
RESEARCH Real Analysis Exchange
Vol. (), , pp. 65–70

Marianna Csörnyei∗, Department of Mathematics, University College London,
Gower Street, London, WC1E 6BT, UK. e-mail: mari@math.ucl.ac.uk

AN EXAMPLE ILLUSTRATING
P g(K) 6= P g

0 (K) FOR COMPACT SETS OF
FINITE PREMEASURE

Abstract

We construct a doubling gauge function g and a compact set L ⊂ R
for which Pg(L) < Pg

0 (L) <∞.

D. J. Feng, S. Hua and Z. Y. Wen proved in [1] that for every compact set
K ⊂ Rn and for every 0 ≤ s ≤ n,

Ps
0(K) <∞⇒ Ps

0(K) = Ps(K),

where Ps and Ps
0 denote the s-dimensional packing measure and premeasure,

respectively. (The definition and the basic properties of packing measures and
premeasures see e.g. in [2].) One can check that their proof works for every
gauge function g and the corresponding packing measure and premeasure Pg,
Pg

0 , provided that for every positive ε there are positive δ and t0, such that

g((1 + δ)t)
g(t)

< 1 + ε ∀t < t0.

Especially, if g(t) = tsL(t) where L is slowly varying in the sense of Karamata;

that is, limt→0
L(ct)
L(t)

= 1 for every c > 0 (see [3]), then

Pg
0 (K) <∞⇒ Pg

0 (K) = Pg(K) (∗)
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for every compact set K. These are the gauge functions which naturally
arise in dynamics and stochastic processes. R. D. Mauldin asked whether (∗)
remains true for any gauge function g.

In this paper we show that (∗) is false for general gauge functions g and
for the packing measure and premeasure Pg,Pg

0 . We prove that it is not even
true for doubling measures. We prove the following theorem.

Theorem 1. There exists a doubling gauge function g, and compact sets K ⊂
L ⊂ R, for which

Pg
0 (K) < 1 ≤ Pg

0 (L) <∞, (∗∗)

and L \K is countable.

The following is an immediate corollary of Theorem 1.

Theorem 2. There exists a doubling gauge function g and a compact set
L ⊂ R, for which Pg(L) < Pg

0 (L) <∞.

We will use the notations

an = 2n, bn = 4an + 2, cn =
n∏

m=1

bm, dn = 80−n3
.

For every n ∈ N we define a set of cn pairwise disjoint intervals

In = {In
j = [xn

j , y
n
j ] : 1 ≤ j ≤ cn}

of length dn, as follows. We choose an interval I0 of length 1 arbitrarily.
If In−1 has been defined, then for every 1 ≤ j ≤ cn−1 we choose the bn
subintervals

[xn−1
j + 6dn, x

n−1
j + 7dn], [yn−1

j − 7dn, y
n−1
j − 6dn],

[xn−1
j + i · dn−1

2an
+ 4dn, x

n−1
j + i · dn−1

2an
+ 5dn] (0 ≤ i ≤ 2an − 1),

[yn−1
j − i · dn−1

2an
− 5dn, y

n−1
j − i · dn−1

2an
− 4dn] (1 ≤ i ≤ 2an).

These are pairwise disjoint subintervals, since 12dn < dn−1/2an for every
n ≥ 1.

Let

K =
∞⋂

n=0

cn⋃
j=1

In
j , L = K ∪

∞⋃
n=1

cn−1⋃
j=1

2an⋃
i=0

{xn−1
j + i · dn−1

2an
}.



P g(K) 6= P g
0 (K) for Compact Sets of Finite Premeasure 67

Then both K and L are compact, and L is the union of the Cantor set K and
countable many points. We put

en =
dn−1

2an
− 7dn, fn =

dn−1

2an
− 8dn, gn = 10dn.

It is easy to check that en > fn > gn > en+1. We define

g(t) =

{
1

2ancn−1
if gn−1 ≥ t/2 ≥ en

1
10ancn−1

if t/2 = fn

and we extend g to the intervals [gn, fn] and [fn, en] linearly. Then we obtain
a gauge function, the only thing we need to check is that g(fn) > g(en+1). We
will prove (∗∗). We will also prove that g is doubling.

Proof that Pg
0 (K) < 1.

Let µ be the (unique) probability measure of support K, for which µ(In
j ) =

1/cn for every n, j. Let I be an arbitrary interval whose midpoint belongs to
K, and for which |I| < d1 = 1/80. Let n be the first index for which I
intersects only one of the intervals of In−1, but at least 2 of the intervals of
In.

Since the distance between the intervals In
j , In

j′ is at least dn for every
j 6= j′, the midpoint of I belongs to an interval In

j , and I intersects at least
two intervals of In, we have |I| ≥ 2dn. Then from |I| < d1, n ≥ 2 follows.
The length of In

j is dn; so In
j ⊂ I. Thus

µ(I) ≥ 1/cn. (1)

On the other hand, it is easy to see from the construction that for every
1 ≤ k, 1 ≤ j ≤ ck, and for every x ∈ Ik

j there is an index j′ 6= j and a point
y ∈ Ik

j′ for which |x− y| < 9dk < gk. Therefore, since I intersects only one of
the intervals of In−1, we have |I| < 2gn−1 and

g(|I|) ≤ g(2gn−1) =
1

2ancn−1
. (2)

If |I| ≤ 2fn, then

g(|I|) ≤ g(2fn) =
1

10ancn−1
≤ 1

2bncn−1
=

1
2cn

. (3)

From (1) and (3)

g(|I|) ≤ 1
2
· µ(I)
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follows. On the other hand, if |I| > 2fn, then it is also easy to see from the
construction that I covers at least 3 of the intervals of In. Thus

µ(I) ≥ 3
cn

=
3

bncn−1
. (4)

Since n ≥ 2, an ≥ 4 and hence from (2) and (4) we obtain

g(|I|) ≤ bn
6an
· µ(I) =

4an + 2
6an

· µ(I) ≤ 3
4
· µ(I).

