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Abstract

We consider a one parameter family of self-similar sets of overlap-
ping construction. We study the exceptional set; that is the set of those
parameters for which the correlation dimension is smaller than the simi-
larity dimension. We find a connection between the exceptional set and
the multifractal analysis of a measure.

1 Introduction

When we compute a certain fractal dimension of a self-similar or self-affine set
there is always an easy upper bound for the dimension (see [2]). Although,
in many cases it turns out that this most natural upper bound is actually
the dimension, it also may occur that the dimension drops compared to its
expected value, on a dense set of configurations (see [10, Theorem 2]). There
have been lots of efforts to try to understand what causes the drop of dimension
but we know very little about the reasons. Obviously, for a self-similar fractal
in R (having similarity dimension smaller than one) if there are two (possibly
higher level) cylinders which coincide, then the dimension drops. We do not
know however, even in this very simple situation, whether there is any other
reason for the drop of the dimension. In this paper we find a connection
between this problem and the multifractal analysis of a measure.

We investigate the simplest possible non-trivial one parameter family of
self-similar Iterated Function Systems (IFS) with overlapping cylinders on
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the real line. For almost all parameters b the correlation dimension dimC of
the attractor Λ(b) is equal to the similarity dimension s. The set of those
parameters b for which dimC(Λ(b)) < s is called the exceptional set E. Our
aim in this paper is to prove that for an exceptional parameter b the correlation
dimension of the attractor Λ(b) can be expressed as the pointwise dimension
of a certain measure γ which is a projection of a self-similar measure β of the
plane. In the last section we discuss the connection between the multifractal
analysis of the measure γ and the size of the exceptional set E.

Acknowledgement. The author wishes to express his thanks to the referee
for his valuable work which improved this paper a lot. I am especially grateful
to the referee for finding a serious mistake in an earlier version of this paper
which was not at all trivial to correct.

2 Correlation Dimension

2.1 Three Equivalent Definitions for Correlation Dimension

Let {Si}mi=1 be a self-similar IFS on Rn. Assume that 0 < λi < 1, i = 1, . . . ,m
are the ratios of the similarities and s is the similarity dimension; that is∑m
i=1 λ

s
i = 1. As usual we write Si0...ik := Si0 ◦ · · · ◦ Sik . Let µ be the

Bernoulli measure on Σ = {1, . . . ,m}N with weights (λs1, . . . , λ
s
m). Further,

let Iα(µ) :=
∫∫

Σ×Σ
|Π(i)−Π(j)|−α dµ(i) dµ(j), where

Π(i) := lim
k→∞

Si0...ik(0).

Following Chin, Hunt and York [1] the correlation dimension of the IFS
{Si}mi=1 is defined as

dimC(Λ(b)) := sup {α ≥ 0 : Iα(µ) <∞} . (1)

That is, dimC(Λ(b)) is the correlation dimension of the natural measure ν :=
µ◦Π−1. Alternatively, we can define the correlation dimension as follows. Fix a
partition Dl of R into a grid of intervals of length 2l for every l > 0. Put τl :=∑
Q∈Dl

(ν(Q))2. Peres and Solomyak proved in [7] that D2(ν) := liml→0
log τl
log l

exists. It was proved in [9, Th.18.2] that for D := liml→0
log

R
ν(Bl(x))dν
log l , where

Bl(x) is the ball of radius l centered at x, we have D2(ν) = D. Further, Sauer
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and Yorke [12] proved that D = sup {α ≥ 0 : Iα(µ) <∞} . Thus

dimC(Λ(b)) = sup {α ≥ 0 : Iα(µ) <∞} = lim
l→0

log τl
log l

= lim
l→0

log
∫
ν(B(x, l))dν

log l
.

(2)

2.2 Rams’s Theorem on Correlation Dimension

The theorem in this section was proved by M. Rams in his Ph.D. thesis [11,
Wn 6.5] in a much higher generality (in Rd for self-conformal IFS). For the
convenience of the reader we present here Rams’s proof of this simplified
version of his theorem.

Let {Si}mi=1 be a homogenous, self-similar IFS on R, Si (x) = λx + ti. To
keep the notation simple we assume that the smallest interval containing the
attractor Λ is [0, 1]. We always write ωn, τn for elements of

∑
n := {1, . . . ,m}n

and we index them like ωn = (ω0 . . . ωn−1). Further, if U ⊂ R, then Uωn :=
Sωn (U) and Uτn := Sτn (U). For an l > 0 and assuming U is bounded we
write Ml := {Uωn : λl < |Uωn | ≤ l}. Further let

Al (U) := # {(ωn, τn) |Uωn ∩ Uτn 6= ∅, Uωn , Uτn ∈Ml} .

