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THE TRANSLATION 1
2 IN THE THEORY OF

DIRICHLET SERIES∗

Abstract

In three different problems concerning Dirichlet series, we study in
detail the role and optimality of a translation by 1/2 on the abscissas.
In particular, we show the non-existence of Rudin-Shapiro like Dirichlet
polynomials.

1 Introduction and Basic Notation

In the theory of Dirichlet series A(s) =
∑∞

1 ann
−s it frequently occurs that a

hypothesis on the behavior of A at some point α ∈ R is followed by a conclusion
on the behavior of the same series, or of a related one, at α shifted by 1

2 to
the right; that is, s = α (or Rs > α) becomes s = α+ 1/2 (or Rs > α+ 1/2),
and while the role of this translation is not clear, it sometimes turns out to be
“optimal” and it may be a non-trivial matter to prove this optimality. The aim
of this paper is the detailed study of three specific examples with either new
proofs or new results. In each case, we shall try to explain why 1/2 comes into
the matter and why it is optimal. We shall also study some related phenomena.
Before stating our three examples, it is convenient to recall some definitions
and facts. There are three abscissas connected to the convergence of A(s) =∑∞

1 ann
−s in [−∞,∞]. First is the abscissa of convergence σc. A converges

Key Words: Dirichlet series, almost everywhere convergence, abscissa of convergence,
Rudin-Shapiro like polynomials, p-Sidon set, number-theoretic function.

Mathematical Reviews subject classification: Primary: 40F05,42A05, 42A20, 42A32,
42A61. Secondary: 60D05

Received by the editors January 16, 2001
∗Supported by INTAS Grant. N. 99 - 01080.

155



156 S. V. Konyagin and H. Queffélec

for Rs > σc and diverges for Rs < σc. Second is the abscissa of uniform
convergence σu. A converges uniformly in each half-plane Rs ≥ σ (σ > σu),
and does not converge uniformly in any half-plane Rs ≥ σ (σ < σu). Third
is the abscissa of absolute convergence σa. A converges absolutely for Rs > σa
and does not converge absolutely for Rs < σa.

If A diverges at zero, these three abscissas are given by Hadamard-like
formulas (see [Q1] for example).

σc = lim
log |AN |

logN
, σu = lim

logUN
logN

and σa = lim
logA∗N
logN

where

AN = a1 + · · ·+ aN , UN = sup
t∈R

∣∣ N∑
1

ann
it
∣∣ and A∗N = |a1|+ · · ·+ |aN |.

If fN (t) =
∑N

1 ann
it, then clearly

∑N
1 |an|2 = limT→∞

1
2T

∫ T
−T |fN (t)|2dt ≤

U2
N , whence A∗N ≤ N1/2UN by the Cauchy-Schwarz inequality (note the ap-

pearance of 1/2); so that

σa ≤ σc + 1 and σa ≤ σu + 1/2. (1)

The Dirichlet product C = AB of two Dirichlet series A(s) =
∑∞

1 ann
−s

and B(s) =
∑∞

1 bnn
−s is formally defined by C(s) =

∑∞
1 cnn

−s, where cn =∑
ij=n aibj . (More generally, if A(s) =

∑∞
1 ane

−λns, B(s) =
∑∞

1 bne
−µns and

νn is the set of λi+µj rearranged in increasing order, then C(s) = A(s)B(s) =∑∞
1 cne

−νns, where cn =
∑
λi+µj=νn

aibj .) It should be noted that, formally,∑∞
1 ann

it =
∑∞

1 ane
it logn. Thus, a Dirichlet series looks like a trigonometric

series, but the frequences run over the set {log n} in contrast to the set of
integers for a trigonometric series.
We now come to our three examples.

Example 1. If
∑∞

1 |an|2 < ∞, then
∑∞

1 ann
−1/2+it converges for almost

all t (with respect to Lebesgue measure on R) and this is optimal; that is∑∞
1 ann

−α+it may diverge for all t and all α < 1/2.

This example is a recent result of Hedenmalm and Saksman [HS] reminis-
cent of the celebrated Carleson’s theorem. If

∑∞
1 |an|2 <∞, then

∑∞
1 ane

int

converges for almost all t. We shall give a very simple proof of Example 1
based on Carleson’s theorem for integrals.

Example 2. If A(s) =
∑∞

1 ann
−s and B(s) =

∑∞
1 bnn

−s converge at s = 0,
then C = AB converges at s = 1/2 ; moreover, this is optimal in general; i.e.,∑∞

1 n−δcn may diverge for all δ < 1/2.
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This example is an old result of Stieltjes as concerns the convergence at
1/2 and has a funny story. It was first conjectured that

∑∞
1 n−δcn converges

for any δ > 0. This was refuted by Landau (see [T] p. 127) using the so-called
Lindelöf (or order) function of a Dirichlet series, the functional equation of the
zêta function and Stirling’s formula for the gamma function: one must take
δ ≥ 1/8. Later Bohr ([B]) refined Landau’s argument by constructing an ad
hoc series A with the largest possible order function. One has in general to take
δ ≥ 1

2 . A simplified version of Bohr’s construction, using the Baire category
theorem, was given in [Q2]. The optimality of various extensions (some due
to Landau) of Stieltjes’s result, using or not the order function, was studied in
[KQ]. We will give here a proof of Example 2 (and of some extensions) which
does not use the order function but only the Banach-Steinhaus theorem for
bilinear forms (Baire’s theorem after all!), and which we hope explains clearly
the appearance of the translation 1/2.

Example 3. (1) The inequality σa ≤ σu + 1/2 of (1) is optimal in general.
This fact is an old and non-trivial result of Bohnenblust and Hille (see
[BoH]). In view of the Hadamard formulas for σu, σa, it amounts to the
following.

