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A UNIFIED THEORY OF BILATERAL
DERIVATES

Abstract

We present here a unified theory of bilateral derivates, which we
call here briefly “biderivates”. This unified theory is achieved with the
help of two new fundamental theorems on biderivates, called the First
and Second Biderivate Theorems. These two biderivate theorems are
obtained in terms of bimonotonicity and bi-Lipschitz properties of a
function on a set which also depend on the values of the function outside
the set like the properties V B∗ and AC∗. From these two biderivate
theorems we further deduce the Third and Fourth Biderivate Theorems,
which deal with the properties of a function on a portion of a given set
and the Fifth Biderivate Theorem on the Baire class of biderivates.

Next, given f : X → R, where X ⊂ R, let X ′ denote the set of
limit points of X in X. Then we define the “median” Mf of f to be the
multifunction Mf(x) = [Df(x), Df(x)], x ∈ X ′. We deduce here from
the above biderivate theorems five basic median theorems which deal
with the properties of the median.

The various known results on biderivates are deduced here from these
biderivate and median theorems many of which are strengthened in this
process. As the known results on biderivates were obtained earlier by
ad hoc methods, the present theory provides a synthesis of these results
and brings out their inter-relations leading thereby to a unified theory.

In particular, we deduce from one of the median theorems several
monotonicity theorems in terms of biderivates including an extended
version of the well known Goldowski-Tonelli theorem. Further, we de-
duce from another median theorem a mean-value theorem in terms of
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median and derivative, and the Darboux property of median and deriva-
tive. Also, the Denjoy property of derivatives is obtained from the Third
Biderivate Theorem and results on the Baire class of derivatives and me-
dians are obtained from the Fifth Biderivate Theorem. Also, a biderivate
version of the classical Denjoy-Young-Saks theorem is obtained from the
First Biderivate Theorem.

From the above mentioned biderivate and median theorems we also
deduce some other known theorems of Denjoy, Young, Choquet, Za-
horski, Kronrod, Fort and Marcus, along with the following two new
results: (i) a theorem on biderivates similar to a fundamental theorem
of Denjoy on unilateral derivates; and (ii) a theorem on median derivates
similar to a theorem of Morse on unilateral derivates.
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Chapter 1: Introduction, Definitions and Preliminaries

In this chapter we first present in §1.1 a more detailed introduction of the
present work indicating the inter-relations between various results. In the
next three sections of this chapter we present various definitions and notation
that are used throughout the work.

In particular, we present in §1.2 some definitions, notation and other pre-
liminaries that are needed for the present work. Then in §1.3 we define several
weaker forms of continuity, and in §1.4 we define various notions of bimono-
tonicity and bi-Lipschitz properties of a function on a set. The first two
biderivate theorems are obtained in terms of these properties.

§1.1. Introduction

We present here a unified theory of bilateral derivates, which we call here
briefly “biderivates”. This theory is similar to the unified theory of unilateral
derivates presented in Part I of [G3].

The present unified theory is achieved with the help of two new funda-
mental theorems on biderivates which we call simply the First and Second
Biderivate Theorems. In these two theorems we deal with bimonotonicity and
bi-Lipschitz properties of a function on a set in terms of its biderivates at
the points of the set. From these two theorems we deduce some other new
biderivate theorems along with some basic median theorems which deal with
the properties of the set-valued median related to biderivates.

The various known results on biderivates are deduced in turn from these
biderivate and median theorems many of which are strengthened in this pro-
cess. We refer to [G1] for several known results on biderivates. Apart from
obtaining several new results in the present theory, most of the results of [G1]
are strengthened by the results of this theory.

We have used here titles for theorems with common theme as in [G3], like
the First and Second Biderivate Theorems, to eliminate confusion. This brings
out more clarity and makes it easier to compare these theorems.

Next, we discuss the organization of the present work along with the nature
of the results and their inter-relations in some detail. The work is divided into
three chapters.

Apart from the introduction presented in this section, Chapter 1 is devoted
to various preliminaries like definitions, notation and nomenclature that are
used throughout the present work. In particular, we define in §1.3 several
weaker forms of continuity, and in §1.4 we define various notions of bimono-
tonicity and bi-Lipschitz properties of a function on a set.
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In Chapter 2 we deal with some fundamental theorems on biderivates.
First, in §2.1, we obtain the First and Second Biderivate Theorems. Then, in
§2.2, we obtain a derivability theorem and from the first two biderivate theo-
rems deduce some of the known theorems on biderivates. In the derivability
theorem we prove the differentiability of a function f : X → R at almost all
points of a set E ⊂ X on which f is bimonotone. Then with the help of
this theorem from the First Biderivate Theorem we deduce a version of the
classical Denjoy-Young-Saks theorem in terms of biderivates. Further, from
the Second Biderivate Theorem we deduce a theorem of Young on the set of
points where a function has an infinite derivate, and an extended version of a
theorem on the identity of a function with a Lipschitz function except for a
set of arbitrarily small measure.

Next, in §2.3 from the first two biderivate theorems we deduce the Third
and Fourth Biderivate Theorems which deal with properties of functions on
some portion of a given set. Also in this section from the Third Biderivate
Theorem we deduce the First Median Theorem which deals with properties of
median at a residual set of points. Further, in §2.4, we define various lower and
upper Baire classes of functions and multifunctions as in [G3], and from the
First Biderivate Theorem deduce the Fifth Biderivate Theorem and Second
Median Theorem which deal with the Baire class of biderivates and median,
respectively.

Next, in Chapter 3, we deal with other results on biderivates, median
and derivative. First, in §3.1 from the Third Biderivate Theorem we deduce
some results on the properties of biderivates and median at residual sets of
points which include the Third Median Theorem. Also, we obtain from the
Third Biderivate Theorem a version of a fundamental theorem of Denjoy in
terms of biderivates, and a version of a theorem of Choquet on the identity
of biderivates with strong derivates at a residual set of points. Next, in §3.2
from the Third Biderivate Theorem we deduce the Fourth and Fifth Median
Theorems which deal with the properties of the median of a function f : I → R
at its nonmonotonicity points; i.e., points in no neighborhood of which f is
nondecreasing.

Next, in §3.3 from the Fourth Median Theorem we deduce several mono-
tonicity theorems in terms of biderivates, including the well known Goldowski-
Tonelli theorem on functions that are derivable nearly everywhere. Also from
one of these monotonicity theorems we deduce a result on median derivates
which is similar to a theorem of Morse on unilateral derivates.

Finally, in §3.4, we deal with the properties of derivative and median. First
from the Fifth Biderivate Theorem we obtain a theorem of Zahorski on the
property of derivability sets, and the Baire class of derivative. Then from the
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First Median Theorem, which is deduced from the Third Biderivate Theorem,
we deduce a mean-value theorem in terms of median and derivative. Further
from the same median theorem we deduce the Darboux property of median
and derivative, and we deduce from the Third Biderivate Theorem the Denjoy
property of derivative. Also, we obtain here an extended version of a theorem
of Marcus on stationary sets of derivatives.

§1.2. Definitions, Notation and Other Preliminaries

In this section we present some definitions, notations and other preliminaries
that are needed for the present work.

We will employ R to denote the set of all real numbers, and R to denote
the set of extended real numbers, namely [−∞,+∞]. Further, we will use X to
denote an arbitrary subset of R, and I to denote any subinterval of R. Further,
unless stated otherwise, f will be assumed to be a real-valued function defined
on I. However, X is also used frequently as the domain of f, and in that case
we will state that “f : X → R”, where X will be understood to be an arbitrary
subset of R.

Given X ⊂ R, we will use Xd to denote the set of all limit points of X in
R, and X ′ to denote the set of limit points of X in X. Further, we will use
X−, X+ and Xb to denote the sets of points in X which are left, right or
bilateral limit points, respectively, of X.

Next, a set E is called countable if it is either finite or countably infinite.
Now, suppose E ⊂ X ⊂ R. Then E is said to be meager in X if it is of the first
category in X, and when X \E is meager in X, E will be said to be residual in
X. A nonempty subset of X is called a portion of X if it is of the form X ∩ I,
where I is an open subinterval of R.

Further, when each portion of X includes a set of positive measure, X is
called metrically dense in itself. Also, the set E will be said to be c-dense in
X if for every portion X0 of X the set E ∩X0 has cardinality c.

Next, if any pointwise proposition P holds at a residual set of points in X,
then P will be said to hold residually everywhere (or r.e.) in X and in case
P holds at all but a countable set of points in X, then P will be said to hold
nearly everywhere (or n.e.) in X. Also, we will use a.e. for almost everywhere
in the measure-theoretic sense.

Next, given f : X → R and c ∈ R, we will use f+c to denote the function

f+c(x) = f(x) + cx, x ∈ X.

The notation f−c will in turn be used to denote the function f+(−c).

Now, let x ∈ Xd. When x is a left limit point of X, we will use f(x − 0)
and f(x − 0) to denote the lower and upper left limits of f at x, and when
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these two limits are equal, we will use f(x− 0) to denote their common value
which is called the left limit of f at x. Note that the limit f(x − 0) may be
finite or infinite. Further, when x is a right limit point of X, the right limits
f(x+ 0), f(x+ 0) and f(x+ 0) of f at x are defined analogously.

We include here a well known theorem of Young [Y2] on the symmetry of
unilateral limits which will be used sometimes. Its proof given in [S, p. 261]
for functions on an interval can be extended without difficulty to functions
with an arbitrary domain X ⊂ R.

Theorem (Young). For every function f : X → R at nearly all the points x
in X

f(x− 0) = f(x+ 0) ≤ f(x) ≤ f(x− 0) = f(x+ 0).

Further, given f : X → R, x, y ∈ X, x 6= y, we will use Qf(x, y) to denote
the following difference quotient of f on [x, y] or [y, x]

Qf(x, y) = {f(y)− f(x)}/(y − x).

The lower and upper limits of Qf(x, y) as y → x are called the lower and upper
biderivates (or bilateral derivates) of f at x. We will use Df(x) and Df(x)
to denote these two biderivates, respectively. When they are equal, then f
is said to be derivable a x and their common value is called the derivative
of f at x and denoted by f ′(x). Further, in the case when f ′(x) is finite, we
will call f differentiable at x. We will use ∆(f) and ∆∗(f) to denote the sets
of points where f is derivable or differentiable, respectively, and call both of
them derivability sets of f.

Next, given f : X → R, a point x ∈ X ′ is called [G1, p. 296] a knot point
of f if Df(x) = −∞ and Df(x) = +∞. Also, when x is a knot point of f,
f will be said to be knotted at x. The set of knot points of f is called on the
other hand the knot set of f, and denoted by K(f).

Clearly, a knot point x of f is a point where f lacks derivability in a sense
to the extreme, viz. instead of the derivates Df(x) and Df(x) being equal,
they are as far apart as possible.

Further, for each x ∈ X ′ we define Mf(x) = [Df(x), Df(x)]. This set-
valued function, introduced in [G3, p. 43], is called the (ordinary) median of
f. Also, each element of Mf(x) is called in turn a median derivate of f at x.
It is interesting to note here that f is knotted at x iff Mf(x) = R.

Next, given x ∈ Xd, the lower and upper limits of Qf(y, z) as y and
z approach x through X are called the lower and upper strong derivates
of f at x, and we will denote them by D ∗f(x) and D∗f(x), respectively.
Further, when these two derivates are equal, f is said to be strongly deriv-
able at x and their common value is called the strong derivative of f at x,
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and will be denoted by f ′∗(x). Also, we define the strong median of f to be
M∗f(x) = [D ∗f(x), D∗f(x)], x ∈ Xd. The notions of strong derivates and
strong derivative were introduced by Peano [P] without any nomenclature.
(This nomenclature was introduced in [G3, p. 33]; see Chapter 14 of [G3] for
a detailed investigation of these notions.)