Observe that Al (U) ≥ mn if λl < λn |U | < l. Put s = logm
− log λ . We assume

that s ≤ 1.

Theorem 1 (Rams). Let U be a non-empty, bounded interval which need not
be open. For simplicity we suppose that U ∩ [0, 1] 6= ∅. Then

lim
l→0

log (Al (U))
− log l

= 2s− dimC (ν) .

In particular the limit exists and is independent of U.

Proof. For an l > 0 we call Il (x) the interval of the 2l interval-grid Dl which
is centered at x. The set of centers of such intervals is called Cl. We assume
that l′ > l. For x′ ∈ Cl′ letNl′,l (x′) := # {ωn : Uωn ∩ Il′ (x′) 6= ∅, Uωn ∈Ml}.
First we prove that

1 <

∑
x′∈Cl′

N2
l′,l(x

′)

Al (U)
< 3β2 (3)

where β := 2(l′+l)
λl +1. The first inequality is obvious. To see the second, fix an

arbitrary x′ ∈ Cl′ . If Uωn ∩ Il′ (x′) 6= ∅, then Uωn ⊂ (x′ − (l′ + l), x′ + l′ + l).
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Subdivide the interval (x′ − (l′ + l), x′ + l′ + l) into subintervals of length λl.
(For Uωn ∈ Ml, we have |Uωn | > λl.) There are exactly β endpoints of such
intervals. Thus there is such an endpoint of an interval which is contained in
at least Nl′,l(x′)/β elements of Ml. These elements of Ml of course pairwise

intersect each other. So there are at least
N2
l′,l(x

′)

3β2 pairs of elements of Ml

which intersect each other and which can be associated uniquely with x′. This
completes the proof of (3).

Next we prove that there exists a c∗ = c∗ (U) > 0 such that

(c∗)−1 <

∑
x∈Cl

ν2 (Il (x))

l2sAl (U)
< c∗. (4)

To this end, we fix a c = c (U) < 2
|U | such that the c |U | neighborhood of U ,

called Bc|U | (U) contains [0, 1] ⊃ Λ. (We assumed that U ∩ [0, 1] 6= ∅.) Thus
|U | > 1

2c+1 . Then for a Uωn ∈Ml, 1
2c+1 < |U | <

2
c and

1
m

cs

2s
ls <

1
mn

< (2c+ 1)s ls.

Using that µ (ωn) = 1
mn and ν = µ ◦ Π−1 it follows that for an arbitrary

x′ ∈ Cl′ and for l′ = (1 + 2c) l, we have

(lsNl′,l(x′))
2
<

(
2s

csλs
1
mn

# {ωn|Λωn ⊂ B2l′ (x′) 6= ∅}
)2

<
3 · 22s

c2sλ2s
(ν2 (Il′ (x′L)) + ν2 (Il′ (x′)) + ν2 (Il′ (x′R)))

(5)

where x′L and x′R are the centers of the neighbors of Il′ (x′) and s ≤ 1 is the
similarity dimension.

For an arbitrary x ∈ Cl, let x′ be the center of the interval from Dl′ which
contains x in its interior or as its right endpoint. Further, let x′L and x′R be
the centers of the two neighbors of Il′(x′) in Dl′ .

ν
(
Il(x)

)
≤ 1
mn

# {ωn : Λωn ∩ Il (x) 6= ∅, Uωn ∈Ml}

< (2c+ 1)s ls# {ωn|(Il′ (x′L) ∪ Il′ (x′) ∪ Il′ (x′R)) ∩ Uωn 6= ∅, Uωn ∈Ml}
≤ (2c+ 1)s ls(Nl′,l(x′L) +Nl′,l(x′) +Nl′,l(x′R)).