(1′) For each integer N ≥ 1, find scalars a1, . . . , aN such that the quotient
A∗N/UN is as close as possible to N1/2. In other words, we have to
find a Dirichlet polynomial

∑N
1 ann

it = PN (t) for which ‖ PN ‖∞=
supt∈R |PN (t)| is as small as possible compared to

∑N
1 |an|. Let us recall

that (cf. [R]) if PN (t) =
∑N

0 δne
int, where (δn) is the ±1-valued Rudin-

Shapiro sequence, inductively defined by δ0 = 1, δ2n = δn, δ2n+1 =
(−1)nδn, then ‖ PN ‖∞≤ (2 +

√
2)
√
N + 1, while |δ0| + · · · + |δN | =

N + 1. Here, we cannot use ±1-valued sequences because of Bohr’s
inequality (see [Q1]): ‖ PN ‖∞≥

∑
p≤N

p prime

|ap| ∼ N
logN . But, we can

use ±1, 0-valued sequences (see [Q1]) to obtain a Dirichlet polynomial
PN (t) =

∑N
1 ann

it for which the following holds.

(1′′) A∗N/UN ≥ α
√
N exp(−β

√
logN log2N). Here, α and β are absolute

positive constants, logN the natural logarithm of N , log2N = log logN
the iterated logarithm. In view of (1′′), a natural question is: can one
go further and obtain, in the case of Dirichlet polynomials, something
analogous to the example of Rudin and Shapiro, which could give that
A∗N/UN ≥ δ

√
N ? We will see that this is never the case and that, up

the exact value of the constants α and β, (1′′) is optimal: there exist
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numerical constants α and β > 0 such that, for any integer N ≥ 3 and
any complex numbers a1, . . . , aN , one has the following inequality.

(1′′′)
A∗N
UN
≤ α
√
N exp(−β

√
logN log2N).

The paper is organized as follows. The truth (and optimality) of Example
1 is proved in Section 2, the optimality of Example 2 is proved in Section 3,
and various extensions are given ; the non-existence of Rudin-Shapiro like se-
quences for Dirichlet polynomials, under the form of (1′′′), is proved in Section
4. Finally, Section 5 is devoted to some concluding remarks and questions.

2 Almost Everywhere Convergence of Dirichlet Series

We are going to prove the following theorem.

Theorem 2.1. a) Suppose that
∑∞

1 |an|2 < ∞. Then, the series∑∞
1 ann

−1/2+it converges for almost all t ∈ R (with respect to the
Lebesgue measure).

b) There exists a square-summable sequence (an) such that
∑∞

1 ann
−α+it

diverges for each α < 1/2 and each t ∈ R.

c) “Carleson’s condition”
∑∞

1 |an|2 <∞ is optimal in the following sense :
if (An) is a sequence of nonnegative numbers, (an) a sequence of complex
numbers such that

∑∞
1 A2

n =∞, the sequence (Ann1/2) is nonincreasing,
|an| ≥ An for n ≥ n0, then there exists a sequence (εn), εn = ±1 for all
n, such that the series

∑∞
1 εnann

−1/2+it diverges for each t ∈ R.

Proof of a) We shall give a very simple proof. Let f : [1,∞[→ C be defined
by f(x) = an if n ≤ x < n + 1 and n = 1, 2, . . . . Clearly,

∫∞
1
|f(x)|2 dx =∑∞

1 |an|2. Now, set g(y) = f(ey)ey/2 for y ≥ 0 (Observe how 1/2 comes
into play.) and make the change of variable x = ey to get

∫∞
0
|g(y)|2 dy =∑∞

1 |an|2; i.e., g ∈ L2(R+). Using Carleson’s theorem for integrals (see for
example [BPW]), we get that

∫∞
0
g(y)eity dy = limA→∞

∫ A
0
g(y)eity dy exists

a.e.in t.
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Equivalently
∫∞

1
f(x)√
x
eit log x dx converges a.e. Now

∫ N+1

1

f(x)√
x
eit log x dx =

N∑
n=1

∫ n+1

n

an
eit log x

√
x

dx

=
N∑
1

∫ n+1

n

an

(eit log x

√
x
− eit logn

√
n

)
dx+

N∑
n=1

ann
−1/2+it

=:
N∑
1

bn(t) +
N∑
1

ann
−1/2+it

with |bn(t)| = O(n−3/2), since an → 0 and d
dx ( e

it log x
√
x

) = O(x−3/2). The inte-

gral
∫∞

1
f(x)√
x
eit log x dx and the series

∑∞
1 ann

−1/2+it are thus equiconvergent,
and the result follows.

Proof of b) Take an = n−1/2
(
log(n+1)

)−1, so that
∑∞

1 |an|2 <∞ and that
the abscissa of convergence is σc = 1/2. Therefore,

∑∞
1 ann

−α+it diverges for
each α < 1

2 and each t ∈ R. Observe that
∑∞

1 ann
−1/2+it converges for all

t 6= 0.