Finally, given f : I → R, we will use N(f) to denote the set of points x
in I such that f is not nondecreasing in any neighborhood of x. The set N(f)
was first introduced in [G1], and has been called in [G3] a nonmonotonicity
set of f. The points of N(f) are called on the other hand the nonmonotonicity
points of f.

It should be pointed out that in this work for each property, P, of functions
defined at points, a function is said to have P at a set E if it has P at each
point of E.

§1.3. Weaker Forms of Continuity

In this section we present several weaker forms of continuity which are used
throughout this work. We will present here only local versions of these proper-
ties, but a function will be understood to have any of these properties globally
when it has that property at each point of its domain.

We assume throughout this section that f : X → R. Also, unless stated
otherwise, we assume that x ∈ X. The notions presented here in parts A and
B have been defined earlier in [G3, pp. 12–14].

A. Lower and Upper Continuities

We will call f lower continuous (or LC) from left or right at x if

f(x− 0) ≤ f(x) or f(x) ≤ f(x+ 0), respectively,

provided x ∈ X− or X+, respectively. Similarly, f will be called upper con-
tinuous (or UC) from left or right at x if

f(x− 0) ≥ f(x) or f(x) ≥ f(x+ 0), respectively,

provided x ∈ X− or X+, respectively.
Further, when f is LC (or UC) from both sides at x, it will be called

simply LC (or UC) at x.
It should be noted here that f is UC at x iff −f is LC at x, and that f is

continuous at x iff it is LC and UC at x. Further, the notions of LC and UC are
not comparable in general with the ones of LSC and USC, respectively. Also,
when f is nondecreasing or nonincreasing, it is clear that f is automatically
LC or UC, respectively.
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B. Weak Continuities

We next present some weaker versions of continuity and lower and upper
continuities.

First, let x ∈ Xd. The function f is said to be regulated from left or right at
x, or left or right regulated at x, if the limit f(x− 0) or f(x+ 0), respectively,
exists provided x is a left or right limit point, respectively, of X. Further, f is
said to be regulated at x if it is so from both sides at x. Note that we do not
assume here the limits f(x − 0) and f(x + 0) to be equal, and each of these
limits may be finite or infinite.

Now, suppose x ∈ X. Then we will call f weakly continuous (or WC) from
left or right at x if f is continuous from left or right, respectively, at x whenever
it is regulated from that side at x. Further, when f is WC from both sides at
x, it will be called simply WC at x.

Similarly, we will call f weakly lower continuous (orWLC) from left or right
at x if f is LC from left or right, respectively, at x whenever it is regulated
from that side at x. Further, when f is WLC from both sides at x, it will be
called simply WLC at x. The notion of weak upper continuity (or WUC) is
defined analogously.

It should be noted here that f is WUC at x iff −f is WLC at x; and
f is WC at x iff it is simultaneously WLC and WUC at x. Further, f is
continuous at a point x iff it is regulated and WC at x. The notion of WC is
however much weaker than that of continuity. For it is clear from the Young’s
Theorem 1.2.1 that every function f on X is WC n.e.

Next, we present three weaker versions of WC, WLC and WUC.

C. Subweak Continuities

Generalizing the above notions of weak continuities, f will be called subweakly
continuous, LC or UC (or SWC, SWLC or SWUC, respectively) at x if it is
continuous, LC or UC, respectively, at x whenever it is regulated from both
sides at x.

Clearly, the properties SWC, SWLC and SWUC are weaker than WC,
WLC and WUC, respectively.

D. Partial Weak Continuities

Given a subset E of X, we will call f partially weakly lower continuous (or
PWLC) with respect to E at x ∈ E if, provided x is a limit point of E from
one and only one side, f is WLC from that side at x. The partial weak upper
continuity (or PWUC) of f with respect to E at x ∈ E is defined analogously;
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and when f is simultaneously PWLC and PWUC with respect to E at x,
then f will be said to be partially weakly continuous (or PWC) with respect
to E at x.

Further, when f is PWLC, PWUC or PWC with respect to E at each
point of E, then f will be said to be PWLC, PWUC or PWC, respectively,
on E.

Note that the term “with respect to E” is used here in reference to the
term “partially”, and it should not be confused with the restriction of f to E.

E. Contiguous Weak Continuities

Any two points x, y ∈ X are called [G1, p. 298] a pair of contiguous points of X
if X does not include any point in between x and y. We will call f contiguously
WLC (or CWLC) if it is WLC at at least one of each pair of contiguous points
of X. The contiguous WUC (or CWUC) is defined analogously. Further, when
f is simultaneously CWLC and CWUC, it will be called contiguously weakly
continuous (or CWC).

It should be noted that the following implications hold globally on X :

WC =⇒ SWC =⇒ PWC =⇒ CWC;
WLC =⇒ SWLC =⇒ PWLC =⇒ CWLC.

Further, note that PWC and CWC are much weaker than WC or SWC.
For, when E does not include any point which is a limit point of E from
only one side, (e.g. if E is a dense subset of some open interval), then f
is automatically PWC on E; and in this case we will say simply that f is
vacuously PWC on E. Similarly, when X does not have any contiguous points,
(e.g. when X is a dense subset of any interval), then f is automatically CWC;
and in this case we will say simply that f is vacuously CWC.

Remark 1.3.1. It should be pointed out here that the notions of WC, WLC,
WUC, SWC, CWLC and CWUC have been used earlier in [G1] under dif-
ferent terminology. The term “interned” was used there for SWC, and “bi-
laterally interned” for WC. Similarly, the term “lower interned” was used
there for SWLC, and “bilaterally lower interned” for WLC. Similar terms
were used for SWUC and WUC. Further, the terms “contiguously lower and
upper interned” were used there for CWLC and CWUC, respectively, and
“contiguously interned” for CWC.

§1.4. Bimonotonicity and Bi-Lipschitz Properties on a Set

In this section we define bimonotonicity and bi-Lipschitz properties of a func-
tion f : X → R on a set E ⊂ X which are used throughout the present work.
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These properties were defined earlier in [G3, pp. 24, 25]. They depend on the
values of f outside E as well like the properties V B∗ and AC∗ on E (see [S,
pp. 228, 231]).

Suppose f : X → R and E ⊂ X. We will call f weakly biincreasing (or
WBI) on E if

f(a) ≤ f(x) ≤ f(b) whenever a, b ∈ E, x ∈ X and a ≤ x ≤ b. (1)

Further, if there is some real number c > 0 such that the function f−c is WBI
on E, then f will be called strongly biincreasing (or SBI) on E.

Next, when −f is WBI on E, then f is called weakly bidecreasing (or
WBD) on E. Similarly, when −f is SBI on E, then f is called strongly
bidecreasing (or SBD) on E.

Note here that when f is WBI on E, then it is weakly increasing (or WI)
on E, or what is usually called nondecreasing on E.

Next, decomposing the Lipschitz property into two parts, we will call f
lower or upper Lipschitz (or LL or UL, respectively) on E if there is a c ∈ R
such that f+c is nondecreasing or nonincreasing, respectively, on E. Clearly,
f is Lipschitz on E iff it is LL and UL on E.

Further, we call f lower or upper bi-Lipschitz (or LBL or UBL) on E if
there is a c ∈ R such that f+c is WBI or WBD, respectively, on E. In case f
is simultaneously LBL and UBL on E, then it will be called bi-Lipschitz (or
BL) on E. Also, if there is a c ≥ 0 such that f+c is WBI and f−c is WBD
on E, then f is called c-bi-Lipschitz (or BL(c)) on E. Thus it is clear that f
is BL on E iff it is BL(c) on E for some c ≥ 0.

Next, we call f bimonotone on E if it is either WBI or WBD on E.
Similarly, f is called strongly bimonotone on E if it is either SBI or SBD on
E.

Further, when there is a c ∈ R such that f+c is monotone on E, then f is
said to be of monotonic type (or MT ) on E. If c can be chosen such that f+c
is bimonotone on E, then f is said to be of bimonotonic type (or BMT ) on E.

It should be noted here that f is BMT on E iff it is either LBL or UBL
on E. Also, the bimonotonicity of f on E is stronger than the ordinary mono-
tonicity of f on E unless E = X.

When E coincides with X, it is clear from the above definitions that the
bilateral version of each of the above properties becomes equivalent to its
ordinary version, and so in that case this adjective will not be used in the
nomenclature of that property, and likewise “B” will be dropped from its
notation. Thus the function f is strongly increasing (on X) iff there is a c > 0
such that f−c in nondecreasing, or, equivalently, increasing. Similarly, f is
strongly decreasing iff there is a c > 0 such that f+c is decreasing.
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Finally, given any function-theoretic property P, and f : X → R and
E ⊂ X, we will call f generalized P (or GP ) on E if E is the union of a
sequence of sets {En} on each of which f has P. Moreover, when the sets En
can be chosen to be closed orGδ-sets in E, then f will be called F -generalized P
or Gδ-generalized P, respectively, (or F -GP or Gδ-GP, respectively), on E.

Further, f will be said to be nowhere P on E if it does not have P on any
portion of E.

Remark 1.4.1. Note that the properties BMT and BL are stronger than
V B∗ and AC∗, respectively, (see [S, pp. 228, 231] for definitions of the latter
properties). For, if f : X → R is BMT on E ⊂ X, it is easy to see that it is
V B∗ on E; and in case f is BL on E, it can be seen easily that it is AC∗ on
E.

The significance of the properties strongly increasing and strongly decreas-
ing (on X) in differentiation theory was first recognized in [G1]. However,
they were called there “adequately increasing” and “adequately decreasing”,
respectively.
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Chapter 2: Some Fundamental Theorems on Biderivates

In this chapter we deal with some fundamental theorems on biderivates. First,
in §2.1, we obtain the First and Second Biderivate Theorems. Then, in §2.2, we
obtain a derivability theorem, and then from the first two biderivate theorems
deduce some of the known results on biderivates as described in §1.1.

Next, in §2.3 from the first two biderivate theorems we deduce the Third
and Fourth Biderivate Theorems, and the First Median Theorem. Finally, in
§2.4, we define various lower and upper Baire classes of functions and multi-
functions, and deduce from the First Biderivate Theorem the Fifth Biderivate
Theorem and Second Median Theorem which deal with the Baire class of
biderivates and median, respectively.

§2.1. Two Fundamental Theorems on Biderivates

In this section we obtain the First and Second Biderivate Theorems which
deal with generalized bimonotonicity and bi-Lipschitz properties of functions
in terms of their biderivates. The various known results on biderivates will be
deduced later from these two theorems. Here we include a few elementary con-
sequences of the First Biderivate Theorem. Recall that we assume throughout
that X is an arbitrary subset of R. We begin with the following basic lemma
on bimonotonicity.

Lemma 2.1.1. Let f : X → R, A ⊂ X, and suppose f is WBI on A. If a
is a left limit point of A, then f is left regulated at a, and if a < x ≤ b where
b ∈ A and x ∈ X, then f(a − 0) ≤ f(x). Similarly, if a is a right limit point
of A, then f is right regulated at a, and if b ≤ x < a where b ∈ A and x ∈ X,
then f(x) ≤ f(a+ 0).

Proof. First, suppose a is a left limit point of A. Then there is an increasing
sequence {an} in A which converges to a. Now since f is WBI on A, the
sequence {f(an)} is clearly nondecreasing, and further, for each n, it is clear
from (1) that f(an) ≤ f(t) ≤ f(an+1) for t ∈ X ∩ (an, an+1). Hence it is
clear that f is left regulated at a and f(a − 0) = limn f(an). Next, suppose
a < x ≤ b, where b ∈ A and x ∈ X. Then, for each n, since an < a < x ≤ b, it
follows from (1) that f(an) ≤ f(x), and hence f(a− 0) = limn f(an) ≤ f(x).