Thus using (5) and using twice that l′

l = 2c+ 1∑
x∈Cl

ν2 (Il (x)) < 3 (2c+ 1)1+2s
l2s

∑
x′∈Cl′

(N2
l′,l(x

′
L) +N2

l′,l(x
′) +N2

l′,l(x
′
R))
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≤ 9 (2c+ 1)1+2s
l2s

∑
x′∈Cl′

N2
l′,l(x

′)

< 3 · 9 (2c+ 1)1+2s 22s

c2sλ2s

∑
x′∈Cl′

(
ν2 (Il′ (x′L)) + ν2 (Il′ (x′)) + ν2 (Il′ (x′R))

)
≤ 9 · 9 (2c+ 1)1+2s 22s

c2sλ2s

∑
x′∈Cl′

ν2(Il′(x′))

< 81 (2c+ 1)2+2s 22s

c2sλ2s

∑
x∈Cl

ν2 (Il (x)) .

Thus
(
cλ
2

)2s 1
9(1+2c) <

∑
x∈Cl

ν2 (Il (x)) /l2s
∑

x′∈Cl′
N2
l′,l(x

′) < 9 (2c+ 1)1+2s. This

and (3) completes the proof of (4). This and (2) immediately implies the state-
ment of Rams’s theorem.

2.3 A Corollary of Rams’s Theorem

Since we assumed that the attractor Λ spans the interval J := [0, 1], the

left end point of the cylinder interval Jω0...ωn−1 = Sω0...ωn−1 (J) is
n−1∑
k=0

ωkλ
k.

Therefore if U := [0, z]∣∣∣∣∣
n−1∑
k=0

ωkλ
k −

n−1∑
k=0

τkλ
k

∣∣∣∣∣ ≤ zλn ⇐⇒ Uωn ∩ Uτn 6= ∅.

That is Azλn(U) = #
{

(ωn, τn) :
∣∣∣∣n−1∑
k=0

ωkλ
k −

n−1∑
k=0

τkλ
k

∣∣∣∣ ≤ zλn}. So, as a

corollary of Rams’s Theorem we obtained the following.

Lemma 2. For every z > 0

lim
n→∞

log #
{

(ωn, τn) :
∣∣∣∣n−1∑
k=0

ωkλ
k −

n−1∑
k=0

τkλ
k

∣∣∣∣ ≤ zλn}
− log λn

= 2s− dimC (ν) .

Observe that Al (U) is constant in l on the interval l ∈ [λn |U | , λn−1 |U |).
We write A′n (U) for this constant. That is, for every l > 0 we choose an
n = n (l) such that

log l
log λ

− log |U |
log λ

≤ n < log l
log λ

− log |U |
log λ

+ 1.



196 Károly Simon

Put
A′n (U) := Al (U) = # {(ωn, τn) |Uωn ∩ Uτn 6= ∅} .

and

Nn (U) := # {(ωn, τn) |ω0 6= τ0, Uωn ∩ Uτn 6= ∅, Uωn , Uτn ∈Ml} .

Observe that

A′n (U) =
n∑
k=0

mn−kNk (U) +mn. (6)

From the definition it is obvious that

lim
n→∞

logA′n (U)
n

= lim
l→0

logAl (U)
− log l

log
1
λ
.

Our aim is to prove that in the interesting case (when the exponential growths
rate of A′n (U) is greater than n) A′n (U) grows as fast as Nn (U) at least for
U = [0, z] where 1 ≤ z. To do this we define α = α (U) , β = β (U) and
γ = γ (U) by

logα := lim
n→∞

logA′n (U)
n

, log β := lim sup
n→∞

logNn (U)
n

and

log γ := lim inf
n→∞

logNn (U)
n

.

Let z ≥ 1 be arbitrary. In the remainder of the paper we assume that U :=
[0, z].

Lemma 3. If β ≤ m, then α = logm.

Proof. From the definition α ≥ m. Let ε > 0 be arbitrary. There exists
a K such that for every k > K, Nk (U) ≤ (m+ ε)k. Thus from (6) we

obtain that A′n (U) ≤
K∑
k=0

mn−kNk (U) +
n∑

k=K+1

mn−k (m+ ε)k +mn. That is

A′n (U) ≤ const · n · (m+ ε)n +mn. Thus α ≤ m.

Lemma 4. If β > m, then β = α.

Proof. Obviously β ≤ α. On the contrary assume that β < α. Let ε < α−β.
Then for all k big enough Nk (U) < (β + ε)k. Then as above we obtain that
α ≤ β + ε, which is a contradiction.