Proof of c) We follow the papers [N], [S], [S2], [DE], [G], where similar results
were proved for the divergence of power and trigonometric series. We set An =
n−1/2δn, where δn decreases, and we assume, without loss of generality, that
n0 = 1 and that Ann−1/2 → 0. The strategy is to build closed intervals ∆k =
[tk− `k, tk+ `k], signs εn = ±1, and blocks Dk(t) =

∑
pk≤n<pk+1

εnann
−1/2+it

of the corresponding Dirichlet series such that:

Each t ∈ R belongs to infinitely many intervals ∆k (2)
|Dk(t)| ≥ 1/4 for each k ≥ 1 and each t ∈ ∆k. (3)

The first condition will hold if we have
∞∑
1

`k =∞. (4)

In fact, it is then possible to construct consequently intervals ∆1, . . . ,∆k1

covering [−1, 1], intervals ∆k1+1, . . . ,∆k2 covering [−2, 2], and so on. To ob-
tain (3), we first choose inductively integers p1 < . . . < pk < . . . so that
Ann

−1/2 ≤ 1 for n ≥ p1 and that

1 <
∑

pk≤n<pk+1

Ann
−1/2 ≤ 2. (5)



160 S. V. Konyagin and H. Queffélec

This is possible since
∑∞

1 Ann
−1/2 ≥

∑∞
1 A−1

1 A2
n =∞ and since Ann−1/2 ≤ 1

for n ≥ p1. It will be useful for the sequel to observe that
∞∑
1

1
log pk+1

pk

=∞. (6)

Indeed, ∑
pk≤n<pk+1

A2
n =

∑
pk≤n<pk+1

δ2
n

n
≤ δpk

∑
pk≤n<pk+1

δn
n
≤ 2δpk

in view of (5), so that Σδpk =∞. Moreover, (5) implies that

2 ≥
∑

pk−1≤n<pk

δn
n
≥ δpk

∑
pk−1≤n<pk

1
n
≥ δpk log

pk
pk−1

.

Therefore
1

log pk
pk−1

≥ δpk
2 , and this proves (6), allowing in (4) the choice, to

which we will stick:
`k =

1
4 log pk+1

pk

. (7)

Finally, we choose the numbers εn blockwise so that εn = 1 for n < p1,
εn = ±1 for all n and that∣∣∣∣ ∑

pk≤n<pk+1

εnann
−1/2+itk

∣∣∣∣ =
∣∣Dk(tk)

∣∣ ≥ 1
2
Sk ≥

1
2
. (8)

(Here, we have set Sk =
∑
pk≤n<pk+1

|an|n−1/2, and used |an| ≥ An and (5).)
This is possible, because if z1, . . . , zN ∈ C, one can find signs ε1, . . . , εN such
that εn = ±1 for all n and

∣∣∑N
1 ±zn

∣∣ ≥ 1
2

∑N
1 |zn| ([KQ] p. 491). (3) is now

a consequence of (7) and (8), because Dk oscillates little in the small interval
∆k around tk. More precisely, setting Ck(t) = p−itk

∑
pk≤n<pk+1

εnann
− 1

2 +it =
p−itk Dk(t), we have that

‖ C ′k ‖∞≤
∑

pk≤n<pk+1

|an|n−1/2 log
n

pk
≤ Sk log

pk+1

pk

and that, for t ∈ ∆k

|Dk(t)| =|Ck(t)| ≥ |Ck(tk)| − |t− tk| ‖ C ′k ‖∞

≥1
2
Sk − `kSk log

pk+1

pk
=

1
4
Sk ≥

1
4
,
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where we used (7) and (8). Therefore, (2) and (3) hold, and this clearly ends
the proof of c).

Remark 2.1. A condition of regularity in c) is essential. Take an = 1 if
n = 2k for some integer k and an = 0 otherwise. Then

∑∞
1 a2

n = ∞, but the
Dirichlet series

∑∞
1 ann

−σ+it is absolutely convergent for each σ > 0.

Remark 2.2. Take Bn decreasing to zero such that ΣA2
nB

2
n = ∞ and now

choose the p′ks in (5) so as to have 1 <
∑
pk≤n<pk+1

AnBnn
−1/2 ≤ 2. Leave

the rest unchanged. For t ∈ ∆k we now have

|Dk(t)| ≥ 1
4
Sk ≥

1
4

∑
pk≤n<pk+1

Ann
−1/2 ≥ 1

4Bpk
,

which shows that the Dirichlet series
∑∞

1 εnann
−1/2+it diverges unboundedly

for each t ∈ R.

Remark 2.3. Note that part b) of Theorem 2.1 does not follow from c).

3 Convergence of Products of Dirichlet Series

We first recall some general facts. Let (λn)n≥1 and (µn)n≥1 be two sequences of
positive numbers strictly increasing to +∞, and (νn) the sequence of λi+µj re-
arranged in increasing order. If A(s) =

∑∞
1 ane

−λns andB(s) =
∑∞

1 bne
−µns,

we set formally C(s) = A(s)B(s) =
∑∞

1 cne
−νns, with cn =

∑
λi+µj=νn

aibj .
We also set An = a1 + · · · + an, α(x) =

∑
λn≤x an, and define similarly

Bn, Cn, β(x), γ(x). We then have the following useful identity ([HaR]), easy
to check ∫ x

0

γ(t)dt =
∫ x

0

α(x− t)β(t)dt for all x ≥ 0. (9)

Let us note in passing that (9) provides a particularly clear proof of the gen-
eralized Mertens theorem, “If the three series (an), (bn), (cn) converge with
respective sums a, b, c, then c = ab.” Just divide the two members of (9) by x
and let x tend to infinity to get the result. A corollary of (9) is that

If
∞∑
1

an and
∞∑
1

bnconverge, then
N∑
1

Cn
n

= O(logN). (10)
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In fact, putting λn = log n, µn = log n, x = log(N + 1) in (9), we get

O(logN) =
N∑
n=1

Cn
(
log(n+ 1)− log n

)
=

N∑
1

Cn log(1 +
1
n

)

=
N∑
1

Cn
( 1
n

+O(
1
n2

)
)

=
N∑
1

Cn
n

+O(logN),

since clearly Cn = O(n). Let us also recall the Kronecker Lemma ([K]).

If
∞∑
1

cn
ϕn

converges and ϕn increases to ∞, then
CN
ϕN
→ 0. (11)

Finally, we recall the following result of Landau ([K]), which extends that of
Stieltjes quoted in the introduction.