A similar argument holds in the case when a is a right limit point of A.

We now obtain the following extension lemma on bimonotonicity which
also plays a central role in the present chapter.

Lemma 2.1.2. (First Extension). Let f : X → R, E ⊂ X, A be a dense
subset of E, and suppose f is PWUC with respect to E at each point of E \A.
If f is WBI or SBI on A, then it is so on E ∩ co(A).
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Proof. Set B = E ∩ co(A), and first suppose f is WBI on A. To prove that
f has this property on B, suppose a, b ∈ B, x ∈ X and a ≤ x ≤ b. We need to
show that f(a) ≤ f(x) ≤ f(b). We will give the proof for the first inequality;
the second inequality is proved by a similar argument.

Suppose a < x, for there is nothing to prove otherwise. Clearly, there exist
two points a′, b′ ∈ A such that a′ ≤ a and b ≤ b′. If there is some point c in
A ∩ [a, x], then since a′ ≤ a ≤ c ≤ x ≤ b′ and f is WBI on A, it is clear from
(1) that f(a) ≤ f(c) ≤ f(x). Hence suppose A ∩ [a, x] = ∅. Now, since A is
dense in E, a is a limit point of A from the left, but not from the right. Hence
f is by the hypothesis WUC from the left at a. Further, it follows from the
above Lemma 2.1.1 that f is left regulated at a, and hence f(a) ≤ f(a − 0).
Also, since a < x ≤ b′, where b′ ∈ A, it follows from the same lemma that
f(a) ≤ f(a− 0) ≤ f(x). This proves that f is WBI on B.

Next, if f is SBI on A, then there exists a c > 0 such that f−c is WBI on
A. Hence by the above f−c is WBI on B, and so f is SBI on B.

We include here another simple lemma which also will be used repeatedly
in this section. Given any property P of functions on sets, we will call it
hereditary if the following two conditions hold:

(C1) every function has P on each singleton set in its domain;

(C2) if a function has P on a set A, then it also has P on every subset of A.

Note that for the various properties considered here, condition (C1) holds
vacuously.

Lemma 2.1.3. Suppose P is a hereditary property of functions on sets. Then
given f : X → R and E ⊂ X, if there is a sequence of closed (or Gδ-) sets
{En} in X such that f has P on each En and E \ ∪nEn is countable, then f
is F -GP (or Gδ-GP ) on E.

Proof. We will give the proof in the case of closed sets; a similar argument
holds in the other case.

Suppose there is a sequence of closed sets {En} in X such that f has P
on each En and the set C = E \ ∪nEn is countable. Then C is the union of a
sequence of singleton sets {Sn} on each of which f has P again due to (C1).
Now, rearrange the sets in {En} and {Sn} in the form of a single sequence
{An}, and set for each n, Bn = E ∩ An. Then it is clear that E = ∪nBn,
where each Bn is closed in E. Further, it follows from (C2) that f has P on
each Bn, and hence f is F -GP on E.

Theorem 2.1.4. (First Biderivate). Let f : X → R, E ⊂ X, and suppose
Df > 0 n.e. in E. Then f is Gδ-GSBI on E and in case f is WUC on a
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set F ⊃ E, then f is F -GSBI on E. Moreover, there is in general a sequence
of Gδ-sets {En} in X such that E ⊂ ∪nEn and f is SBI on each En and in
case f is WUC on F ⊃ E, then the sets En can be chosen to be closed in F.

Proof. It is enough to prove the last two parts, for the first two parts follow
directly from them with the help of Lemma 2.1.3 since the property SBI is
clearly hereditary.

For each positive integer n let An denote the set of points x in E for which
the following two relations hold:

(i) f−1/n(t) ≤ f−1/n(x) for t ∈ X ∩ (x− 1/n, x),

(ii) f−1/n(t) ≥ f−1/n(x) for t ∈ X ∩ (x, x+ 1/n).

Clearly, An is the union of a sequence of sets {An,i : i = 1, 2, . . . } such that
each An,i has a diameter less than 1/n. Now it is easy to see that

{x ∈ E : Df(x) > 0} ⊂ ∪
n
An = ∪

n
∪
i
An,i.

Now let C denote the countable set of points in X where f is not WUC
(see Theorem 1.2.1). For each pair of integers n, i, the function f−1/n is clearly
WBI on An,i. Hence it follows from the Extension Lemma 2.1.2 that f−1/n is
WBI on the set

Bn,i = X ∩A−n,i ∩ co(An,i) \ (C \An,i). (2)

Clearly, Bn,i is a Gδ-set in X on which f is SBI. Further, since Df > 0 n.e.
in E, the set E \∪n,iBn,i is countable, and hence it is the union of a sequence
of singleton sets {Sn} on each of which f is vacuously SBI. Now the desired
sequence {En} is obtained on rearranging the sets in {Bn,i} and {Sn} in the
form of a sequence.

Next, to prove the second of the last two parts, suppose f is WUC on a
set F ⊃ E. Then F ∩ C = ∅. Hence for each pair of integers n, i, it is clear
from (2) that the set F ∩ Bn,i is an Fσ-set in F, and so it is the union of a
sequence {Fn,i,j : j = 1, 2, . . . } of closed sets in F. The desired sequence {En}
is obtained in this case by rearranging the sets in {Fn,i,j} and {Sn} in the
form of a sequence.

Corollary 2.1.5. Let f : X → R, E ⊂ X, and suppose Df > −∞ n.e. in E.
Then f is Gδ-GLBL on E; and in case f is WUC on E, then it is F -GLBL
on E.

Proof. Let A = {x ∈ E : Df(x) > −∞}, and for each positive integer n set
En = {x ∈ E : Df(x) > −n} = {x ∈ E : Df+n(x) > 0}. Then A = ∪nEn,
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and so E \ ∪nEn is countable. Further, for each n, by the second part of the
above theorem there is a sequence {En,i : i = 1, 2, . . . } of Gδ-sets in E such
that En ⊂ ∪iEn,i and f+n is SBI on each En,i. The function f is thus LBL
on each En,i. Now, since E \∪n ∪iEn,i is countable, and the property LBL is
clearly hereditary, it follows from Lemma 2.1.3 that f is Gδ-GLBL on E. In
the case when f is WUC on E, the sets En,i can be chosen by the last part
of the above theorem to be closed in E, and so it follows as before that f is
F -GLBL on E.

Corollary 2.1.6. Let f : X → R, E ⊂ X, and suppose f is knotted only at
a countable set of points in E. Then f is Gδ-GBMT on E and in case f is
WC on E, then it is F -GBMT on E.

Proof. Let A = {x ∈ E : Df(x) > −∞} and B = E \ A. Then according
to the hypothesis, Df < ∞ n.e. in B. Now it follows from the second part
of Theorem 2.1.4 as in the proof of the previous corollary that there are two
sequences {An} and {Bn} of Gδ-sets in E (or closed in E when f is WC on
E) such that A ⊂ ∪nAn, B ⊂ ∪nBn and such that f is LBL on each An and
UBL on each Bn. Thus E = (∪nAn) ∪ (∪nBn), where f is BMT on each An
and Bn for each n. Both the results are now clear.

Next is another consequence of the First Biderivate Theorem 2.1.4 which
deals with the existence of nonempty perfect sets on which the given function
is monotone.

Corollary 2.1.7. Let f : X → R, where X is a Borel set in R, and let

E = {x ∈ X : Df(x) > 0}.

If E is uncountable, then there is a nonempty perfect set P in X on which f
is SBI. Moreover, if |E| > 0, then P can be chosen to be metrically dense in
itself.

Proof. Suppose E is uncountable. Then by the second part of Theorem 2.1.4
there is a sequence of Gδ-sets {En} in X such that E ⊂ ∪nEn and f is SBI
on each En. Hence there is an integer n such that E∩En is uncountable. Then
En is an uncountable Borel set in R, and so it contains some nonempty perfect
set P (see, e.g., [K, p. 44]) on which f is again SBI. Further, if |E| > 0, then
there exists an integer n such that |En| > 0, and this En contains a metrically
dense in itself perfect set (see, e.g., [H, p. 192]).

In the next biderivate theorem we deal with the bi-Lipschitz property.
In the case of a WC function this theorem can be deduced directly from
Corollary 2.1.5, but to obtain it without any continuity hypothesis we need
the following extension lemma on this property.
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Lemma 2.1.8. (Second Extension). Let f : X → R, E ⊂ X and c ≥ 0. If
f is BL(c) on a dense subset A of E, then it is so on E ∩ co(A).

Proof. Suppose the given hypothesis holds, and let B = E∩ co(A). To prove
that f is BL(c) on B, suppose a, b ∈ B, x ∈ X and a ≤ x ≤ b. We will give
the proof here for the inequality

|f(x)− f(a)| ≤ c(x− a); (3)

the inequality |f(x)− f(b)| ≤ c(b− x) is proved by a similar argument.
Suppose a < x, for there is nothing to prove otherwise. There clearly exist

two points a′, b′ ∈ A such that a′ ≤ a and b ≤ b′. If there is another point
c′ ∈ A∩ [a, x], then since f is BL(c) on A and a′ ≤ a ≤ c′ ≤ x ≤ b′, we clearly
have

|f(x)− f(a)| ≤ |f(x)− f(c′)|+ |f(c′)− f(a)|
≤ c(x− c′) + c(c′ − a) = c(x− a).

Next, suppose A ∩ [a, x] = ∅. In case c = 0, we clearly have

|f(x)− f(a)| ≤ |f(x)− f(a′)|+ |f(a)− f(a′)| = 0 = c(x− a).

Hence suppose c > 0, and let ε > 0. Now since A is dense in E, a is a left limit
point of A. Hence we can choose a point d ∈ A such that 0 < a − d < ε/2c.
Since d < a ≤ x ≤ b′ and f is BL(c) on A, we have

|f(x)− f(a)| ≤ |f(x)− f(d)|+ |f(d)− f(a)|
≤ c(x− d) + c(a− d)
= c(x− a) + 2c(a− d) < c(x− a) + ε.

As this holds for every ε > 0, this proves inequality (3).

Theorem 2.1.9. (Second Biderivate). Let f : X → R and E ⊂ X. If the
derivates Df and Df are finite n.e. in E, then f is F -GBL on E. Moreover,
if there is a c > 0 such that Df > −c and Df < c n.e. in E, then f is
F -GBL(c) on E.

Proof. We prove the second part first. Suppose there is a c > 0 such
that Df > −c and Df < c n.e. in E. Then Df+c > 0 and Df−c < 0 n.e.
in E. By the First Biderivate Theorem 2.1.4 there are two sequences of sets
{An} and {Bn} with E = ∪nAn = ∪nBn such that, for each n, the function
f+c is SBI on An and f−c is SBD on Bn. Thus for each pair of integers
n, i, the function f is BL(c) on An ∩ Bi, and hence by the above lemma it
is so on X ∩ (An ∩ Bi)− ∩ co(An ∩ Bi). Consequently, there is a sequence
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{Fn,i,j : j = 1, 2, . . . } of closed sets in X such that An ∩ Bi ⊂ ∪jFn,i,j and f
is BL(c) on Fn,i,j for each j. Now on rearranging the sets Fn,i,j in the form
of a single sequence, we obtain a sequence of closed sets {Fn} in X such that
E ⊂ ∪nFn and f is BL(c) on each Fn. This proves that f is F -GBL(c) on E.

To prove the first part, suppose Df and Df are finite n.e. in E. For each
positive integer n set

En = {x ∈ E : Df(x) > −n,Df(x) < n}.