So for every interval I for which I < 1/80 and whose midpoint belongs to K
we have g(|I|) < 3/4 · µ(I). Thus Pg

ε (K) ≤ 3/4 for every ε < 1/80. From this
we obtain Pg

0 (K) ≤ 3/4 < 1.

Proof that 1 ≤ Pg
0 (L).

For every interval In−1
j , the points

xn−1
ji = xn−1

j + 2i · dn−1/2an 1 ≤ i ≤ an − 1

belong to L and the intervals In−1
ji = (xn−1

ji − en, x
n−1
ji + en) are pairwise

disjoint subintervals of In−1
j . It is also easy to see that each interval In−1

ji

covers 2 of the intervals of In and disjoint from all the other intervals of In.
We have µ(In−1

ji ) = 2/cn. Thus for every n ≥ 1 we have

an−1∑
i=1

µ(In−1
ji ) =

2an − 2
cn

=
2an − 2

(4an + 2)cn−1
≥ 2

10cn−1
=

2
10
· µ(In−1

j ). (5)

We also have

g(|In−1
ji |) = g(2en) =

1
2ancn−1

>
2

bncn−1
=

2
cn

= µ(In−1
ji ). (6)

We fix an m ≥ 1 and define

Im = {Im−1
ji : 1 ≤ j ≤ cm−1, 1 ≤ i ≤ am − 1},

and if Im, Im+1, . . . , In have been defined for an n ≥ m, then we put

In+1 = {In
ji : 1 ≤ j ≤ cn, 1 ≤ i ≤ an+1 − 1, In

j 6⊂
n⋃

`=m

∪I`}.
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Then
⋃∞

`=m ∪I` is a 2em-packing of L. It is easy to see from (5) by induction
that µ(L \

⋃m+k−1
`=m ∪I`) ≤ (8/10)k. Thus µ(

⋃∞
`=m ∪I`) = 1. Therefore, from

(6) we obtain Pg
2em

(L) ≥ 1 for every m ≥ 1 and thus Pg
0 (L) ≥ 1.

Proof that Pg
0 (L) <∞.

Let I be an arbitrary interval whose midpoint belongs to L, and for which
|I| < d1 = 1/80. Let the midpoint of I be x. If x ∈ K, then we know
g(I) < 3/4 · µ(I) from the proof of Pg

0 (K) < 1. If x 6∈ K, then

x = xm−1
j + i · dm−1

2am

for some m, j, i.
If |I| ≤ 10dm = gm, then |I|/2 ≤ 5dm ∈ [em+1, gm]. Thus

g(|I|) ≤ 1
2am+1cm

=
1

4amcm
=

1
4ambmcm−1

. (7)

If 10dm < |I|, then I covers at least 2 of the intervals of Im and of course x
belongs to an interval of Im−1 and does not belong to Im.

As before, let n be the smallest index for which I intersects only one of
the intervals of In−1, but at least 2 of the intervals of In. We have seen
in the proof of Pg

0 (K) < 1, that if the midpoint of I belongs to In, then
g(|I|) < 3/4 ·µ(I). If the midpoint of I does not belong to In, then m−1 < n.
On the other hand, I intersects 2 intervals of Im. Thus n ≤ m. So in this
case n = m. We have

µ(I) > 2/cn, (8)

and (since x belongs to In−1 and I intersects only one of the intervals of In−1)
we obtain |I| < 2gn−1. From (8)

g(|I|) ≤ g(2gn−1) =
1

2ancn−1
=

4an + 2
2ancn

≤ 2an + 1
2an

· µ(I) < 2 · µ(I).

So for every I, either g(|I|) < 2µ(I) or x = xm−1
j + i · dm−1

2am
and g(|I|) can be

estimated by (7). But

∞∑
m=1

cm−1∑
j=1

2am∑
i=0

1
4ambmcm−1

<

∞∑
m=1

1
bm

< 1.

This proves Pg
0 (L) < 3 <∞.
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Proof of Doubling.

It is enough to prove that there exists a constant C, such that if t is small

enough, then g(2t)/g(t) < C. We put g̃(u) = g(u/2), and prove
g̃(2u)
g̃(u)

< C

for every u small enough. We fix a small u, let n be the index for which
u ∈ [en+1, en]. It is easy to check that 2en < gn−1. Thus 2u < gn−1. We know
that g̃ is constant 5g̃(fn) on [en, gn−1].

If u is small enough, then n is large enough. It is easy to see that

g̃(en+1)
en+1

=
g̃(gn)
en+1

>
g̃(gn)
gn

,

and for suitable large n
g̃(gn)
gn

>
g̃(fn)
fn

,

that is, the function g̃(x)/x monotone decreases on [en+1, fn]. Thus if u and
2u ∈ [en+1, fn], then g̃(u)/u > g̃(2u)/2u; that is, g̃(2u)/g̃(u) < 2. If u ∈
[en+1, fn] and 2u > fn, then g̃(2u) = 5g̃(fn), and g̃(fn)/fn < g̃(u)/u where
fn < 2u. Thus g̃(2u)/g̃(u) < 10. Finally, if u > fn, then it is immediate that
g̃(2u)/g̃(u) = 5g̃(fn)/g̃(u) ≤ 5.

References

[1] D. J. Feng, S. Hua and Z. Y. Wen, Some relations between packing premea-
sure and packing measure, Bull. London Math. Soc., 31 (1999), 665–670.

[2] P. Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge
University Press, 1995.

[3] E. Seneta, Regularly varying functions, Lecture Notes in Math., 508,
Springer, 1971.


