1
2
a0 +

∞∑
1

(an cosnx+ bn sinnx) ≡
∞∑
0

An(x).

Let
φ(t) =

1
2
{f(x+ t) + f(x− t)},

and let
Φ0(t) = φ(t)

and for α > 0

Φα(t) =
1

Γ(α)

∫ t

0

(t− u)α−1φ(u) du

φα(t) = Γ(α+ 1)t−αΦα(t), α ≥ 0.
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The study of |α, β|-summability of Fourier series was taken up by Holder[9]
and Patra[13] rather simultaneously. Holder gave the following theorem:

Theorem A. [9]. Let α ≥ 0 and suppose φα(t) ∈ BV (0, π). Then the Fourier
series

∑
An(x) is summable |α, β|, where (i) β > 1 if α = 0 and (ii) β > 2 if

α > 0.

The case α = 0, β > 1 was given independently by Patra [13].
In view of the inclusion relations between the method |α, β| and the Cesàso

method |C, γ|, this theorem improves upon the classical result of Bosanquet:

Theorem B. [1, 2]. Let γ > α ≥ 0. Then φα(t)BV (0, π)⇒
∑
An(x) ∈ |C, γ|.

We note that in Theorem A the parameter β has two different ranges
associated with different values of α : (i) β > 1 if α = 0 and (ii) β > 2 for
α > 0. A natural question arises whether it is possible to have ‘β > 1’ for all
α, α ≥ 0, in Theorem A. Here we show that the answer to this question is in
affirmative. However, we need to recall some further concepts for this.

3 Nevanlinna Summability

Nevanlinna [12] and Moursund [10, 11] studied a series-to-function transfor-
mation, which we call as the method N(q

δ
), with intentions to improve upon

some known results on Cesàro summability of Fourier series and differentiated
Fourier series. Ray and Samal [15], Samal [16] and Dikshit [8] have studied
the corresponding absolute summability method |N(q

δ
)| :

Definition 2. Let
∑
un be a given series and let F (ω) =

∑
n<ω

un. Let q
δ

= q
δ
(t)

be defined for 0 ≤ t < 1. The N(q
δ
)-transform N(F, q

δ
) of F is defined by

N(F, q
δ
)(ω) =

∫ 1

0

q
δ
(t)F (ωt)dt.

The series
∑
un is said to be summable by the method N(q

δ
) to a sum s if

lim
ω→∞

N(F, q
δ
)(ω) = s.∑

un ∈ |N(q
δ
)|, if for some A > 0,∫ ∞

A

∣∣∣∣ ddωN(F, q
δ
)(ω)

∣∣∣∣ <∞.
The parameter δ, δ ≥ 0, controls the comparative strength of the methods
N(q

δ
) and |N(q

δ
)|.
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The |N(q
δ
)|-summability of Fourier series has been done rather extensively

quite recently in [8].
For the regularity of the method, and for other requirements, the kernel

function q
δ

for the method |N(q
δ
)| is supposed to satisfy the following hy-

potheses:

(1)
∫ 1

0

q
δ
(t)dt = 1.

(2) In the case 0 ≤ δ < 1, q
δ
(t) is increasing for 0 < t < 1.

(3) In the case δ ≥ 1, let p = [δ], the integral point of δ. It is taken that q
δ

satisfies the following (3a)-(3d):

(3a) q
δ
(t) is non-increasing for 0 < t < 1,

(3b)
(
d

dt

)p−1

q
δ
(t) ∈ AC[0, 1]

(3c)
(
d

dt

)k
q

δ
(t)

]
t=1

= 0, k = 0, 1, 2, · · · , (p− 1)

(3d) (−1)p
(
d

dt

)p
q

δ
(t) ≥ 0, and is increasing.

Also, for δ ≥ 0, p = [δ],

(4)
Qδ(t)
tδ−p+1

∈ L(0, 1), where Qδ(t) =
∫ 1

1−t
q(p)

δ
(x)dx.

In [8] the following theorem on the absolute Nevanlinna summability of
Fourier series has been proved:

Theorem C. [8]. Let α ≥ 0 and let the function q
α

satisfy the conditions
(1)-(4) with δ = α. If φα(t) ∈ BV (0, π) then

∑
An(x) ∈ |N(q

α
)|.

The case α = 0 is due to Ray and Samal [15].

4 The Main Result

We give the following theorem:

Theorem 4.1.. Let α ≥ 0. If φα(t) ∈ BV (0, π) then the series
∑
An(x) is

summable |α, β|, for all β > 1.
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Remark 4.2.. 1. Recall that (i) |α, β| ⊂ |α′, β′|, for α′ > α and any β and
β′, and that (ii) |C,α| = |α, 0|. In view of these relations we may note that the
theorem given above presents a refinement to Theorem B of Bosanquet. It may
be remarked that most of the familiar theorems given for various other absolute
summability methods tend to produce extensions of Theorem B, rather than
bring improvements on it.

2. Very recently Chandra and Karanjgaokar[7] have given an alternate
proof for the case α = 1 of the theorem.

Proof of Theorem 4.1.. We deduce the theorem from Theorem C.
Let Gα,β(u) = Buα(log C

u )−β , for 0 < u ≤ 1 and let Gα,β(0) = 0. Then in
order that

∑
un be summable |α, β|, one needs to show that∫ ∞

A

∣∣∣∣∣∑
n<∞

G′α,β

(
1− n

ω

)
nun

∣∣∣∣∣ dωω2
<∞,

for some A > 0. However,
∑
un ∈ |N(q

α
)|, if and only if,∫ ∞

A

∣∣∣∣∣∑
n<ω

q
α

(n
ω

)
nun

∣∣∣∣∣ dωω2
<∞,

for some A > 0. Thus a proof for the theorem is done if we have that qα(t) =
G′α,β(1− t), 0 ≤ t < 1 and qα(1) = G′α,β(0) = 0 meets the hypotheses on q

α

in Theorem C. However, we note that for 0 < t < 1,

(i) G′0,β(1− t) = B
(1−t)β(log C

1−t )
−β−1,

(ii) for α > 0, G(k)
α,β(1 − t) = B(1 − t)α−k(log C

(1−t) )−β
k∑
l=0

Cl(log C
(1−t) )−l,

where k = 0, 1, 2, · · · , h, h = [α] and C0, C1, · · · , Ch are some constants,
and

(iii) Qα(t) = G
[h]
α,β(t).

As necessary, the value of the functions at either of the end points of [0, 1]
is defined by the corresponding one-sided limit. Thus with β > 1 all the
requirements in (1)-(4) on q

δ
are met with δ = α and

qα(t) = G′α,β(1− t), 0 ≤ t < 1.

This complete a proof of the theorem.
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Remark 4.3.. 1. Bosanquet and Kestelman [3] proved that in the case α = 1
of Theorem B of Bosanquet, the summability |C, γ|, γ > 1, may not, in general,
be replaced by summability |C, 1|. One believes that here again, in the case
α = 1, the summability |α, β|, α = 1, β > 1, in general, may not be replaced by
the summability |α, β|, α = 1, β = 1. That is, the summability |α, β|, α = 1,
β = 1, of Fourier series is not a local property of the generating function of
the series (cf. Chandra and Karanjgaokar [7]).

2. One may note that results on summability factors for Fourier series for
the summability |α, β|, as given by Patra [14] may also now be deduced as
very special cases of Theorem 2.4 on Nevanlinna summability as proved in [8].
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