Then E \∪nEn is countable. Now, for each n, it follows from above that there
is a sequence {Fn,i : i = 1, 2, . . . } of closed sets in X such that En ⊂ ∪iFn,i
and f is BL on Fn,i for each i. Now since E \∪n∪iFn,i is countable, it follows
from Lemma 2.1.3 that f is F -GBL on E.

Remark 2.1.10. By Remark 1.4.1, clearly Corollary 2.1.6 strengthens Theo-
rem 10.1 of Denjoy in [S, p. 234] on biderivates. On the other hand the Second
Biderivate Theorem 2.1.9 partly strengthens Theorem 10.5 of Denjoy in [S, p.
235] which was obtained by him in terms of unilateral derivates.

§2.2. Some Direct Applications of the First Two Biderivate Theo-
rems

In this section we first obtain a derivability theorem and then from the First
and Second Biderivate Theorems deduce some known results on biderivates.
What we mean by direct applications is that they do not involve any of the
other biderivate theorems obtained from these two theorems later in §§2.3 and
2.4.

First, in Theorem 2.2.1, we prove the differentiability of a function at
almost all points of a set on which the function is bimonotone. Then with the
help of this theorem from the First Biderivate Theorem we deduce a simpler
version of the classical Denjoy-Young-Saks theorem [S, p. 271] in terms of
biderivates (see Theorem 2.2.2). Next, in Theorem 2.2.4, from the Second
Biderivate Theorem we deduce a theorem of Young on the set of points where
a function has an infinite derivate. Also, from this theorem we deduce a
theorem due to Kronrod. Finally, in Theorem 2.2.7 from the Second Biderivate
Theorem we deduce an extended version of a theorem of [G1] which deals with
the identity of a function with a Lipschitz function except for a set of arbitrarily
small measure.

First with the help of Lemma 2.1.1 we obtain the following derivability
theorem which deals with the differentiability of a function under bimono-
tonicity and BMT properties on a set. By Remark 1.4.1, this theorem is
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indeed a weaker version of a theorem of Lusin and Denjoy on V BG∗ functions
[S, p. 230].

Theorem 2.2.1. (Derivability). Let f : X → R and E ⊂ X. If f is bimono-
tone on E, then it is differentiable at almost all points of E. Consequently, the
same holds if f is BMT on E.

Proof. First, suppose f is WBI on E. There is clearly no loss of generality
in assuming E to be bounded for in the general case E is a countable union
of such sets. Set F = E, [a, b] = co(F ), I = (a, b), and let {In = (an, bn) :
n = 1, 2, . . . } be the sequence of contiguous intervals of F in I. Now, given
n, if an /∈ X, then an is clearly a left limit point of E, and so it follows from
Lemma 2.1.1 that f is left regulated at an. Also, when bn /∈ X, it follows
similarly from that lemma that f is right regulated at bn. Hence we define
cn = f(an) or f(an−0) according to whether an is in X or not, and, similarly,
dn = f(bn) or f(bn+0) according to whether bn is in X or not. Further, since f
is WBI on E, by Lemma 2.1.1 for each n, cn ≤ f(x) ≤ dn for x ∈ X∩(an, bn).

We now define two functions g and h on X ∩ I. Define g(x) = h(x) = f(x)
for x ∈ X ∩ I ∩ F, and g(x) = cn and h(x) = dn for x ∈ X ∩ (an, bn),
n = 1, 2, . . . . Then clearly g and h are two nondecreasing functions on X ∩ I
such that g(x) ≤ f(x) ≤ h(x) for each x ∈ X ∩ I. Hence by Lebesgue’s
derivability theorem there is a subset A of E with no isolated points such that
|E \ A| = 0 and g and h are both differentiable at the points of A. Now let
x ∈ A. Since x is a limit point of E and g = h on E,clearly g′(x) = h′(x).
Further, since g ≤ f ≤ h on X ∩ I, it is easy to see that f also is derivable at
x and f ′(x) = g′(x). Hence f is differentiable a.e. in E.

Next, when f is WBD on E, the result follows on applying the above
result to −f. Now suppose f is BMT on E. Then f is either LBL or UBL on
E. Hence there is a real number c such that the function f+c is either WBI
or WBD on E. Hence from the above f+c is differentiable a.e. in E, and
consequently the same hold for f.

Now, with the help of the above theorem from the First Biderivate Theorem
we deduce the following version of Denjoy-Young-Saks theorem in terms of
biderivates.

Theorem 2.2.2. (Denjoy-Young-Saks). Every function f : X → R is
differentiable at almost all the points where it is not knotted.

Proof. Let E denote the set of points in X where f is not knotted. Then
according to Corollary 2.1.6 of the First Biderivate Theorem f is GBMT on
E. Hence there is a sequence {En} such that E = ∪nEn and f is BMT on
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each En. By Theorem 2.2.1 f is differentiable a.e. in each En, and so f is
differentiable a.e. in E.

From the above theorem we obtain directly the following extended version
of a theorem of Banach [B].

Corollary 2.2.3. (Banach). For every function f : X → R the set where f
has an infinite derivative is of measure zero.

Next from the Second Biderivate Theorem we deduce the following result
of Young [Y1] who obtained it for X = I. Note that a function has an infinite
unilateral derivate at a point iff one of its biderivates is infinite there.

Theorem 2.2.4. (Young). For every function f : X → R, the set where at
least one derivate of f is infinite is a Gδ-set in X.

Proof. Let E denote the set where at least one derivate of f is infinite,
and set A = X \ E. Since both the biderivates of f are finite n.e. in A, by
the Second Biderivate Theorem 2.1.9 there is a sequence of sets {An} such
that A = ∪nAn and f is BL on each An. Further, for each n, by the Second
Extension Lemma 2.1.8 f is BL on Bn = X ∩An ∩ co(An). Then for each n,
since Bn ⊂ co(An) and f is BL on Bn, f does not have an infinite biderivate
at any point of Bn. Hence Bn ⊂ A for each n, and so A = ∪nBn. Now since
each Bn is clearly an Fσ-set in X, so is A. Thus, E is a Gδ-set in X.

From the above theorem we now deduce the following extended version of
a theorem of Kronrod [Kr] with a simpler proof.

Theorem 2.2.5. (Kronrod). Let f : X → R, and C be the set where f is
continuous. If C is not an Fσ-set in X, then there is an uncountable set A in
C where f is not differentiable. Further, if X is a Borel set in R, then A has
cardinality c.

Proof. Let E denote the set where at least one derivate of f is infinite. Then
by the above theorem E is a Gδ-set in X. Set A = E∩C. Since A ⊂ C \∆∗(f),
it suffices to prove the result for A. Further, since X \ E ⊂ C, we have C =
(C ∩E)∪ (X \E) = A∪ (X \E). Hence if A is countable, then it would follow
that C is an Fσ-set in X, which is contrary to the hypothesis. Consequently,
A is uncountable.

Next, assume X is a Borel set in R. Since C is a Gδ-set in X, clearly A is a
Borel set in R, and hence by a theorem of Souslin [K, p. 479] A has cardinality
c.

To obtain the next theorem, we first prove the following lemma which
seems to have some significance of its own.
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Lemma 2.2.6. Let f : X → R, and suppose E and F are two subsets of X
which are closed in R. If f is LBL on E and LL on F, then f is LL on E∪F.
Thus, if f is BL on E and Lipschitz on F, then it is Lipschitz on E ∪ F.

Proof. It is clearly enough to prove the first part, for the second part follows
on applying the first part to f and −f. Let a and b denote the inf and sup of E,
respectively. Similarly, let a′ and b′ denote the inf and sup of F, respectively.
Further, if a′ < a, let c = sup{F ∩ [a′, a]}; otherwise let c = a. Similarly, if
b < b′, let d = inf{F ∩ [b, b′]}; otherwise let d = b. Then c ≤ a ≤ b ≤ d. Hence
it is easy to see from the hypothesis that we can choose k > 0 such that the
following four conditions hold for the function g ≡ f+k : (i) g is biincreasing
on E, (ii) g is increasing on F, (iii) g(c) ≤ g(a), and (iv) g(b) ≤ g(d). Now it
is enough to show that g is nondecreasing on the set A ≡ E ∪ F, for this will
prove that f is LL on A. Hence, given x, y ∈ A, x < y, we need to show that

g(x) ≤ g(y). (4)

When x and y are both in E, or both in F, (4) follows clearly from (i) or (ii),
respectively. Hence, first suppose that x ∈ E and y ∈ F. If y ≤ b, then since
b ∈ E, (4) follows clearly from (i). Otherwise we have b′ ≥ y > b, and so
y ≥ d. Further, since F is closed in R, clearly d ∈ F. Hence by (i), (iv) and (ii)
g(x) ≤ g(b) ≤ g(d) ≤ g(y), which proves (4). A similar argument holds when
x ∈ F and y ∈ E.

Finally, with the help of the above lemma we deduce from the Second
Biderivate Theorem the following extended version of Theorem 2.20 of [G1,
p. 308] where X was assumed to be measurable. See also Rjazanov [R] for a
partial result in this direction in the case of functions of bounded variation. It
is interesting to note that the following proof is totally different from the one
given in [G1, pp. 308-309].

Theorem 2.2.7. Let f : X → R, where |X| <∞. If f is knotted only at a set
of points of measure zero, then for every ε > 0 there is a Lipschitz function g
on R such that

|{x ∈ X : f(x) 6= g(x)}| < ε. (5)

Proof. Let A denote the set of points in X where f is differentiable. Then
by the hypothesis and Theorem 2.2.2 |X \ A| = 0. Further by the Second
Biderivate Theorem 2.1.9 there is a sequence {An} such that A = ∪nAn and
f is BL on each An. Now, for each n, by the Second Extension Lemma 2.1.8 f
is also BL on An ∩X ∩ co(An). But since co(An) is clearly a countable union
of bounded closed sets in R, we can thus assume the sets in the sequence {An}
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to be bounded and closed in X. For each n let Fn denote the closure of An in
R, and set Bn = X ∩ Fn. Then by Lemma 2.1.8, f is BL on each Bn.

Next, let m∗X denote the outer measure obtained on X by restricting
Lebesgue outer measure m∗ (on R) to the class of all subsets of X, and let
mX denote the measure induced by m∗X in the usual manner on X. Now,
given ε > 0, since the sets Bn are m∗X -measurable (see [G3, p. 18, Theo-
rem 1.4.3]), and mX(∪nBn) = mX(A) < ∞, there exists an integer n such
that mX(X \ ∪i≤nBi) < ε. Set B = ∪i≤nBi. Then |X \ B| < ε. Now, let E−
and E+ denote the sets of points x in R\B which are left or right limit points,
respectively, of B. Since f is BL on each Bi, clearly the limits f(x − 0) and
f(x + 0) exist at the points of E− and E+, respectively, and are finite. Set
F = B∪E−∪E+, and for each x ∈ F, define g(x) = f(x), f(x−0) or f(x+0)
according to whether x ∈ B, E− or E+ \ E−, respectively. Next, for each
i ≤ n, since f is BL on Bi, clearly g is also BL on Bi, and hence it is BL on
Fi by Lemma 2.1.8. Now by Lemma 2.2.6 using induction g is Lipschitz on
the compact set K = ∪i≤nFi.

Next, let g be defined linearly on the bounded closed contiguous intervals
of K, and let g be constant on the two unbounded closed contiguous intervals
of K. Then since g is Lipschitz on K, obviously g is also Lipschitz on R. Now
since g = f on B and |X \B| < ε, clearly (5) holds for g.

§2.3. Properties on Some Portion in Terms of Biderivates

In this section from the first two biderivate theorems of §2.1 we deduce the
Third and Fourth Biderivate Theorems, which deal with the bimonotonicity
and bi-Lipschitz properties of a function on a portion of a given set. These
two theorems are also found to play a basic role in the development of the
present unified theory. We need here the following lemma.