Theorem 3.1. If A(s) =
∑∞

1 ann
−s and B(s) =

∑∞
1 bnn

−s converge re-
spectively at s = ρ1 and s = ρ2, where ρ1, ρ2 ∈ R and |ρ1 − ρ2| < 1, then
C(s) = A(s)B(s) =

∑∞
1 cnn

−s converges at s = 1
2 (ρ1 + ρ2 + 1).

Proof. We just give a proof for ρ1 = ρ2 = 0; not the simplest one, but one
which, we believe, clearly shows the role of the translation 1/2 and the key
role of the term N−1/2CN . The main point is

CN = o(N1/2). (12)

The exponent 1/2 will appear through the hyperbola method of Dirichlet,
when we write

CN =
∑
ij≤N

aibj =
( ∑
i≤
√
N

ai

)( ∑
j≤
√
N

bj

)
+
∑
i≤
√
N

ai

( ∑
√
N<j≤Ni

bj

)
+
∑
j≤
√
N

bj

( ∑
√
N<i≤Nj

ai

)
= O(1) +

∑
i≤
√
N

o(1) +
∑
j≤
√
N

o(1) = o(
√
N),

proving (12). Now, two Abel’s summations by parts, where we set Sn =
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∑n
k=1

Ck
k and use (10) and (12), give

N∑
1

cn√
n

=
CN√
N

+
N−1∑

1

Cn
( 1√

n
− 1√

n+ 1

)
=

CN√
N

+
N−1∑

1

Cn
2n3/2

+ εN

=
CN√
N

+
SN−1

2(N − 1)1/2
+
N−2∑

1

Sn
4n3/2

+ ε′N ,

where εN , ε′N are convergent sequences and
∑∞

1
Sn
n3/2 an absolutely convergent

series from (10). By (12), this ends the proof and shows that the converse of
Kronecker’s lemma is essentially true: CN√

N
→ 0, “therefore”

∑∞
1

cn√
n

con-

verges. The fact that
∑∞

1 cnn
−1/2 =

(∑∞
1 ann

−1/2
)(∑∞

1 bnn
−1/2

)
is now a

consequence of Mertens theorem.

What we will now show is the optimality of Theorem 9 in a way which
avoids the use of the order function of Lindelöf although being non explicit. (As
far as we know, no explicit example giving the optimality, even for ρ1 = ρ2 = 0,
has ever been given.)

Theorem 3.2. Let ρ1, ρ2 ∈ R with |ρ1 − ρ2| < 1, and (ϕn) a sequence of
positive numbers such that ϕn

nρ2 increases to infinity and such that, for every
pair of Dirichlet series A and B converging at ρ1 and ρ2 respectively, one has
the convergence of

∑∞
1

cn
ϕn

, where
∑∞

1 cnn
−s = A(s)B(s). Then

ϕn ≥ δn
1
2 (ρ1+ρ2+1) (δ positive constant). (13)

In particular, one can find A and B converging at ρ1 and ρ2 such that C = AB
diverges at every σ < 1

2 (ρ1 + ρ2 + 1), and Theorem 3.1 is optimal.

Proof. By shifting, we may and shall assume that ρ2 = 0. Let E be the
Banach space of sequences a = (an) such that the series

∑∞
1 ann

−ρ1 converges,
equipped with the norm ‖ a ‖= supn |

∑n
k=1 akk

−ρ1 |. Define F similarly,
replacing ρ1 by 0. The hypothesis and Kronecker’s Lemma (11) imply that
c1 + . . .+ cn

ϕn
→ 0, in particular is bounded. In other words, if (Ln) is the

sequence of bilinear forms on E × F defined by

Ln(a, b) =
c1 + . . .+ cn

ϕn
,

one has supn |Ln(a, b)| < ∞ for all a ∈ E, b ∈ F . It now follows from the
Banach-Steinhaus Theorem for the spaceB(E×F ) of continuous bilinear forms
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on E × F (the space B(E × F ) can be identified with the space L(E,F ∗) of
continuous linear maps from E to the dual F ∗ of F ) that M = supn ‖Ln‖ <∞;
i.e., that

|Ln(a, b)| ≤M ‖ a ‖‖ b ‖ for each (a, b) ∈ E × F. (14)

First fix a perfect square n, set Bm = b1 + · · · + bm and λi = [ni ] where [ ]
denotes the integral part. Then observe that c1 + · · · + cn =

∑
ij≤n aibj =∑

i≤n ai
(∑

j≤ni
bj
)

=
∑n

1 aiBλi , so that (14) can be rewritten as

∣∣ n∑
1

aiBλi
∣∣ ≤Mϕn ‖ a ‖‖ b‖ for each (a, b) ∈ E × F. (15)

Now, the following simple observation is the key to understand the appearance
of the translation 1/2.

If 1 ≤ i < j ≤
√
n < k ≤ n, then λi > λj > λk. (16)

In fact, n
i −

n
j ≥

n
j−1 −

n
j = n

j(j−1) ≥
n
j2 ≥ 1; so that λi − λj ≥ 1. Moreover,

λk <
√
n ≤ λj . (Note that

√
n is an integer.) The relation (16) shows that

the λ′is (i ≤
√
n) are distinct, and distinct from the λ′ks (k >

√
n). One can

therefore choose b ∈ F so that aiBλi = |ai|, i ≤
√
n, Bλk = 0, k >

√
n and

‖b‖ = 1. Testing (15) on this special b gives∑
i≤
√
n

|ai| ≤Mϕn‖a‖, for any a ∈ E. (17)

Now take ai = (−1)iiρ1 , i ≤
√
n and ai = 0, i >

√
n, so that ‖a‖ = 1.