Lemma 5. If β > m, then α = β = γ.
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Proof. Since we assumed that Λ ⊂ [0, 1] ⊂ U , we have that Si (U) ⊂ U
i = 1, . . . ,m. Therefore Uωn ⊃ Uωn+1 for any ωn ∈ Σn. Thus

Nn+1 (U) < m2Nn (U) . (7)

To get a contradiction we assume that γ < α. Choose ε > 0 so small that the
following three requirements are satisfied: γ + ε < α− ε, m < α− ε, and

log
α+ ε

α− ε
< log

α− ε
m

log α+ε
γ+ε

logm
. (8)

If ε is small enough, then (8) holds because for ε = 0 the left hand side is 0 and
the right hand side is positive and both sides are continuous in ε. From the
definition of γ we get that there exists {nk}∞k=1 such that Nnk (U) ≤ (γ + ε)nk .
Using (7) k-times and that for every j > 0, Nj (U) ≤ const · (α+ ε)j (since
Nj (U) ≤ A′j (U)) it follows from (6) that for every k > 0

A′ni+k (U) =
ni∑
j=0

mni+k−jNj (U) +
ni+k∑
j=ni+1

mni+k−jNj (U) +mni+k

≤ const · nimk (α+ ε)ni + k (γ + ε)ni m2k +mni+k.

By (8), we can choose {ki}∞i=1 such that ni
log α+ε

α−ε

log
α− ε
m

< ki < ni

log
α+ ε

γ + ε

logm
.

For such a ki we have (α+ ε)ni mki < (α− ε)ni+ki and (γ + ε)ni m2ki <
(α+ ε)ni mki . Therefore

lim
i→∞

logA′ni+ki (U)
ni + ki

≤ lim
i→∞

log(const · (ni + ki) (α− ε)ni+ki)
ni + ki

= log (α− ε) ,

which contradicts the definition of α.

Since we know from Rams’s theorem that α does not depend on U = [0, z] ,
z ≥ 1 therefore the same is true for β and γ if β > m. These lemmas and
Rams’ theorem imply:

Proposition 6. Let z ≥ 1 be arbitrary. Then for U = [0, z] we

dimC Λ =

{
s if lim supn→∞

logNn(U)
n ≤ logm

2s− limn→∞
logNn(U)
−n log λ otherwise.
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Observe that Uωn ∩Uτn 6= ∅ if and only if the left end points
n−1∑
k=0

ωkλ
k and

n−1∑
k=0

τkλ
k are closer to each other than the length of |Uωn | = |Uτn | = zλn; that

is,
∣∣∣∣n−1∑
k=0

ωkλ
k −

n−1∑
k=0

τkλ
k

∣∣∣∣ ≤ zλn, which proves the following corollary.

Corollary 7. For an arbitrary z ≥ 1 let

ρ = lim sup
n→∞

log #
{

(ωn, τn) : ω0 6= τ0,

∣∣∣∣n−1∑
k=0

ωkλ
k −

n−1∑
k=0

τkλ
k

∣∣∣∣ ≤ zλn}
n

.

If ρ > logm, then

ρ = lim
n→∞

log #
{

(ωn, τn) : ω0 6= τ0,

∣∣∣∣n−1∑
k=0

ωkλ
k −

n−1∑
k=0

τkλ
k

∣∣∣∣ ≤ zλn}
n

= (2s− dimC Λ) log
1
λ

independent of z ≥ 1.

This is the corollary of Rams’s Theorem we are going to use in the proof
of our theorem.

3 A Certain Family of Fractals with Overlaps.

We construct the simplest possible one parameter family of self-similar IFS
with overlapping cylinders. This is a simplification of those IFS which appear
in M.Keane’s so-called ‘(0,1,3)-problem’ (see [4]). First fix an arbitrary a ∈(

1
4 ,

1
3

)
. We define the one parameter family of self-similar IFS

{
S

(b)
i (x)

}
i∈V

,

where V = {0, b, (1 − a)}, and S
(b)
i (x) := a · x + i, i ∈ V . The similarity

dimension is s = log 3
− log a . In what follows we always assume that the parameter

b ∈ ( 1−3a
2 , a). (a is not a parameter; a is fixed.) This provides that

S
(b)
0 (Λ(b)) ∩ S(b)

b (Λ(b)) 6= ∅ and Λ(b) − Λ(b) = [−1, 1], (9)

where Λ(b) ⊂ [0, 1] is the attractor of the IFS
{
S

(b)
i (x)

}
i∈V

and A−B means

the arithmetic difference of A and B. It follows from the second part of (9)
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that Λ(b)
i0...im

− Λ(b)
j0...jm

= I
(b)
i0...im

− I(b)
j0...jm

, where

Λ(b)
i0...im

:= S
(b)
i0...im

(Λ(b)) = S
(b)
i0
◦ · · · ◦ S(b)

im
(Λ(b)) and I

(b)
i0...im

:= S
(b)
i0...im

([0, 1]).