Lemma 2.3.1. Suppose f : X → R is CWUC. If f is WBI on a dense subset
A of X, then it is nondecreasing on X ∩ co(A).

Proof. Suppose the hypothesis holds, and let B = X ∩ co(A). Then, given
a, b ∈ B, a < b, we show that f(a) ≤ f(b). Clearly, there exist two points
a′, b′ ∈ A such that a′ ≤ a and b ≤ b′. If there is a c ∈ A ∩ [a, b], then since
a′ ≤ a ≤ c ≤ b ≤ b′ and f is WBI on A, it is clear that f(a) ≤ f(c) ≤ f(b).
Hence, suppose A ∩ [a, b] = ∅. Then a and b are two contiguous points of X,
and so by the hypothesis f is WUC at a or b. First, suppose f is WUC at a.
Since A is dense in X, clearly a is a left limit point of A, and so by Lemma
2.1.1 f is left regulated at a. Now since f is WUC at a, f(a) ≤ f(a−0). Also,
since a < b ≤ b′, where b′ ∈ A, by the same lemma f(a) ≤ f(a− 0) ≤ f(b). A
similar argument holds when f is WUC at b.
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Theorem 2.3.2. (Third Biderivate). Let f : X → R and E ⊂ X. If f is
PWUC on E and Df > 0 at a nonmeager set of points in E, then f is SBI
on some portion of E. Moreover, when E = X, the same holds provided f is
CWUC.

Proof. First, suppose f is PWUC on E and A = {x ∈ E : Df(x) > 0}
is nonmeager in E. Then by the First Biderivate Theorem 2.1.4 there is a
sequence {An} such that A = ∪nAn and f is SBI on each An. Hence clearly
there is an n such that An is dense in some portion E0 of E. Now by the
First Extension Lemma 2.1.2 f is SBI on E0∩ co(An), which in turn contains
some portion of E. When E = X and f is CWUC, the result is obtained by
a similar argument with the help of the above lemma.

We include here some consequences of the above theorem dealing with the
properties LBL and BMT.

Corollary 2.3.3. Let f : X → R and E ⊂ X. If f is PWUC on E and
Df > −∞ at a nonmeager set of points in E, then f is LBL on some portion
of E. Moreover, when E = X, the same holds provided f is CWUC.

Proof. Clearly from the hypothesis there is a positive integer n such that
Df > −n at a nonmeager set A in E. Then Df+n > 0 at each point of A, and
so in each of the two cases by the above theorem the function f+n is SBI on
some portion E0 of E. Consequently, f is LBL on E0.

Corollary 2.3.4. Let f : X → R and E ⊂ X. If f is PWC on E and there
is a nonmeager set of points in E where f is not knotted, then f is BMT
on some portion of E. Moreover, when E = X, the same holds provided f is
CWC.

Proof. Clearly from the hypothesis one of the inequalities (i) Df > −∞
and (ii) Df < ∞ holds at a nonmeager set in E. Hence the result follows on
applying Corollary 2.3.3 to one of the functions f or −f.

Next we obtain two interesting results on the median of a function which
follow directly from the Third Biderivate Theorem 2.3.2 and its last corollary.
Note that a function f is knotted at x iff Mf(x) = R.

Theorem 2.3.5. (First Median). Let f : X → R, E ⊂ X, and suppose f is
PWC on E (or CWC when E = X).

(a) If f is nowhere strongly bimonotone on E, then 0 ∈MF r.e. in E.

(b) If f is nowhere BMT on E, then it is knotted r.e. in E.
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Next from the Second Biderivate Theorem we deduce a result on the bi-
Lipschitz property on a portion.

Theorem 2.3.6. (Fourth Biderivate). Let f : X → R and E ⊂ X. If there
is a nonmeager set in E where Df and Df are finite, then f is BL on a
portion of E. Moreover, given c > 0, if there is a nonmeager set in E where
Df > −c and Df < c, then f is BL(c) on a portion of E.

Proof. It is enough to prove the second part, for if Df and Df are finite
at a nonmeager set of points in E, then there clearly exists a positive integer
c for which the hypothesis of the second part holds. Hence suppose there is
some c > 0 such that the set

A = {x ∈ E : Df(x) > −c, Df(x) < c}

is nonmeager in E. Then by the Second Biderivate Theorem 2.1.9 there is a
sequence {An} such that A = ∪nAn and f is BL(c) on each An. Now clearly
there is an n such that An is dense in some portion E0 of E. By Lemma 2.1.8
f is BL(c) on E0 ∩ co(An), which in turn contains a portion of E.

It was proved by Fort [Fo] that if f : I → R is discontinuous at a dense set,
then it is differentiable only at a meager set. Since the bi-Lipschitz property
clearly implies continuity (except at the extreme points), the following con-
sequence of the above theorem provides a considerable strengthening of the
Fort’s result and also of Corollary 2.14 of [G1] where this result was obtained
for E = X.

Corollary 2.3.7. Let f : X → R and E ⊂ X. If f is nowhere BL on E, then
there is a residual set in E where at least one derivate of f is infinite.

§2.4. Baire Class of Biderivates and Median

In this section we deal with the Baire class of biderivates and median. First,
we define various lower and upper Baire classes of functions and multifunctions
(i.e., set-valued functions). Then from the First Biderivate Theorem we obtain
the Baire class of biderivates and medians. The following lower and upper
Baire classes of functions and multifunctions were defined in [G3, §§1.4, 1.5]
in a more general setting. We present them here in a setting that is needed in
the present work.

We first deal with functions. Given f : X → R, where X ⊂ R, and a
countable ordinal α, f is said to be of lower or upper Baire class α if for every
c ∈ R,{x ∈ X : f(x) > c} or {x ∈ X : f(x) < c}, is respectively of additive
class α in X.
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We will use Bα, LBα and UBα to denote the classes of all extended real
valued functions of Baire class α, lower Baire class α and upper Baire class α,
respectively, relative to their domain. Then obviously for each α < Ω,

Bα = LBα ∩ UBα and LBα ∪ UBα ⊂ Bα+1. (6)

Further, B0, LB0 and UB0 are indeed the classes of continuous, LSC and
USC functions, respectively.

Next, we deal with multifunctions. We will use 2R to denote the space of
all “nonempty” closed subsets of R with the Vietoris (or exponential) topology
[K, p. 160]; namely, the coarsest topology on 2R for which the sets

{F ∈ 2R : F ∩ U 6= ∅} and {F ∈ 2R : F ⊂ U}

are open for every open set U in R. Now, let ϕ : X → 2R be any multifunction.
The continuity and the Baire class of ϕ are defined as usual in terms of the
Vietoris topology of 2R. Further, given any countable ordinal α, ϕ will be said
to be of lower or upper Baire class α if for every open set U in R

{x ∈ X : ϕ(x) ∩ U 6= ∅} or {x ∈ X : ϕ(x) ⊂ U},

respectively, is of additive class α in X.
We will use the notation Bα, LBα and UBα to denote the Baire class α

and lower and upper Baire classes α of multifunctions as well. Also, when ϕ
is of LB0 or UB0, ϕ is called as before LSC or USC, respectively. These two
semicontinuities of multifunctions are also defined locally; see [K, p. 173] for
their definitions. Then the relations in (6) hold also in the case of multifunc-
tions. Note that when ϕ(x) is singleton for each x ∈ X, then for each α < Ω,
ϕ is of Bα, LBα or UBα as a multifunction iff it is of Bα as a function.

We now deal with the Baire class of biderivates and median. We begin
with the following theorem on biderivates, which we call the Fifth Biderivate
Theorem due to its basic nature.

Theorem 2.4.1. (Fifth Biderivate). Let f : X → R. Then for each c ∈ R
{x ∈ X : Df(x) > c} is of the form Fσ \ C in X, where C is a countable
set where f is not WUC. Consequently, Df is always of B2; and in case f is
WUC, then Df is of LB1, and so then Df is LSC r.e. in X ′.

Proof. First, to prove the first part, let C denote the countable set where f
is not WUC (see Theorem 1.2.1), and for each c ∈ R, set

Hc = {x ∈ X : Df(x) > c}.
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First consider c = 0. Then by the First Biderivate Theorem 2.1.4 there is a
sequence {An} such that H0 = ∪nAn and f is SBI on each An. Further, for
each n, by the First Extension Lemma 2.1.2 there is a set Cn ⊂ C \ An such
that f is SBI on

Bn = X ∩ co(An) ∩ (An \ Cn).

Now set En = Bn ∩ X ′. Then obviously An ⊂ En ⊂ H0 and there is an
Fσ-set Pn in X such that En = Pn \Cn. Consequently, H0 = ∪nEn = ∪nPn \
C0, where ∪nPn is an Fσ-set in X and C0 ⊂ C. This proves the result for
c = 0.

Now, for any other c ∈ R, the result follows on applying the above result
to f−c. This in turn yields the result for c = −∞ as well, for H−∞ = ∪nH−n.
If c =∞, the result is on the other hand obvious, for H∞ = ∅. This completes
the proof of the first part.

The second part is obtained directly from the first, whereas the LSC of
Df is obtained with the help of Theorem 1.4.1 of [G3, p. 17].

The part of the above theorem dealing with B2 was obtained earlier by
Hájek [Ha] when X is an interval.

On applying the above theorem to −f, a similar result is obtained on the
Baire class of Df. Further from the above theorem we obtain the following
result on the knot set and on any single median derivate of a function.

Corollary 2.4.2. Let f : X → R. Then each of the sets K(f) and {x ∈ X :
c ∈ Mf(x)}, c ∈ R, is of the form Gδ ∪ C in X, where C is a countable set
where f is not WC. Consequently, if f is WC, then each of these sets is a
Gδ-set in X.

Proof. Since K(f) = {x ∈ X : Df(x) = −∞} ∩ {x ∈ X : Df(x) = +∞},
the result on K(f) follows clearly by applying the above theorem to f and
−f ; and a similar argument holds in the other case since for each c ∈ R,

{x ∈ X : c ∈Mf(x)} = {x ∈ X : Df(x) ≤ c} ∩ {x ∈ X : Df(x) ≥ c}.

The second part is of course a direct consequence of the first.

Further, with the help of Theorem 1.5.1 and Corollary 1.5.2 of [G3, pp. 20,
21], we obtain from the above theorem the following median theorem on the
Baire class of median.

Theorem 2.4.3. (Second Median). Let f : X → R. The median Mf is
always of B2. Further, if f is WC, then Mf is of UB1, and so then Mf is
USC r.e. in X ′.
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Chapter 3: Other Results on Biderivates, Median and
Derivative

In this chapter we deal with various other results on biderivates, medians and
derivatives. First, in §3.1 from the Third Biderivate Theorem we deduce some
results on the properties of biderivates and medians at residual sets, includ-
ing the Third Median Theorem. Also, we obtain biderivate versions of two
theorems of Denjoy and Choquet. Next, in §3.2 from the Third Biderivate
Theorem we deduce the Fourth and Fifth Median Theorems which deal with
the properties of medians at nonmonotonicity points. Next, in §3.3 from the
Fourth Median Theorem we deduce several monotonicity theorems in terms of
biderivates, including the well known Goldowski-Tonelli theorem. Also from
one of these theorems we deduce a result on median derivates similar to a
theorem of Morse. Finally, in §3.4, we deal with various properties of deriva-
tives, medians and derivability sets. First from the Fifth Biderivate Theorem
we obtain a theorem of Zahorski on a property of derivability sets and the
Baire class of derivatives. Then from the First Median Theorem we deduce
a mean-value theorem in terms of medians and derivatives, and the Darboux
property of medians and derivatives. Further from the Third Biderivate The-
orem we obtain the Denjoy property of derivatives and an extended version of
a theorem of Marcus on stationary sets of derivatives.