For this special a, (17) gives
∑
i≤
√
n i
ρ1 ≤ Mϕn. Since |ρ1| < 1, there exists

α = α(ρ1) > 0 such that
∑
i≤
√
n i
ρ1 ≥ αn

ρ1+1
2 and we obtain ϕn ≥ α

M n
ρ1+1

2

for n a perfect square. For a general n, interpolate between two squares (recall
that ϕn increases) to get (13) with δ = αM−12−

ρ1+1
2 .

If we allow |ρ1− ρ2| = 1, we have the following result, where a logarithmic
factor enters.

Theorem 3.3. Let A,B be two Dirichlet series and C = AB their product.
We have the following :

a) If A converges at −1 and B converges at 0, then
∑∞

2
cn

logn converges.

b) Let (ϕn)n≥1 be a sequence of positive numbers increasing to ∞ such that∑∞
1

cn
ϕn

converges as soon as A converges at −1, B converges at 0, and
C = AB. Then ϕn ≥ δ log n for some positive constant δ. In particular,
the conclusion of a) is best possible.
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Proof of a). We can assume that a1 (and therefore c1) vanishes. We shall
argue as in Theorem 3.2, where now

E = {a = (an);
∞∑
1

nan converges and a1 = 0},

with norm ‖a‖ = supn
∣∣∑n

1 kak
∣∣ and

F = {b = (bn);
∞∑
1

bn converges}

with norm ‖b‖ = supn
∣∣∑n

1 bk
∣∣. Recall that we have (cf. the proof of (10))

∣∣ N∑
n=1

Cn
(
log(n+ 1)− log n

)∣∣ =: |SN | ≤ 2 log(N + 1)‖a‖‖b‖. (18)

(Here, Cn = c1 + · · ·+ cn.) Also note that

|Cn| ≤ 4 log(N + 1)‖a‖‖b‖. (19)

In fact (see the proof of Theorem 3.2) we have CN =
∑N

1 aiBλi , whence
|Cn| ≤ ‖b‖

∑N
1 |ai| ≤ 2‖a‖‖b‖

∑N
1

1
i ≤ 4 log(N + 1)‖a‖‖b‖. The two relations

(18) and (19) will replace (11) and (12). Now, we want to prove that if
LN (a, b) =

∑N
2

cn
logn , the bilinear forms LN are pointwise convergent on E×F .

Since the finitely supported sequences are dense in E and F , it suffices to find
a constant M such that

|LN (a, b)| ≤M‖a‖‖b‖ for each (a, b) ∈ E × F. (20)

We shall use the notation U � V to indicate that |U | ≤ α|V |, where α is a
constant ; recall that Sn =

∑n
k=1 Ck

(
log(k+ 1)− log k

)
. Now two summation
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by parts and the use of (18), (19) give

LN (a, b) =
N∑
2

Cn − Cn−1

log n
=

CN
logN

+
N−1∑

2

Cn
( 1

log n
− 1

log(n+ 1)
)

=
CN

logN
+
N−1∑

2

Sn − Sn−1

log n log(n+ 1)
=

CN
logN

+
SN−1

log(N − 1) logN

+
N−2∑

2

Sn

( 1
log n log(n+ 1)

− 1
log(n+ 1) log(n+ 2)

)
�‖a‖‖b‖+ ‖a‖‖b‖+ ‖a‖‖b‖

N−2∑
2

( 1
log n

− 1
log(n+ 2)

)
�‖a‖‖b‖

∞∑
2

1
n log2 n

, which proves (20) and therefore a).

Proof of b). Now set Ln(a, b) = c1+...+cn
ϕn

= Cn
ϕn

. As in Theorem 3.2, the
Banach-Steinhaus Theorem provides a constant M(= sup ‖Ln‖) < ∞ such
that

∣∣ n∑
1

aiBλi
∣∣ =

∣∣ϕnLn(a, b)
∣∣ ≤Mϕn‖a‖‖b‖.

If n is a perfect square, the same choice of b gives
∑√n

1 |ai| ≤ Mϕn‖a‖, for
any a ∈ E. The choice ai = (−1)i

i (i ≤
√
n) and ai = 0 (i >

√
n) gives (since

‖a‖ = 1) 1
2 log n ≤ Mϕn. Interpolating between two perfect squares ends the

proof.

Remark 3.1. With the logarithmic scale appearing here, it would not be pos-
sible to prove the optimality of a) using only the Lindelöf function associated
with A and B. Part a) appears to be new, as well as the proof of b). Another
proof of b), very close to the use of Baire’s theorem, was given in ([KQ]). In
the proofs of Theorem 3.2 and b) of Theorem 3.3, we seem to use only a weak-
ened form (through Kronecker’s lemma) of the hypotheses, but as we noticed
in the proof of Theorem 3.1, we are in situations where the convergence of the
series

∑ cn
ϕn

and the convergence to zero of the sequence Cn
ϕn

are equivalent,
and this explains why the proof works.
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4 Non-Existence of Rudin-Shapiro Like Dirichlet Poly-
nomials

Some notation: N = {0, 1, · · · } will denote the set of natural integers, N∗ =
{1, 2, . . . } will denote the set N \ {0}.

Here we will make here strong use of the number theoretic function Ω :
N∗ → N defined by

Ω(n) = α1(n) + · · ·+ αk(n) if n = p
α1(n)
1 . . . p

αk(n)
k

is decomposed into its prime factors. (We will allow the α′js to be zero.)
Thus, Ω(n) counts the prime factors of n with their multiplicity and, although
completely additive, it has in some respects a more complicated behavior than
the companion function ω(n) =

∑
αj(n)>0 1, which counts the prime factors

of n without their multiplicity. (The function ω is only additive.) But the
complicated behavior of Ω will not be pertinent here, since we will only need
(see Lemmas 4.1 and 4.2 below) rather crude information on this function.
We will fix a real number x ≥ 3 (which should be thought of as an integer)
and consider a Dirichlet polynomial

A(t) =
∑
n≤x

ann
it.