Using an argument of Falconer [2], one can easily prove the first part of the
next theorem. The proof of the second part is the same as [10, Theorem 2].

Theorem 8. 1. For (Lebesgue) a.e. b ∈ ( 1−3a
2 , a), we get dimH(Λ(b)) =

dimC(Λ(b)) = s.

2. There is a dense exceptional subset E of the parameter interval ( 1−3a
2 , a),

such that dimC(Λ(b)) < s for b ∈ E.

As usual, we denote the symbolic space by Σ. That is,

Σ = {(i0, i1, i2, . . .) : ik ∈ V , k ≥ 0} .

Note that the indices start with zero. Let µ be the { 1
3 ,

1
3 ,

1
3} equally weighted

Bernoulli measure on Σ. We denote the product set Σ×Σ, the product measure
µ× µ and the product of the metric by Σ2, µ2 and ρ2 respectively.

3.1 The Construction of the Measure γ

First we construct a self-similar measure β on the plane. Let

I := V − V = {±(1− a),±b,±(1− a− b), 0} .

We define a self-similar IFS {Rw}w∈I on the plane by

R±(1−a)(x, y) = (ax, ay) + (0,±a), R±b(x, y) = (ax, ay) + (∓a, 0)
R±(1−a−b)(x, y) = (ax, ay) + (±a,±a), R0(x, y) = (ax, ay).

Write Λ′ for the attractor of {Rw}w∈I . In fact what we need is a translation of
Λ′. Let Λ̃ = Λ′+(1, 0). Let Σ̃ := {(τ1, τ2,...) : τk ∈ I, k ≥ 1} . (Here the indices
of the symbolic sequences start with 1.) We denote the natural projection from
Σ̃ to Λ̃ by

Π̃(Rτ) := lim
k→∞

Rτ1,...τk(0, 0) + (1, 0), (10)

for Rτ ∈ Σ̃. We call

Λ̃τ1...τm := Π̃(τ1, . . . , τm) =
{
x ∈ Λ̃ : x = Π̃ (τ) , where τ |m = τ1 . . . τm

}
an m-cylinder of Λ̃, where τk ∈ I, k = 1, . . . ,m.
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Define the Bernoulli measure β̃ on the symbolic space Σ̃ as follows: The
weight of 0 is 1

3 (We get 0 in V −V in three different ways.), and the weight of
all other elements of I is 1

9 . In this way for ı̄m = i1 . . . im and j̄m = j1 . . . jm,
where ik, jk ∈ V for k = 1, . . . ,m we get

β̃ (̄ım − j̄m) =
1

9m
# {(̄ı′m, j̄′m) : ı̄m − j̄m = ı̄′m − j̄′m} . (11)

The push down measure of β̃ is called β. Since a < 1
3 , the cylinders of Λ̃

are disjoint. So β is a nice, self-similar measure on the plane which does not
depend on b. Via projections with rays through the origin β induces a measure
γ on the real line with compact support. Namely, consider the cone C(c, ε) :={

(x, y) : c− ε < y
x < c+ ε

}
. We define the measure γby

γ(c− ε, c+ ε) := β(C(c, ε)). (12)

The pointwise dimension of γ at x is denoted by dγ(x). That is, dγ(x) :=
limr→0

log γ(x−r,x+r)
log r .

4 The Main Result

Theorem 9. dimC(Λ(b)) = min
{
dγ( b

1−a ), s
}

.

Before we prove this Theorem, we need some observations stated in the fol-
lowing Lemmas. We know from Proposition 6 and Corollary 7 that dimCΛ(b) <
s = log 3

− log λ if and only if for ωk, τk ∈ {0, b, 1− a}

ρ > log 3 (13)

where

ρ= lim sup
m→∞

log #
{(
ωm+1, τm+1

)
: ω0 6= τ0,

∣∣∑m
k=0 ωka

k−
∑m
k=0 τka

k
∣∣ ≤ am+1

}
m+ 1

.