§3.1. Properties of Biderivates and Median at Residual Sets of
Points

In this section from the Third Biderivate Theorem we deduce some theo-
rems on the properties of biderivates and medians at residual sets. One of
these theorems is analogous to a fundamental theorem of Denjoy on unilateral
derivates and another theorem deals with a version of a theorem of Choquet
on the identity of biderivates with strong derivates at a residual set.

Theorem 3.1.1. Let f : X → R, E ⊂ X and c ∈ R. If Df ≤ c at a dense set
in E where f is PWUC with respect to E, then Df ≤ c r.e. in E. Moreover,
if f is CWUC and Df ≤ c at a dense set in X, then the same holds r.e. in
X.

Proof. First, suppose there is a dense set A in E where Df ≤ c and f is
PWUC with respect to E. Note first that E ⊂ X ′; for since Df is defined at
the points of A, A ⊂ X ′, and since A is dense in E, it follows that E ⊂ X ′.
Further, it is enough to prove the result for c = 0. For, on applying this result
to the function f−c, the result is obtained for each c ∈ R; and in the case when
c = −∞, then for each positive integer n the hypothesis holds also for c = −n,
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so that Df ≤ −n r.e. in E, and this implies that Df = −∞ r.e. in E; and
when c = +∞, the result holds trivially since E ⊂ X ′.

Hence let c = 0, and set B = {x ∈ E : Df(x) ≤ 0}. Suppose, if possible,
that E\B is nonmeager in E. Then there is a portion E0 of E such that E0\B
is nonmeager in each portion of E0. Now since B includes A, B is dense in E0,
and hence E0 is dense in itself. Let H denote the set in E0 where f is PWUC
with respect to E. Then the countable set E0\H is meager in E0, and so H \B
is nonmeager in H. Further, since A is dense in E and A ⊂ H, the function f
is PWUC on H. Consequently, it follows from the Third Biderivate Theorem
2.3.2 that f is SBI on some portion H0 of H. Now since H is clearly dense in
itself, and A is dense in H, there exist two points, a, b ∈ H0 and a point c ∈ A
such that a < c < b. But since f is SBI on H0, this implies that Df(c) > 0,
which contradicts the fact that c ∈ A.

The other part is obtained by a similar argument from the second part of
Theorem 2.3.2 with E = X.

On taking into account the definitions of PWUC and CWUC, it is in-
teresting to note here that the first part of the above theorem holds without
any continuity hypothesis provided the dense set in E is included in Eb, and
the same holds for its second part provided X does not have any contiguous
points. The second part has been obtained by Filipczak [F] in the case when
X is an interval.

Now, on combining the above theorem with the result obtained on applying
it to −f, we obtain the following theorem on median.

Theorem 3.1.2. (Third Median). Let f : X → R, E ⊂ X and c ∈ R. If
c ∈ Mf (or f is knotted) at a dense set in E where f is PWC with respect
to E, then c ∈ Mf (or f is knotted) r.e. in E. Moreover, if f is CWC and
either c ∈Mf or f is knotted at a dense set in X, then the same holds r.e. in
X.

Further, since f is clearly UC (or LC) at each point where Df < ∞ (or
Df > −∞), we obtain the following from the above two theorems.

Corollary 3.1.3. Let f : X → R, E ⊂ X and c ∈ R. If there is a dense set
in E where Df ≤ c (or f ′ = c), then Df ≤ c (or c ∈Mf) r.e. in E.

Next from the Third Biderivate Theorem we deduce the following result on
biderivates which is similar to a fundamental theorem of Denjoy on unilateral
derivates of continuous functions. (See [D1, p. 149] and [D3, p. 187], or see
Theorem 2.5.1 of [G3, p. 32] for a strengthened version of Denjoy’s theorem.)
Recall that we use Qf(a, b) to denote {f(b)− f(a)}/(b− a) when b 6= a.
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Theorem 3.1.4. Let f : X → R, c ∈ R, and suppose E ⊂ X is dense in itself.
Suppose {an} is dense in E, and {bn} is another sequence in X such that
bn 6= an for each n, bn−an → 0 as n→∞, and that f is PWUC with respect
to E at each an (or f is CWUC when E = X). If lim supn→∞Qf(an, bn) ≤ c,
then Df ≤ c r.e. in E.

Proof. We give the proof when f is PWUC with respect to E at each an. A
similar and more direct argument holds in the other case. Further, as in the
case of Theorem 3.1.1, it suffices to prove the result for c = 0. Hence suppose
the hypothesis holds for c = 0, but A = {x ∈ E : Df(x) > 0} is nonmeager
in E. Then there is a portion E0 of E such that A ∩E0 is nonmeager in each
portion of E0. Now let H be the set in E0 where f is PWUC with respect to
E. Since the countable set E0 \ H is clearly meager in E0, the set A ∩ H is
nonmeager in H. Now by the Third Biderivate Theorem 2.3.2 f is SBI on a
portion H0 of H. Hence there is a d > 0 such that f−d is WBI on H0. Since
H0 is clearly dense in itself, there exists an open interval I ≡ (a, b) such that
a, b ∈ H0 and I∩H0 6= ∅. Now it is clear from the hypothesis that there is an n
such that an ∈ I ∩H0, bn ∈ I and Qf(an, bn) < d. But then Qf−d(an, bn) < 0,
which contradicts the fact that f−d is WBI on H0.

Finally from the Third Biderivate Theorem we deduce the following the-
orem on the identity of the medians Mf and M∗f at a residual set. When
X is an interval, the following theorem holds clearly without any continuity
hypothesis. In this particular case the identity of Mf and M∗f at a resid-
ual set was obtained by Choquet [C1; C2] in 1947 in terms of the identity of
contingent and paratingent of the function at a residual set.

Theorem 3.1.5. Let f : X → R, where X is dense in itself. If f is CWUC,
then there is a residual set in X where Df = D ∗f, and where Df is LSC.
Consequently, if f is CWC, then there is a residual set in X where Mf = M∗f
(or Df = D ∗f and Df = D∗f), and where Mf is USC.

Proof. First, suppose f is CWUC and that {x ∈ X : Df(x) > D∗f(x)} is
nonmeager in X. Then clearly there is a rational number r such that

A = {x ∈ X : Df(x) > r > D∗(f)}

is nonmeager in X. Hence there is a portion X0 of X such that A is nonmeager
in each portion of X0. Now by the Third Biderivate Theorem 2.3.2 f−r is
increasing on some portion X1 of X0. Choose a, b ∈ X1 such that X∩(a, b) 6= ∅.
Then at each point of X ∩ (a, b) we have D∗f−r ≥ 0, or D∗f ≥ r, which
contradicts the fact that A is nonmeager in X ∩ (a, b). Consequently, there is
a residual set B in X where Df = D∗f. Now since D∗f is LSC (see Theorem
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14.1.1 of [G3, p. 317]), and Df ≥ D∗f everywhere, clearly Df is LSC at the
points of B.

The second part follows on the other hand from the first on combining it
with the result obtained by applying it to −f, with the help of Theorem 1.5.1
of [G3, p. 20].

§3.2. Properties of Median at Nonmonotonicity Points

In this section from the Third Biderivate Theorem we further deduce some
median theorems which deal with the properties of the median of a function
at its nonmonotonicity points. We include here some direct consequences of
these median theorems, but in the next section we deduce several monotonicity
theorems from one of these median theorems.

Following our convention, it will be understood throughout this section
that f : I → R, where I is some subinterval of R. Recall that we use N(f)
to denote the set of points x in I such that f is not nondecreasing in any
neighborhood of x. The set N(f) is called the “nonmonotonicity set” of f,
and its points are called the “nonmonotonicity points” of f. These notions
were introduced in [G1] and [G3, p. 191]. We further need some nomenclature
that was introduced in [G1].

We call f lower or upper absolutely continuous (or LAC or UAC, respec-
tively) if for each ε > 0 there is a δ > 0 such that for each finite family
{[ai, bi] : i = 1, . . . , n} of nonoverlapping intervals with endpoints in I, if∑
i≤n(bi − ai) < δ, then

∑n
i=1{f(bi) − f(ai)} > −ε or < ε, respectively.

Clearly, f is AC iff it is LAC and UAC. Further, it is easy to see that if f is
lower Lipschitz, then it is LAC.

Further, we call f lower or upper singular if its derivative is ≥ 0 or ≤ 0,
respectively, at almost all points where it exists. Also, f is called singular if
its derivative is zero at almost all points where it exists.

Note that every nonderivable function is vacuously singular. Further, it is
easy to see from the Denjoy-Young-Saks Theorem 2.2.2 that f is lower singular
(or singular) iff Df ≥ 0 (or 0 ∈Mf) a.e.

We now state the following monotonicity theorem in terms of the above
notions which was obtained in [G1, p. 310] with the help of the Vitali covering
theorem. This theorem seems to be fundamental since it is used repeatedly in
the present section.

Theorem 3.2.1. (First Monotonicity). A function f is nondecreasing iff
it is LAC and lower singular.

The following consequence of this theorem is a well known theorem of
Lebesgue.
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Corollary 3.2.2. (Lebesgue). If a function f is AC and singular, then it
is constant.

We will need the following two lemmas.

Lemma 3.2.3. Suppose f is SWLC, and let N = N(f). Then

(a) N is perfect in I;

(b) if f is bimonotone on N b, then it is LC at the points of N \N b; and

(c) if f is WBI on N b, then it is nondecreasing on I.

Proof. suppose N 6= ∅, for there is nothing to prove otherwise. To prove (a),
note first that N is closed in I. Suppose, if possible, that N has some isolated
point x. Then x is a common endpoint of two contiguous intervals (a, x) and
(x, b) of N, on each of which f is nondecreasing. Thus f is regulated from both
sides at x, and since it is SWLC, it follows that f is LC at x. Consequently,
f is nondecreasing on (a, b); i.e., x /∈ N, which is a contradiction.

Next, to prove (b), first suppose f is WBI on N b, and let x ∈ N \ N b.
Since N is perfect in I, x is a limit point of N b from one side, say from the left.
Then there is an increasing sequence {an} in N b which converges to x. Then
{f(an)} is clearly nondecreasing, and for each n, f(an) ≤ f(t) ≤ f(an+1)
for an < t < an+1. Hence f is left regulated at x. Further, since x is not
a right limit point of N, either x is the right endpoint of I, or it is the left
endpoint of some open subinterval J of I which is disjoint from N, so that f
is nondecreasing on J. Hence in any case f is also right regulated at x. Now
since f is SWLC, f is LC at x. A similar argument holds when x is a right
limit point of N b. Also, when f is WBD on N b, the result is obtained by a
similar argument.

Next, to prove (c), suppose f is WBI on N b. Then, by (b), f is LC at
the points of N \N b. So f is nondecreasing on the closure of each contiguous
interval of N in I. Now clearly f is nondecreasing on N, and hence the same
holds on I.

Lemma 3.2.4. Let f be lower singular. Then for each c > 0, N(f+c) = N(f).

Proof. Set N = N(f), and let c > 0. Since f+c is clearly nondecreasing
on each interval on which f is, N(f+c) ⊂ N. To prove the reverse inclusion,
suppose there is an x ∈ N\N(f+c). Then there is an open interval J containing
x such that f+c is nondecreasing on J. Thus f is LL on J. So by Theorem
3.2.1 f is nondecreasing on J ; i.e., x /∈ N, which is a contradiction.

With the help of the above two lemmas, we now deduce from the Third
Biderivate Theorem the following median theorem.
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Theorem 3.2.5. (Fourth Median). Suppose f is SWLC. Then

(a) Df ≤ 0 r.e. in N(f);

(b) if f is nowhere strongly decreasing, then 0 ∈Mf r.e. in N(f); and

(c) if f is lower singular, then [−∞, 0] ⊂Mf r.e. in N(f).