Denote by p1 < · · · < pk the prime numbers less than or equal to x, so that
k = π(x), the number of prime numbers less than or equal to x. Let Γ be the
unit circle of the complex plane, and let

P (z) = P (z1, . . . , zk) =
∑
n≤x

anz
α1(n)
1 . . . z

αk(n)
k ,

where z = (z1, . . . , zk) ∈ Γk. It is Bohr’s inspired observation that, thanks to
the rational independence of log p1, . . . , log pk and to Kronecker’s approxima-
tion theorem ([KS]), one has the following equality (see [Q1]).

‖A‖∞ = ‖P‖∞ := sup{|P (z1, . . . , zk)|; |z1| = . . . = |zk| = 1}. (21)

We will make strong use of (21) to obtain non-trivial upper bounds for ‖A‖∞.
We will also make use of the following result of ([Q1]); theorem 4.1 p. 49)
which uses Blei’s theory of p-Sidon sets.

Theorem 4.1. Let m ∈ N∗. Set Em = {n ≤ x; Ω(n) = m}. Then( ∑
n∈Em

|an|
2m
m+1

)m+1
2m ≤ Cm‖P‖∞ = Cm‖A‖∞ (22)
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where Cm =
(

2√
π

)m−1
mm/2(m+1)

m+1
2

2m (m!)−
m+1
2m .

The order of growth of Cm is important in what follows, so we begin by
giving a more tractable upper bound for Cm, under the form of the following
lemma.

Lemma 4.1. With the previous notation, one has

Cm ≤ mm/2. (23)

Proof. One checks (23) by hand for m = 1, 2, 3. For m ≥ 4, we will use
Stirling’s inequality n! ≥ nne−n

√
2πn.

We have to show that
√
π

2
( 1√

π

)m(m+ 1)
m+1

2 ≤ (m!)
m+1
2m . (24)

Now, the LHS of (24) is ≤
√
π

2

(
1√
π

)m
m

m+1
2 e

m+1
2m , while the RHS is ≥

(
m
e

)m+1
2

(2πm)1/4 by Stirling’s inequality. It remains to check that
√
π

2
1

(
√
π)m

e
m+1
2m ≤

e−
m+1

2 (2πm)1/4, or that
√
πe
2

(
e
π

)m/2
e1/2m ≤ (2πm)1/4, or by squaring both

sides πe2
(
e
π

)m e1/m

4 ≤ (2πm)1/2. Now

LHS ≤ 24× 0, 57× 0, 33 < 5 and RHS ≥ (25)1/2 = 5.

From now on, α, β, α′, β′, etc. will denote positive constants which can
vary from line to line. It was mentioned in the introduction that there exist
Dirichlet polynomials A(t) =

∑
n≤x ann

it for which ‖A‖∞ = 1 and∑
n≤x

|an| ≥ α
√
x exp(−β

√
log x log2 x). (24′)

By analogy with the Rudin-Shapiro trigonometric polynomials, it is natural
to ask whether one can get

∑
n≤x |an| ≥ α

√
x. This is not the case, and in

fact the lower bound (24′) is best possible (if one ignores the precise value of
α and β). But the proof of this latter fact is rather delicate. We therefore
prefer to prove two different theorems; the second one contains the first, but
its proof is just an elaboration of the first one, and things are probably clearer
under this form.

Theorem 4.2. Let A(t) =
∑
n≤x ann

it be a Dirichlet polynomial. Then one
has ∑

n≤x

|an| ≤ α
√
x exp

(
−β

√
log x
log2 x

)
‖A‖∞.

In particular, there does not exist Rudin-Shapiro like Dirichlet polynomials.
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Proof. We can assume that ‖A‖∞ = 1. Let M ≥ 1 to be chosen later ; write
(see Theorem 4.1)∑

n≤x

|an| =
∑
m≤M

( ∑
n∈Em

|an|
)

+
∑
n∈E
|an| =: Σ1 + Σ2,

where E = ∪m>MEm. To bound
∑
n∈Em |an| for m ≤ M , we use Hölder’s

inequality and (22), (23) to obtain

∑
n∈Em

|an| ≤
( ∑
n∈Em

|an|
2m
m+1

)m+1
2m |Em|

m−1
2m

≤ mm/2|Em|
m−1
2m ≤MM/2x

m−1
2m ≤MM/2x

M−1
2M

= x1/2 exp
(M

2
logM − log x

2M

)
.

A good compromise for M is given by M2 logM ≈ log x, therefore we choose
M =

√
log x
log2 x

. For this value, to which we will stick, one gets an inequality of
the form ∑

n∈Em

|an| ≤ α
√
x exp(−β

√
log x log2 x), m ≤M. (25)

Adding the inequalities (25) for m ≤M and changing α and β, one gets

Σ1 ≤ α
√
x exp(−β

√
log x log2 x) (26)

As we will see later, this is the right order of growth. But due to a bad upper
bound for |E|, the cardinality of E, we will obtain something less precise than
(26) for Σ2; in fact the Cauchy-Schwarz inequality gives

Σ2 ≤ |E|1/2
(∑
n≤x

|an|2
)1/2

= |E|1/2‖P‖2 ≤ |E|1/2‖P‖∞ = |E|1/2‖A‖∞.

To majorize |E|, we shall use the following simple lemma, kindly shown to us
by Hugh. L. Montgomery.

Lemma 4.2. Let c be fixed, 1 < c < 2. The number N(x,m) of n ≤ x such
that Ω(n) ≥ m is less than x(log x)cc−m, uniformly for m ≥ 1. In particular,
this number is less than αxe−βm for m ≥ α′ log2 x.
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Proof. Force a completely multiplicative function to come into play as fol-
lows.

