Marianna Csörnyei*, Department of Mathematics, University College London, Gower Street, London, WC1E 6BT, UK. e-mail: mari@math.ucl.ac.uk

AN EXAMPLE ILLUSTRATING $P^{g}(K) \neq P_{0}^{g}(K)$ FOR COMPACT SETS OF FINITE PREMEASURE

Abstract

We construct a doubling gauge function g and a compact set $L \subset \mathbb{R}$ for which $\mathcal{P}^{g}(L)<\mathcal{P}_{0}^{g}(L)<\infty$.

D. J. Feng, S. Hua and Z. Y. Wen proved in [1] that for every compact set $K \subset \mathbb{R}^{n}$ and for every $0 \leq s \leq n$,

$$
\mathcal{P}_{0}^{s}(K)<\infty \Rightarrow \mathcal{P}_{0}^{s}(K)=\mathcal{P}^{s}(K)
$$

where \mathcal{P}^{s} and \mathcal{P}_{0}^{s} denote the s-dimensional packing measure and premeasure, respectively. (The definition and the basic properties of packing measures and premeasures see e.g. in [2].) One can check that their proof works for every gauge function g and the corresponding packing measure and premeasure \mathcal{P}^{g}, \mathcal{P}_{0}^{g}, provided that for every positive ε there are positive δ and t_{0}, such that

$$
\frac{g((1+\delta) t)}{g(t)}<1+\varepsilon \quad \forall t<t_{0}
$$

Especially, if $g(t)=t^{s} L(t)$ where L is slowly varying in the sense of Karamata; that is, $\lim _{t \rightarrow 0} \frac{L(c t)}{L(t)}=1$ for every $c>0$ (see [3]), then

$$
\begin{equation*}
\mathcal{P}_{0}^{g}(K)<\infty \Rightarrow \mathcal{P}_{0}^{g}(K)=\mathcal{P}^{g}(K) \tag{*}
\end{equation*}
$$

[^0]for every compact set K. These are the gauge functions which naturally arise in dynamics and stochastic processes. R. D. Mauldin asked whether (*) remains true for any gauge function g.

In this paper we show that $(*)$ is false for general gauge functions g and for the packing measure and premeasure $\mathcal{P}^{g}, \mathcal{P}_{0}^{g}$. We prove that it is not even true for doubling measures. We prove the following theorem.

Theorem 1. There exists a doubling gauge function g, and compact sets $K \subset$ $L \subset \mathbb{R}$, for which

$$
\begin{equation*}
\mathcal{P}_{0}^{g}(K)<1 \leq \mathcal{P}_{0}^{g}(L)<\infty \tag{**}
\end{equation*}
$$

and $L \backslash K$ is countable.
The following is an immediate corollary of Theorem 1.
Theorem 2. There exists a doubling gauge function g and a compact set $L \subset \mathbb{R}$, for which $\mathcal{P}^{g}(L)<\mathcal{P}_{0}^{g}(L)<\infty$.

We will use the notations

$$
a_{n}=2^{n}, \quad b_{n}=4 a_{n}+2, \quad c_{n}=\prod_{m=1}^{n} b_{m}, \quad d_{n}=80^{-n^{3}}
$$

For every $n \in \mathbb{N}$ we define a set of c_{n} pairwise disjoint intervals

$$
\mathcal{I}^{n}=\left\{I_{j}^{n}=\left[x_{j}^{n}, y_{j}^{n}\right]: 1 \leq j \leq c_{n}\right\}
$$

of length d_{n}, as follows. We choose an interval I^{0} of length 1 arbitrarily. If \mathcal{I}^{n-1} has been defined, then for every $1 \leq j \leq c_{n-1}$ we choose the b_{n} subintervals

$$
\begin{gathered}
{\left[x_{j}^{n-1}+6 d_{n}, x_{j}^{n-1}+7 d_{n}\right], \quad\left[y_{j}^{n-1}-7 d_{n}, y_{j}^{n-1}-6 d_{n}\right],} \\
{\left[x_{j}^{n-1}+i \cdot \frac{d_{n-1}}{2 a_{n}}+4 d_{n}, x_{j}^{n-1}+i \cdot \frac{d_{n-1}}{2 a_{n}}+5 d_{n}\right] \quad\left(0 \leq i \leq 2 a_{n}-1\right),} \\
{\left[y_{j}^{n-1}-i \cdot \frac{d_{n-1}}{2 a_{n}}-5 d_{n}, y_{j}^{n-1}-i \cdot \frac{d_{n-1}}{2 a_{n}}-4 d_{n}\right] \quad\left(1 \leq i \leq 2 a_{n}\right) .}
\end{gathered}
$$

These are pairwise disjoint subintervals, since $12 d_{n}<d_{n-1} / 2 a_{n}$ for every $n \geq 1$.