First we observe that for i0 6= j0 I
(b)
i0...im

∩ I(b)
j0...jm

6= ∅ if and only if either

i0 = 0 and j0 = b or vice versa. (We remind the reader that I(b)
i0...im

:=
S

(b)
i0...im

([0, 1]) was defined previously.) We write

ı̄m := (i1, . . . im) = {Rj ∈ Σ : j0 = i1, . . . , jm−1 = im} ;
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that is, the k−th coordinate of an element of ı̄m is ik+1 for 0 ≤ k ≤ m − 1.
Moreover (i0, ı̄m) := {Rj :jk = ik, 0 ≤ k ≤ m} .

Put
Bm :=

{
(̄ım, j̄m) : I(b)

0...im
∩ I(b)

b...jm
6= ∅
}
.

The cardinality of Bm is denoted by N (b)
m which is just half of the cardinality

which appears in the numerator of ( 13) since
m∑
k=1

ika
k and b +

m∑
k=1

jka
k are

the left endpoints of the intervals I(b)
0...im

, I
(b)
b...jm

respectively, and am+1 is the

length of these intervals. To estimate N (b)
m we observe that

(̄ım, j̄m) ∈ Bm ⇐⇒ Λ(b)
(0,̄ım) ∩ Λ(b)

(b,j̄m)
6= ∅.

Since I(b)
i0i1...im

=
[∑m

k=0 ika
k,
∑m
k=0 ika

k + am+1
]

we get

(̄ım, j̄m) ∈ Bm ⇐⇒ |
m∑
k=1

(ik − jk)ak − b| ≤ am+1 (14)

for every m ≥ 1. Fix an arbitrary ı̄m = R(i1, . . . , i m), j̄m = R(j1, . . . , j m)
such that ik, jk ∈ V for 1 ≤ k ≤ m. Observe that

m∑
k=1

(ik − jk)ak − b = b(qm − 1) + (1− a)pm (15)

where using the notation Tu(m) = {1 ≤ k ≤ m : ik − jk = u} (u ∈ I), pm =
pm(̄ım, j̄m) and qm = qm(̄ım, j̄m) are defined by

pm =
∑

k∈T1−a(m)

ak −
∑

k∈T−(1−a)(m)

ak +
∑

k∈T(1−a−b)(m)

ak −
∑

k∈T−(1−a−b)(m)

ak

qm =
∑

k∈Tb(m)

ak −
∑

k∈T−b(m)

ak +
∑

k∈T−(1−a−b)(m)

ak −
∑

k∈T1−a−b(m)

ak.

Let cm := 1
(1−a)(1−qm) . Then

1 < cm < a−1. (16)

It follows from (14) and (15) that

(̄ım, j̄m) ∈ Bm ⇐⇒
∣∣∣∣ pm
1− qm

− b

1− a

∣∣∣∣ < cma
m+1,

which proves the following lemma.
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Lemma 10.

If (̄ım, j̄m) ∈ Bm, then
∣∣∣∣ pm
1− qm

− b

1− a

∣∣∣∣ < am (17)

and if
∣∣∣ pm

1−qm −
b

1−a

∣∣∣ < am+1, then (̄ım, j̄m) ∈ Bm.

Using (10) for (τ1, . . . , τm) = (i1, . . . , im) − (j1, . . . , jm) the center of the
m-th cylinder of Λ̃Rτ̄m = Λ̃τ1...τm is

center
(

Λ̃Rτ̄m

)
= Rτ1,...τm(0, 0) + (1, 0) = (1− qm, pm). (18)

Roughly speaking, (̄ım, j̄m) ∈ Bm means that the slope of the center of Λ̃Rτ̄m
is cmam-close to b

1−a , where τ̄m = ı̄m − j̄m. Let

U (b) (m) :=
{

(̄ım+4, j̄m+4) |Λ̃Rτ̄m+4 ⊂ C
(

b

1− a
, am+2

)}
where τ̄m+4 = ı̄m+4 − j̄m+4. Denote the cardinality of U (b) (m) by u(b) (m).
We need two simple geometric observations.

Lemma 11. If center
(

Λ̃τ̄m
)
∈ C

(
b

1−a , a
m
)

, then Λ̃τ̄m ⊂ C
(

b
1−a , a

m−3
)
.