N(x,m) =
∑
n≤x

Ω(n)≥m

1 ≤ 1
cm

∑
n≤x

cΩ(n) ≤ x

cm

∑
n≤x

cΩ(n)

n

≤ x

cm

∑
n

p|n=⇒p≤x

cΩ(n)

n
= xc−m

∏
p≤x

(
1− c

p

)−1

where p denotes a prime number and where we used Euler product formula.
(Recall that

∑∞
1

g(n)
ns = Πp

(
1− g(p)ps

)−1 for a completely multiplicative function
g such that |g(p)| < |ps| for all primes p and the series in the formula is
absolutely convergent.) Now, by Merten’s theorem ([T]), Πp≤x

(
1 − 1

p

)−1 ∼
eγ log x, where γ is the Euler constant, which clearly gives the result. (Observe
that c

p has to be < 1, for each prime p. Therefore we must have c < 2.) Now,
Lemma 4.2 applied for m > M gives

Σ2 ≤ |E|1/2 ≤ α
√
xe−βM ≤ α

√
x exp

(
−β

√
log x
log2 x

)
. (27)

Adding (26) and (27) gives Theorem 4.2, for appropriate constants α and
β.

As we already mentioned, Theorem 4.2 does not give the best possible
estimate. But we can use a less brutal splitting of

∑
n≤x |an|, and this will

allow us to prove our main theorem.

Theorem 4.3. Let A(t) =
∑
n≤x ann

it be a Dirichlet polynomial. Then

a) for some numerical constant α, β > 0∑
n≤x

|an| ≤ α
√
x exp

(
−β
√

log x log2 x
)
‖A‖∞. (28)

b) The estimation of a) is optimal in general: one can find a non-zero
Dirichlet polynomial A such that∑

n≤x

|an| ≥ α′
√
x exp

(
−β′

√
log x log2 x

)
‖A‖∞

for some numerical constants α′, β′ > 0.
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Proof. Throughout the proof assume that ‖A‖∞ = 1 and p will denote a
prime number. Fix 0 < δ < 1

2 , set y = (log x)δ and

Sy ={n ≤ x; p|n⇒ p ≤ y};
Ly ={n ≤ x; p|n⇒ p > y}.

We call the elements of Sy y-small and those of Ly y-large. Of course, Sy
and Ly also depend on x, but since we shall keep this x fixed, the notation
Sy, Ly will cause no confusion. We still define k and s by pk ≤ x < pk+1 and
ps ≤ y < ps+1. The proof now consists of three steps.

Step 1 :
Without loss of generality, we can assume that an = 0 if n is not y-large
(n /∈ Ly). In fact, we know from (21) that ‖A‖∞ = ‖P‖∞, where P (z) =∑
n≤x anz

α1(n)
1 . . . z

αk(n)
k and k = π(x). Clearly, each integer n ≤ x can be

uniquely written as n = m`, where m ∈ Sy, ` ∈ Ly, so that

P (z) =
∑
m

z
α1(m)
1 . . . zαs(m)

s

(∑
`

am`z
αs+1(`)
s+1 . . . z

αk(`)
k

)
=:
∑
m

z
α1(m)
1 . . . zαs(m)

s Pm(z′′),

where z = (z′, z′′), with z′ = (z1, . . . , zs) and z′′ = (zs+1, . . . , zk) for z =
(z1, . . . , zk) ∈ Γk. Observe that

‖Pm‖∞ ≤ ‖P‖∞ for m ∈ Sy. (29)

In fact, Pm appears as a Fourier coefficient of P .

Pm(z′′) =
1

(2π)s

∫ 2π

0

. . .

∫ 2π

0

P (eiθ1 , . . . , eiθs , z′′)e−i(α1(m)θ1+...+αs(m)θs) dθ1 . . . dθs.

Now, each Pm is associated to a Dirichlet polynomial
∑
` am``

it, where all the
`′s are y-large. Therefore, if this case has been settled, we get, assuming that
‖P‖∞ = 1 and using (29) that∑

`

|am`| ≤ α
√
x exp(−β

√
log x log2 x). (30)

Now observe that
|Sy| ≤ α exp

(
β(log x)δ

)
. (31)

In fact, if m ∈ Sy, m = pα1
1 . . . pαss ≤ x, so that αj ≤ log x

log 2 and that |Sy| ≤(
1 + log x

log 2

)s ≤ exp(2s log2 x). But s log s ∼ y by the prime number theorem;
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so s ∼ (log x)δ

δ log2 x
, and this gives (31). Now, use (30) and (31) to see that∑

n≤x

|an| =
∑
m∈Sy

( ∑
`∈Ly
m`≤x

|am`|
)
≤ |Sy|α

√
x exp

(
−β
√

log x log2 x
)

≤α′
√
x exp(−β′

√
log x log2 x),

since δ < 1/2.
Step 2 :

We have already mentioned (see Lemma 4.2) that the bound N(x,m) ≤
αxe−βm for large m is not sufficient to get the optimal form of (28) ; but a vari-
ant of Lemma 4.2 will allows us to obtain a good upper bound for N(x, y,m),
where

N(x, y,m) = #{n ≤ x; p|n⇒ p > y and Ω(n) ≥ m} = #{n ∈ Ly ; Ω(n) ≥ m}.

Lemma 4.2′. Fix a numerical constant c such that c < 1 and c(log 3)δ > 1.
Then

N(x, y,m) ≤ x

(cy)m
exp(βy log2 x).