Proof. Suppose as before that N ≡ N(f) is nonempty, for there is nothing
to prove otherwise. To prove (a), suppose A = {x ∈ N : Df(x) > 0} is
nonmeager in N. Set E = N b. Now since, by Lemma 3.2.3(a), N is dense
in itself, the countable set N \ E is clearly meager in N. Hence A ∩ E is
nonmeager in N. Further, since f is vacuously PWUC on E, by the Third
Biderivate Theorem 2.3.2 f is biincreasing on some portion of E. Hence there
is an open subinterval J of I such that E ∩ J 6= ∅ and f is biincreasing on
E∩J. Now by part (c) of Lemma 3.2.3 f is nondecreasing on J ; i.e., N∩J = ∅.
This contradiction proves that Df ≤ 0 r.e. in N.

Next, to prove (b), suppose f is nowhere strongly decreasing. Now by (a)
it suffices to prove that B = {x ∈ N : Df(x) < 0} is meager in N. Suppose
B is nonmeager in N. Then there is an open subinterval J of I such that
B ∩ J is nonmeager in each portion of N ∩ J. We claim that N is nowhere
dense in J. For, if N includes some open subinterval J0 of J, then since B ∩J0

is nonmeager in J0, and f is vacuously PWLC on J0, by Theorem 2.3.2 f is
strongly decreasing on a subinterval J1 of J0, which contradicts the hypothesis.

Further, we claim that f is PWLC on N. For, since f is obviously left (or
right) regulated at the points of N which are not left (or right) limit points
of N, the claim follows from the fact that f is SWLC on I. Hence it follows
from Theorem 2.3.2 that f is SBD on some portion N0 of N ∩ J. Let (a, b)
be any contiguous interval of N0 whose endpoints are in N0. Then since f is
by Lemma 3.2.3(b), LC at a and b, f is indeed nondecreasing on [a, b]. Hence
f(a) ≤ f(b), which contradicts the fact that f is SBD on N0.

Next, to prove (c), suppose f is lower singular. If there is a real number
c > 0 such that f+c is decreasing on some open subinterval J of I, then f+c
is derivable a.e. in J, and so f has a derivative ≤ −c < 0 a.e. in J, which
contradicts the lower singularity of f. Consequently, f is nowhere strongly
decreasing, and hence according to (b), 0 ∈ Mf r.e. in N. Further, for each
positive integer n it follows from Lemma 3.2.4 and part (a) that the set En =
{x ∈ N : Df+n(x) ≤ 0} = {x ∈ N : Df(x) ≤ −n} is residual in N. Now since
the set E = ∩nEn is again residual in N, it follows that −∞ ∈Mf r.e. in N.
Consequently, [−∞, 0] ⊂Mf r.e. in N.

Next we obtain a result in the direction of part (a) of the above median
theorem.
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Theorem 3.2.6. If f is SWLC, then Df < 0 at a c-dense set in N(f).

Proof. Set N = N(f) and E = {x ∈ N : Df(x) < 0}, and suppose there is
an open subinterval J of I such that N ∩ J 6= ∅ but card (E ∩ J) < c. Then
f is clearly lower singular on J, and since by Lemma 3.2.3(a), N is perfect in
I, it follows from part (c) of the above theorem that N ∩ J = ∅. Thus f is
nondecreasing on J, which is a contradiction.

We next deduce from the Third Biderivate Theorem the following median
theorem on lower singular functions without any continuity hypothesis.

Theorem 3.2.7. (Fifth Median). Let f be lower singular. If f is nowhere
nondecreasing, then [−∞, 0] ⊂Mf r.e. in I.

Proof. We can assume without loss of generality that I is open. Then f is
vacuously PWC on I. Suppose f is nowhere nondecreasing, and set A = {x ∈
I : Df(x) < 0} and B = {x ∈ I : Df(x) > −∞}. Then it is enough to
prove that A and B are meager in I. First, suppose A is nonmeager in I. Then
by the Third Biderivate Theorem 2.3.2, f is SD on some open subinterval J of
I. Hence there is a c > 0 such that f+c is decreasing on J. Consequently, f is
derivable a.e. in J and its derivative is ≤ −c < 0 a.e. in J, which contradicts
the lower singularity of f.

Next, suppose B is nonmeager in I. Then by Corollary 2.3.3, f is LL
on some open subinterval J of I. But according to Theorem 3.2.1, f is then
nondecreasing on J, which contradicts the hypothesis.

Next are two interesting direct consequences of the above median theorem.
What is particularly interesting about these results is that they hold without
any continuity hypothesis.

Corollary 3.2.8. If f is singular and nowhere monotone, then it is knotted
r.e. in I, and thus f is nowhere MT.

Corollary 3.2.9. Suppose f is derivable at a nonmeager set in I. If f is
lower singular (or singular), then it is nondecreasing (or constant) on some
subinterval of I.

In conclusion, it should be pointed out that earlier in §9.4 of [G3], median
theorems have been obtained in terms of unilateral derivates which are similar
to the fourth and fifth median theorems.

§3.3. Monotonicity in Terms of Biderivates and
Goldowski-Tonelli Theorem

In this section from the Fourth Median Theorem of the last section we deduce
some monotonicity theorems in terms of biderivates including the well known
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Goldowski-Tonelli theorem on monotonicity. Also from one of these mono-
tonicity theorems we deduce a result on median derivates which is similar to
a theorem of Morse on unilateral derivates.

Following our convention, it will be understood again in this section that f :
I → R, where I is a subinterval of R. We begin with the following monotonicity
lemma which seems to be fundamental. The first two monotonicity theorems
of this section and the Goldowski-Tonelli theorem are direct consequences of
this lemma.

Lemma 3.3.1. (Monotonicity). A function f is nondecreasing iff it is
SWLC and lower singular, and the set where [−∞, 0] ⊂ Mf has cardinal-
ity less than c.

Proof. The necessity is obvious. To prove its sufficiency, suppose f is SWLC
and lower singular, and that the set where [−∞, 0] ⊂Mf has cardinality less
than c. Then by Lemma 3.2.3(a), N(f) is perfect in I, and so the result follows
directly from part (c) of the Fourth Median Theorem 3.2.5.

The following two monotonicity theorems are direct consequences of the
above monotonicity lemma. Among these theorems, the Second Monotonicity
Theorem 3.3.2 is well known (see, e.g., Natanson [N, p. 266]), and the Third
Monotonicity Theorem 3.3.3 provides a more general version of the Second.

Theorem 3.3.2. (Second Monotonicity). A function f is nondecreasing
iff Df ≥ 0 everywhere.

Theorem 3.3.3. (Third Monotonicity). Suppose f is SWLC. If Df ≥ 0
a.e. and Df > −∞ n.e., then f is nondecreasing.

The following version of the Goldowski-Tonelli theorem also follows directly
from the Monotonicity Lemma 3.3.1. This theorem was obtained initially by
Goldowski [Go] and Tonelli [T] in the case of continuous functions, and was
extended later by Zahorski [Z3] to Darboux functions which are indeed WC.

Theorem 3.3.4. (Goldowski-Tonelli). If f is SWLC and lower singular,
and it is derivable n.e., then f is nondecreasing.

We add the following monotonicity theorem which in turn follows directly
from part (b) of the Fourth Median Theorem 3.2.5.

Theorem 3.3.5. (Fourth Monotonicity). Suppose f is SWLC. If f is
nowhere strongly decreasing and the set where 0 ∈ Mf has cardinality less
than c, then f is increasing.
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The second condition used in this theorem is clearly not necessary for a
function to be increasing. However, from this theorem we obtain the following
necessary and sufficient condition for a function to be nondecreasing. Note that
when Df ≥ 0 at a dense set, it follows easily from the Second Monotonicity
Theorem 3.3.2 that f is nowhere strongly decreasing.

Corollary 3.3.6. Let f be SWLC. Then f is nondecreasing iff (i) Df ≥ 0
at a dense set and (ii) for every real number r < 0 there is a number s ∈ [r, 0]
such that the set where s ∈Mf has cardinality less than c.

Finally from the Fourth Monotonicity Theorem 3.3.5 we deduce the fol-
lowing result on median derivates which is similar to a well known theorem of
Morse [M, Theorem 1] on unilateral derivates.

Theorem 3.3.7. Suppose f is SWLC, and let r ∈ R. If f has a median
derivate ≥ r at a dense set in I and a median derivate < r at some point,
then the set where r is a median derivate of f has cardinality c.

Proof. Assume the hypothesis and let g = f−r. Clearly Dg ≥ 0 at a dense
set in I, and Dg < 0 at some point. Hence g is nowhere strongly decreasing,
and since g is not increasing, by Theorem 3.3.5 E = {x ∈ I : 0 ∈Mg(x)} has
cardinality c. Further, it is clear that r ∈M(f) at each point of E.

§3.4. Properties of Derivative, Median and Derivability Sets

In this final section we obtain various properties of derivative, median and
derivability sets of a function with the help of the results of the previous
sections. We begin with the property of derivability sets. Recall that for
f : X → R, we use ∆(f) and ∆∗(f) to denote the sets in X where f is derivable
or differentiable, respectively. Both of these sets are called derivability sets of
f.

The following theorem was obtained originally by Zahorski [Z1, Z2] for
continuous functions on an interval, and was extended later by Brudno [Br] to
arbitrary functions on an interval. In its following form it was obtained on the
other hand in [G1, p. 315]. We obtain this theorem here from the results of
§§2.2 and 2.4 which in turn were deduced from the First and Second Biderivate
Theorems of §2.1.

Theorem 3.4.1. (Zahorski-Brudno). For every function f : X → R, the
complement of each of the derivability sets ∆(f) and ∆∗(f) is a set of the
form Gδ ∪Gδσ in X, where the Gδσ-set is of measure zero.
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Proof. Set N = X \∆(f), N∗ = X \∆∗(f), K = K(f), and let Q denote
the set of rational numbers. Then clearly

N = (X \X ′) ∪
⋃
r∈Q

[
{x : Df(x) < r} ∩ {x : Df(x) > r}

]
.

Hence, by the Fifth Biderivate Theorem 2.4.1 N is a Gδσ-set in X. Further, by
Corollary 2.4.2, K = Gδ∪C, where C is countable. Hence, N = K∪(N \K) =
Gδ∪H, where H = C∪ (N \K) is a Gδσ-set in X. Also, according to Theorem
2.2.2, |N \K| = 0, and so |H| = 0. This proves the result for N.

Next, to obtain the result for N∗, let E denote the set where at least one
derivate of f is infinite. Then N∗ = N ∪E, where according to Theorem 2.2.4,
E is a Gδ-set in X. Hence the result on N∗ follows clearly from the above
result on N.

Next from the Fifth Biderivate Theorem we deduce the following theorem
on the Baire class of derivative. This theorem seems to have been obtained
first by Zahorski [Z3, p. 15] for everywhere derivable functions on R, and in
the following form it was obtained by Preiss [Pr] for connected X. See [G1,
p. 322] for its following version.

Theorem 3.4.2. For every function f : X → R, its derivative f ′ is of B1

relative to the set where it exists.

Proof. Given c ∈ R, set ∆ = ∆(f) and E = {x ∈ ∆ : f ′(x) > c}. Then by
the Fifth Biderivate Theorem 2.4.1

E = ∆ ∩ {x : Df(x) > c} = ∆ ∩ (Fσ \ C) = ∆ ∩ Fσ \∆ ∩ C,

where Fσ is an Fσ-set in X and f is not WUC at any point of C. Now, at each
x ∈ ∆ ∩ C we have f ′(x) = +∞, so that x ∈ E. Hence E = ∆ ∩ Fσ, which
proves that f ′ is of LB1 on ∆. Now applying this result to −f it follows that
f ′ is also of UB1 on ∆, and hence f ′ is of B1 on ∆.