Lemma 12. If Λ̃τ̄m+4 ∩ C
(

b
1−a , a

m+3
)
6= ∅, then Λ̃τ̄m+4 ⊂ C

(
b

1−a , a
m+2

)
.

That is, if ı̄m+4 − j̄m+4 = τm+4 and Λ̃τ̄m+4 ∩ C
(

b
1−a , a

m+3
)
6= ∅, then

(̄ım+4, j̄m+4) ∈ U (b)(m).

Since their proofs are almost identical we prove only Lemma 12.

Proof of Lemma 12. Observe, that Λ̃τ̄m+4 lies in the half plane x > 1
2 and

Λ̃τ̄m+4 ⊂ C
(
0, π4

)
. Further Λ̃τ̄m+4 is contained in a square parallel to the coor-

dinate axes, of sides 2am+5

1−a called Qτ̄m+4 . Assume that center
(

Λ̃τ̄m+4

)
is not

above the line y = b
1−ax. (The opposite case is similar.) Then we have to prove

that the right bottom corner of Qτ̄m+4 is contained in C
(

b
1−a , a

m+2
)
. From the

geometric position of Qτ̄m+4 , this would imply that Qτ̄m+4 ⊂ C
(

b
1−a , a

m+2
)
.

Let (x0, y0) be the left upper corner of Qτ̄m+4 . Then it is enough to show that

y0 − 2 · side(Qm+4) > x0

(
b

1−a − a
m+2

)
since Λ̃τ̄m ⊂ C

(
0, π4

)
. From the as-

sumption of the lemma y0 ≥
(

b
1−a − a

m+3
)
x0. Thus we have to show that(

b
1−a − a

m+3
)
x0 − 4am+5

1−a > x0

(
b

1−a − a
m+2

)
, which is obvious since x0 >

1
2

and 0 < a < 1
3 .
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Using (17) and (18), Lemma 11 immediately implies the following.

Lemma 13. For τ̄m = ı̄m−j̄m if (̄ım, j̄m) ∈ Bm, then Λ̃Rτ̄m ⊂ C
(

b
1−a , a

m−3
)

.

As a consequence of Lemma 13 we conclude the following.

Lemma 14. N(b)
m

9m ≤ β
(
C
(

b
1−a , a

m−3
))
.

Proof. Using (11) first we observe that for (̄ım, j̄m) ∈ Bm,

β
(

Λ̃ı̄m−j̄m
)

=
1

9m
# {(̄ı′m, j̄′m) : ı̄′m − j̄′m = ı̄m − j̄m}

=
1

9m
# {(̄ı′m, j̄′m) ∈ Bm : ı̄′m − j̄′m = ı̄m − j̄m} .

This is so, because by (14) if ı̄′m − j̄′m = ı̄m − j̄m and (̄ım, j̄m) ∈ Bm, then
(̄ı′m, j̄

′
m) ∈ Bm. Using this and Lemma (13) we obtain the statement of the

lemma.

As a trivial consequence of Lemma 12 we obtain the following.

Lemma 15. C
(

b
1−a , a

m+3
)
∩ Λ̃ ⊂

⋃
(ı̄m+4,j̄m+4)∈U(b)(m)

Λ̃Rτ̄m+4 , where τ̄m+4 =

ı̄m+4 − j̄m+4 as usual.

As a consequence of Lemmas 14, 15 we get

N
(b)
m

9m
≤ β

(
C

(
b

1− a
, am−3

))
= γ

(
b

1− a
− am−3,

b

1− a
+ am−3

)
(19)

and

γ

(
b

1− a
− am+3,

b

1− a
+ am+3

)
= β

(
C

(
b

1− a
, am+3

))
≤ u(b) (m)

9m+4
(20)

respectively. To get asymptotic for N (b)
m and u(b) (m) we prove some further

lemmas.

Lemma 16. If ∣∣∣∣∣
m+4∑
k=1

(ik − jk) ak − b

∣∣∣∣∣ ≤ am+4, (21)

then (̄ım+4, j̄m+4) ∈ U (b) (m) .
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Proof. Using (15), (16) and (21) we get |(1− a) pm+4 − b (1− qm+4)| <
am+3 (1− a) (1− qm+4) . Therefore,

∣∣∣ pm+4
1−qm+4

− b
1−a

∣∣∣ < am+3. From (18) we

obtain that center
(

Λ̃τ̄m+4

)
∈ C

(
b

1−a , a
m+3

)
. Using Lemma 12 we obtain

the statement of our lemma.