Proof. First observe that cy = c(log x)δ ≥ c(log 3)δ > 1, and that there
exists β0 > 0 such that 1 − u ≥ e−β0u for 0 ≤ u ≤ c. Then proceed as in
Lemma 4.2 to get

N(x, y,m) =
∑
n∈Ly

Ω(n)≥m

1 ≤ 1
(cy)m

∑
n∈Ly

(cy)Ω(n)

≤ x

(cy)m
∑
n∈Ly

(cy)Ω(n)

n
≤ x

(cy)m
∏

y<p≤x

(
1− cy

p

)−1

(by the Euler product formula). Now, for y < p ≤ x, we have cyp ≤ c; so that(
1− cy

p

)−1 ≤ exp
(
β0c

y
p

)
. This implies

N(x, y,m) ≤ x

(cy)m
exp
( ∑
y<p≤x

β0c
y

p

)
≤ x

(cy)m
exp
(∑
p≤x

β0c
y

p

)
≤ x

(cy)m
exp
(
βy log2 x

)
where we used the classical estimate

∑
p≤x

1
p = O(log2 x).
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Step 3 :
The inequality (28) holds when an = 0 for n /∈ Ly. This last step will be easy
after Step 2. Argue exactly as in the proof of Theorem 4.2, the point being
that now Em is the set of those n ≤ x for which Ω(n) = m and moreover

n ∈ Ly. So that, with the same value M =
√

log x
log2 x

, the set E = ∪m>MEm
is exactly the set of n ∈ Ly such that Ω(n) > M , and that |E| ≤ N(x, y,M).
Lemma 4.2′ then implies

|E| ≤x exp
(
β(log x)δ log2 x−M log

(
c(log x)δ

))
≤x exp

(
β(log x)δ log2 x− β′

√
log x log2 x

)
≤x exp

(
−β′′

√
log x log2 x

)
,

since δ < 1
2 . This better upper bound on |E| gives a) of Theorem 4.3, and the

lower bound of b), with a precise value of β′, has been proved in [Q1].

5 Concluding Remarks and Questions

1. One way to express Theorem 4.3 is as follows. Recall that if G is a compact
abelian group and Γ, its discrete dual, the p-Sidonicity constant (1 ≤ p < 2)
of a subset Λ of Γ is the smallest constant C such that, for any trigonometric
polynomial P =

∑
γ∈Λ aγγ, one has

(
Σ|aγ |p

)1/p ≤ C‖P‖∞. This smallest
constant is denoted by Sp(Λ). Now, take for G the Bohr compactification R
of R, whose dual Γ is the discrete group Rd of real numbers, and take for Λ
the set ΛN = {log 1, . . . , logN}. For x = N , the assertions a) and b) Theorem
4.3 amount to saying that

α0

√
N exp

(
−β0

√
logN log2N

)
≤ S1(ΛN ) ≤ α

√
N exp

(
−β
√

logN log2N
)
.

In fact, A(t) =
∑N

1 ann
it can be viewed as the trigonometric polynomial

P (t̄) =
∑N

1 an exp(i < log n, t̄ >) where t̄ runs over R̄, and we have ‖A‖∞ =
‖P‖∞ since R is dense in R. In this setting, Theorem 4.3 easily extends to the
p-Sidon case.

Theorem 5.1. The p-Sidonicity constant Sp(ΛN ) of ΛN = {log 1, . . . , logN}
satisfies

α′pN
1
p−

1
2 exp

(
−β′p

√
logN log2N

)
≤ Sp(ΛN )

≤ αpN
1
p−

1
2 exp

(
−βp

√
logN log2N

)
.

(32)
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Proof. Let A(t) =
∑N

1 ann
it . If 1

p = 1−θ
1 + θ

2 with 0 ≤ θ ≤ 1, Hölder’s
inequality gives via (28)

( N∑
1

|an|p
) 1
p ≤

( N∑
1

|an|
)1−θ( N∑

1

|an|2
)θ/2

≤α1−θN
1−θ
2 exp

(
−β(1− θ)

√
logN log2N

)
‖A‖1−θ∞ ‖A‖θ∞

=αpN
1
p−

1
2 exp

(
−βp

√
logN log2N

)
‖A‖∞

which is the upper bound in (32). For the lower bound, observe that the
extremal example A(t) =

∑N
1 ann

it of [Q1] has the following properties.

‖A‖∞ ≤ α
√
N exp(β

√
logN log2N) ;∑N

1 |an| ≥ α′N exp
(
−β′

√
logN log2N

)
;

an = +1,−1, 0.

It follows that

Sp(ΛN ) ≥

(∑N
1 |an|p

)1/p

‖A‖∞
=

(∑N
1 |an|

)1/p

‖A‖∞
≥ α′pN

1
p−

1
2 exp

(
−β′p

√
logN log2N

)
with α′p = α′

1/p
α−1, β′p = β′

p + β which ends the proof of (32).

2. The results of Theorems 3.2, 3.3, and 4.3 are not constructive, since their
proofs use either topological (Banach-Steinhaus) or probabilistic arguments.
It would be very interesting to obtain explicit examples, in particular to see
what can replace the Rudin-Shapiro sequence in the case of Dirichlet polyno-
mials.

3. We made no particular attempt to find the best constants α, β, α′, β′ of
Theorem 4.3. It follows from the precise estimate

S1(ΛN ) ≥ δ
√
N logN exp

[
−
√

2 logN(log2N + log3N
]

(see theorem V.1 of [Q1]) that one should have β ≤
√

2, and it is likely that
any constant β <

√
2 in (28) of Theorem 3.3 works.
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Dirichlet et des produits d’Euler , Canad. J. Math., XXXII, no 3 1980,
531–558.

[R] W. Rudin, Trigonometric series with gaps, Journal of Math. and
Mech., 9 (1960), 203–227.

[S] S. B. Stechkin, On convergence and divergence of trigonometric series”
[in Russian] UMN, 6, N. 2 (1951), 148–149.

[S2] S. B. Stechkin, On trigonometric series convergent at each point , [in
Russian] Izv. RAN SSSR, ser. matem., 21 (1957), 711–728.
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