Now, with the help of Theorem 3.4.1, we obtain the following from the
above theorem.

Corollary 3.4.3. Let f : X → R and c ∈ R. Then {x ∈ ∆(f) : f ′(x) = c} is
a Gδ-set in ∆(f) and an Fσδ-set in X.

We refer here to the Second Median Theorem 2.4.3 for the Baire class of
median which is set-valued in general.

From now on it will be understood that f : I → R, where I is a subinter-
val of R. From the Third Biderivate Theorem we first deduce a mean-value
theorem in terms of median and derivative.
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The function f is said to have symmetrical derivates if D+f = D−f and
D+f = D−f at each point of I0. We will further need the following lemma
which was obtained in [G1, p. 323].

Lemma 3.4.4. Suppose f is WC. If f is not monotone and it does not have
a relative extremum at any point, then N = N(f) ∩N(−f) is nonempty and
perfect in I and f is nowhere monotone on N.

Theorem 3.4.5. (Mean-Value). Suppose f is WC. Then for each x, y ∈ I,
with x < y, there is a point z between x and y such that Qf(x, y) ∈ Mf(z).
Further, in case f has symmetrical derivates and it is derivable n.e., then z
can be so chosen that f is derivable at z and Qf(x, y) = f ′(z).

Proof. Let c = Qf(x, y). It is enough to prove the result here in the case
when c = 0; i.e., when f(x) = f(y), for in the general case the result follows
on applying this result to f−c. Hence, suppose f(x) = f(y). Then we need to
find a point z in (x, y) such that 0 ∈Mf(z). As this holds trivially in the case
when f is constant on [x, y], suppose it is not so. Then f is not monotone on
this interval, and since f is WC, it is not monotone on (x, y) as well.

Now set J = (x, y), and let g denote the restriction of f to J. We need to
show that there is a point z in J such that 0 ∈Mg(z). Suppose there is no such
point z. Then g does not have any point of relative extremum, for it is easy to
see that 0 ∈ Mg at such a point. Hence by Lemma 3.4.4 N ≡ N(g) ∩N(−g)
is nonempty and perfect in J, and g is nowhere monotone on N. Thus g is
also nowhere bimonotone on N, and it is clearly PWC on N. Hence by the
First Median Theorem 2.3.5(a), deduced from the Third Biderivate Theorem,
0 ∈Mg at a residual set in N, which is a contradiction.

Next, to prove the second part, suppose f has symmetrical derivates and
it is derivable n.e. Then the same holds for g, and it is easy to see in this case
that g has a zero derivative at each point where it has a relative extremum.
Hence it is clear from the above proof that in this case z can be so chosen in
J that g is derivable at z and f ′(z) = 0.

Next from the Third Biderivate Theorem we deduce the Darboux property
of median and derivative. Since the median is a multifunction, we will use the
following notion of Darboux property of a multifunction as introduced in [G3,
p. 229].

Given a set E ⊂ R, a multifunction ϕ : E → 2R is said to have the Darboux
property if for every connected set C in R, the set ∪{ϕ(x) : x ∈ E ∩ C} is
connected in R.

In the case when E is connected and ϕ is single-valued, it is clear that the
above property coincides with the usual Darboux property which is weaker
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than continuity. Also, when E is connected and ϕ is a connected-valued mul-
tifunction, it is easy to see that ϕ has Darboux property whenever it is LSC
or USC.

Theorem 3.4.6. Suppose f is WC. Then Mf possesses Darboux property.
Further, in case f has symmetrical derivates and it is derivable n.e., then f ′

possesses Darboux property relative to the set where it exists.

Proof. Given an arbitrary subinterval J of I, let H = ∪{Mf(x) : x ∈ J}.
To show that H is connected, let c ∈ co(H). Then to obtain the Darboux
property of Mf, it is enough to show that c ∈ H. Suppose c /∈ H. Then there
exist a, b ∈ H such that a < c < b. Hence there exist two points x, y ∈ J
such that a ∈ Mf(x) and b ∈ Mf(y). In case x = y, then since Mf(x) is
connected, clearly c ∈ Mf(x) ⊂ H. Hence x 6= y. We may assume without
loss of generality that x < y.

Further, since Mf(x) and Mf(y) are connected and they don’t include c,
it is clear that Df(x) < c < Df(y). Hence D+f(x) < c < D−f(y); so that
D+f−c(x) < 0 < D−f−c(y). The function f−c is thus not monotone on [x, y],
and since f−c is also WC, it cannot be monotone on (x, y) as well. Now set
J0 = (x, y), and let g denote the restriction of f−c to J0. It is now enough to
show that there is a point z in J0 such that 0 ∈ Mg(z); for then c ∈ Mf(z).
Now since g is not monotone, the existence of the required point z follows from
Lemma 3.4.4 and the First Median Theorem 2.3.5 by the arguments used in
the proof of Theorem 3.4.5. The result when f has symmetrical derivates and
it is derivable n.e. also follows from the proof of that theorem.

Next, we deal with the Denjoy property of derivatives. Given a function f,
its derivative f ′ will be said to have the Denjoy property if for every a, b ∈ R,
a < b, the set {x ∈ ∆(f) : a < f ′(x) < b} either is empty or has positive
measure. Further, f is said to be nonangular [G3, p. 29] if D−f ≤ D+f and
D+f ≤ D−f at each point of I0.

The Denjoy property for derivatives was obtained originally by Denjoy
[D2] for a continuous function which is derivable everywhere. In the following
theorem we deduce a more general result from the Third Biderivate Theorem.
There was a slight error in the proof of this theorem given earlier in [G1,
p. 326], which has been corrected here.

Theorem 3.4.7. Suppose f is WC and nonangular, and it is derivable n.e.
Given a, b ∈ R, a < b, if the set where f has a derivative between a and b
is of measure zero, then either Df ≤ a everywhere or Df ≥ b everywhere.
Consequently, the derivative f ′ possesses Denjoy property.

Proof. First, suppose a = −∞. Then since the set where f ′ = −∞ is by
Corollary 2.2.3 of measure zero, we have f ′ ≥ b a.e., or (f−b)′ ≥ 0 a.e. Hence it
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follows from the Goldowski-Tonelli Theorem 3.3.4 that f−b is nondecreasing,
and so Df ≥ b everywhere. In the case when b = +∞, it is proved by a similar
augment that Df ≤ a everywhere. Hence, suppose a, b ∈ R.

Now set N = N(−f−a) ∩N(f−b). This set is clearly closed in I. We claim
that N is dense in itself. Let I− and I+ denote the families of contiguous
intervals of N(−f−a) and N(f−b), respectively, in I. Then Df ≤ a on each
interval of I−, and Df ≥ b on each interval of I+. The intervals of the family
I = I− ∪ I+ are thus mutually disjoint, and they constitute the contiguous
intervals of N in I. Now since f is WC, clearly f−a is nonincreasing on the
closure of each interval of I−, and f−b is nondecreasing on the closure of
each interval of I+. Thus the intervals of I− are nonabutting, and so are the
intervals of I+. If, on the other hand, (x, y) ∈ I− and (y, z) ∈ I+, then f−a
is nonincreasing on [x, y] and f−b is nondecreasing on [y, z]. Hence D−f(y) ≤
a < b ≤ D+f(y), which contradicts the nonangularity of f. Similarly, it is
not possible that (x, y) ∈ I+ and (y, z) ∈ I−. Hence the intervals of I are
mutually nonabutting, and the set N is consequently dense in itself.

Now it is enough to show that N = ∅, for then I ∈ I− or I+, which
will establish the result. Hence suppose N 6= ∅. We first claim that f−a is
nowhere SBI on N. Suppose to the contrary that f−a is SBI on some portion
P of N. Then there is clearly a c ∈ (a, b) such that f−c is WBI on P. Let
x, y be two bilateral limit points of P with x < y, and set J = (x, y). Then
J ∩ P 6= ∅. Now, since f−c is WBI on P, as before by the WC of f , f−c
is nondecreasing on the closure of each contiguous interval of P in J. Hence
clearly f−c is nondecreasing on J. Thus Df ≥ c > a on J, and hence by the
hypothesis f ′ ≥ b a.e. in J. Now by the Goldowski-Tonelli Theorem 3.3.4 f−b
is nondecreasing on J. Hence J ∩N(f−b) = ∅, which contradicts the fact that
J ∩ P 6= ∅. This proves the claim.

Now since f−a is nowhere SBI on N, by the Third Biderivate Theorem
2.3.2 Df−a ≤ 0, or Df ≤ a, r.e. in N. Using a similar argument it is proved
that f−b is nowhere SBD on N, and hence by the same theorem Df ≥ b r.e.
in N. Thus Df ≤ a < b ≤ Df r.e. in N, which contradicts the hypothesis
that f is derivable n.e.

Finally, in the following theorem we obtain an extended version of a theo-
rem of Marcus [Ma] on the stationary sets of derivatives of continuous functions
to the ones of derivatives of SWC functions. A subset E of R is said to be a
stationary set of a class C of functions on R if every f ∈ C that is constant on
E is constant on R.

Theorem 3.4.8. A set E ⊂ R is a stationary set of derivatives of SWC
functions iff the complement of E has zero inner measure.
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Proof. Let E be a subset of R whose complement has zero inner measure and
let f be the derivative of some SWC function g on R such that f is constant
on E, say c. Now, since {x : f(x) = c} is measurable by Corollary 3.4.3,
f(x) = c for a.e. x. Hence the function g−c is singular, and so by Theorem
3.3.4 g−c is constant on R. Consequently, f = g′ = c on R. Further, when the
complement of E has an inner measure > 0, it is known [Z3] that there exists a
finite derivative which is constant on E but not on R. Hence the theorem.

Remark 3.4.9. We conclude with a few comments on the results of this
section.

(a) The hypothesis of symmetrical derivates is essential in the second parts
of Theorems 3.4.5 and 3.4.6. For, let f(x) = 0 or x− 1 according to whether
x is in [0, 1] or (1, 2], respectively. Then f is derivable n.e., but since f ′ has
only values 0 and 1, it is clear that the second part of neither of these two
theorems holds for f.

(b) In the case of a function f : I → R with symmetrical derivates, it is
interesting to point out that under a stronger continuity hypothesis it has been
proved in Corollaries 10.4.2 and 8.1.3 of [G3, pp. 165, 230] that Theorems 3.4.5
and 3.4.6 hold without any derivability hypothesis in terms of derivative of f
relative to the set where it exists. What is surprising about the two theorems
obtained here is that they hold for every WC function.

(c) Similar to Theorem 8.3.1 of [G3, p. 171], it is possible to deduce from
the Mean-Value Theorem 3.4.5 a characterization of strong derivative of f in
terms of U -limit of Mf at the point in question.

(d) In connection with Theorem 3.4.7, it should be pointed out that under
stronger continuity hypothesis the Denjoy property of (ordinary) derivatives
continues to hold under some weaker forms of derivability (see Theorems 10.4.6
and 10.4.8 of [G3, p. 232]).
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Acad. Sci. Paris 173 (1921), 457-459.

[Br] A. Brudno, Continuity and differentiability, Mat. Sb. 13 (55) (1943),
119–134.

[C1] G. Choquet, Application des propriétés descriptives de la fonction con-
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ou infinies, Com. Acad. R.P. Romı̂ne 12 (1962), 399–402 (Romanian).

[M] A. P. Morse, Dini derivatives of continuous functions, Proc. Amer. Math.
Soc. 5 (1954), 126–130.

[N] I. P. Natanson, Theory of Functions of a Real Variable, Vol. I, Ungar,
New York, 1955.

[P] G. Peano, Sur la definition de la dérivée, Mathesis (2) 2 (1892), 12–14.
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