Using the Corollary of Rams’s Theorem we shall prove that for those b for
which

lim sup
m→∞

logN (b)
m

m
> log 3 (22)

the exponential growth rates of u(b) (m) and N
(b)
m are the same.

Lemma 17. If (22) holds, then

lim
m→∞

logN (b)
m

m
= lim
m→∞

log u(b) (m)
m

= (2s− dimC Λ) log
1
a
.

In particular the second limit exists.

Proof. If two cylinders Λ(b)
i0...in

and Λ(b)
j0...jn

of Λ(b) with different first digits
i0 6= j0, are close to each other, then either i0 = 0 and j0 = b or vice versa.
Thus it follows from Lemma 16 that for τk, ωk ∈ V

u(b) (m) ≥ 1
2

#

{
(ωn, τn) : ω0 6= τ0,

∣∣∣∣∣
n−1∑
k=0

ωka
k −

n−1∑
k=0

τka
k

∣∣∣∣∣ ≤ zan
}

(23)

where n = m+5, z = a−1. Using (14), we obtain that for τk, ωk ∈ V , n = m+1,
and z = 1

N (b)
m =

1
2

#

{
(ωn, τn) : ω0 6= τ0,

∣∣∣∣∣
n−1∑
k=0

ωka
k −

n−1∑
k=0

τka
k

∣∣∣∣∣ ≤ zan
}

(24)

Finally, if (̄ım+4, j̄m+4) ∈ U (b) (m), then by definition Λ̃τ̄m+4 ⊂ C
(

b
1−a , a

m+2
)
.

So, in particular, center(Λ̃τ̄m+4) ∈ C
(

b
1−a , a

m+2
)
. Then by an argument par-

allel to the one in the proof of Lemma 16, we obtain that∣∣∣∣∣
m+4∑
k=1

(ik − jk) ak − b

∣∣∣∣∣ < am+2 (1− a) (1− qm+4) < am+2.
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Thus, for τk, ωk ∈ V , n = m+ 5 and z = a−3

u(b) (m) ≤ 1
2

#

{
(ωn, τn) : ω0 6= τ0,

∣∣∣∣∣
n−1∑
k=0

ωka
k −

n−1∑
k=0

τka
k

∣∣∣∣∣ ≤ zan
}

(25)

Now, putting (23), (24) and (25) together, Corollary 7 immediately implies
the statement of our lemma.

Now we are ready to prove our main Theorem.

Proof of the Main Theorem. Assume that (22) holds. Then from (19)
and (20) we get that

N (b) (m)
9m

≤ γ
(

b

1− a
− am−3,

b

1− a
+ am−3

)
<
u(b) (m− 6)

9m−2
.

From Lemma 17 we get that

lim
m→∞

log β
(
C
(

b
1−a , a

m
))

m log a
= −2s+ dimC Λ(b) − 2

log 3
log a

= dimC Λ(b).

If (22) does not hold, then it follows Proposition 6 that dimC Λ(b) = s. This
completes the proof of the main theorem.

5 Connection with Multifractal Analysis

It follows from our result above that if b ∈ E; that is, b is exceptional
(dimC Λ(b) < s), then the correlation dimension is given by the lower point-
wise dimension of γ. So to understand how big the exceptional set is, we
have to understand, how big is the set on which the pointwise dimension of
γ is smaller than s. This so because if the lower pointwise dimension of γ
at b

1−a , dγ
(

b
1−a

)
< s, then (22) holds. Therefore in this case dγ

(
b

1−a

)
=

dγ
(

b
1−a

)
= dimC Λ(b). For this reason the multifractal analysis of γ may be

useful. Let f(α) = dimH{x|dγ(x) = α} and αmin := inf{α|f(α) > 0}. Since
the measure γ is not a self-similar measure, it is not trivial to find its multi-
fractal analysis. However, γ is the projection via rays through the origin of a
very nice (no overlaps) self-similar measure β.

In the literature there are estimates on E from above (see e.g. [6] or [10])
but there are no estimates on E, even at special cases, from below. If αmin < s,
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then it implies that the exceptional set E has positive Hausdorff dimension,
and in this way it would prove that the dimension drops not only in case of
having two cylinders which coincide. This could be a partial answer on the
problem mentioned in the introduction.
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