Let

$$
K=\bigcap_{n=0}^{\infty} \bigcup_{j=1}^{c_{n}} I_{j}^{n}, \quad L=K \cup \bigcup_{n=1}^{\infty} \bigcup_{j=1}^{c_{n-1}} \bigcup_{i=0}^{2 a_{n}}\left\{x_{j}^{n-1}+i \cdot \frac{d_{n-1}}{2 a_{n}}\right\}
$$

Then both K and L are compact, and L is the union of the Cantor set K and countable many points. We put

$$
e_{n}=\frac{d_{n-1}}{2 a_{n}}-7 d_{n}, \quad f_{n}=\frac{d_{n-1}}{2 a_{n}}-8 d_{n}, \quad g_{n}=10 d_{n}
$$

It is easy to check that $e_{n}>f_{n}>g_{n}>e_{n+1}$. We define

$$
g(t)= \begin{cases}\frac{1}{2 a_{n} c_{n-1}} & \text { if } g_{n-1} \geq t / 2 \geq e_{n} \\ \frac{1}{10 a_{n} c_{n-1}} & \text { if } t / 2=f_{n}\end{cases}
$$

and we extend g to the intervals $\left[g_{n}, f_{n}\right]$ and $\left[f_{n}, e_{n}\right]$ linearly. Then we obtain a gauge function, the only thing we need to check is that $g\left(f_{n}\right)>g\left(e_{n+1}\right)$. We will prove $(* *)$. We will also prove that g is doubling.

Proof that $\mathcal{P}_{0}^{g}(K)<1$.
Let μ be the (unique) probability measure of support K, for which $\mu\left(I_{j}^{n}\right)=$ $1 / c_{n}$ for every n, j. Let I be an arbitrary interval whose midpoint belongs to K, and for which $|I|<d_{1}=1 / 80$. Let n be the first index for which I intersects only one of the intervals of \mathcal{I}^{n-1}, but at least 2 of the intervals of \mathcal{I}^{n}.

Since the distance between the intervals $I_{j}^{n}, I_{j^{\prime}}^{n}$ is at least d_{n} for every $j \neq j^{\prime}$, the midpoint of I belongs to an interval I_{j}^{n}, and I intersects at least two intervals of \mathcal{I}^{n}, we have $|I| \geq 2 d_{n}$. Then from $|I|<d_{1}, n \geq 2$ follows. The length of I_{j}^{n} is d_{n}; so $I_{j}^{n} \subset I$. Thus

$$
\begin{equation*}
\mu(I) \geq 1 / c_{n} \tag{1}
\end{equation*}
$$

On the other hand, it is easy to see from the construction that for every $1 \leq k, 1 \leq j \leq c_{k}$, and for every $x \in I_{j}^{k}$ there is an index $j^{\prime} \neq j$ and a point $y \in I_{j^{\prime}}^{k}$ for which $|x-y|<9 d_{k}<g_{k}$. Therefore, since I intersects only one of the intervals of \mathcal{I}^{n-1}, we have $|I|<2 g_{n-1}$ and

$$
\begin{equation*}
g(|I|) \leq g\left(2 g_{n-1}\right)=\frac{1}{2 a_{n} c_{n-1}} \tag{2}
\end{equation*}
$$

If $|I| \leq 2 f_{n}$, then

$$
\begin{equation*}
g(|I|) \leq g\left(2 f_{n}\right)=\frac{1}{10 a_{n} c_{n-1}} \leq \frac{1}{2 b_{n} c_{n-1}}=\frac{1}{2 c_{n}} \tag{3}
\end{equation*}
$$

From (1) and (3)

$$
g(|I|) \leq \frac{1}{2} \cdot \mu(I)
$$

follows. On the other hand, if $|I|>2 f_{n}$, then it is also easy to see from the construction that I covers at least 3 of the intervals of \mathcal{I}^{n}. Thus

$$
\begin{equation*}
\mu(I) \geq \frac{3}{c_{n}}=\frac{3}{b_{n} c_{n-1}} \tag{4}
\end{equation*}
$$

Since $n \geq 2, a_{n} \geq 4$ and hence from (2) and (4) we obtain

$$
g(|I|) \leq \frac{b_{n}}{6 a_{n}} \cdot \mu(I)=\frac{4 a_{n}+2}{6 a_{n}} \cdot \mu(I) \leq \frac{3}{4} \cdot \mu(I)
$$

So for every interval I for which $I<1 / 80$ and whose midpoint belongs to K we have $g(|I|)<3 / 4 \cdot \mu(I)$. Thus $\mathcal{P}_{\varepsilon}^{g}(K) \leq 3 / 4$ for every $\varepsilon<1 / 80$. From this we obtain $\mathcal{P}_{0}^{g}(K) \leq 3 / 4<1$.

Proof that $1 \leq \mathcal{P}_{0}^{g}(L)$.
For every interval I_{j}^{n-1}, the points

$$
x_{j i}^{n-1}=x_{j}^{n-1}+2 i \cdot d_{n-1} / 2 a_{n} \quad 1 \leq i \leq a_{n}-1
$$

belong to L and the intervals $I_{j i}^{n-1}=\left(x_{j i}^{n-1}-e_{n}, x_{j i}^{n-1}+e_{n}\right)$ are pairwise disjoint subintervals of I_{j}^{n-1}. It is also easy to see that each interval $I_{j i}^{n-1}$ covers 2 of the intervals of \mathcal{I}^{n} and disjoint from all the other intervals of \mathcal{I}^{n}. We have $\mu\left(I_{j i}^{n-1}\right)=2 / c_{n}$. Thus for every $n \geq 1$ we have

$$
\begin{equation*}
\sum_{i=1}^{a_{n}-1} \mu\left(I_{j i}^{n-1}\right)=\frac{2 a_{n}-2}{c_{n}}=\frac{2 a_{n}-2}{\left(4 a_{n}+2\right) c_{n-1}} \geq \frac{2}{10 c_{n-1}}=\frac{2}{10} \cdot \mu\left(I_{j}^{n-1}\right) \tag{5}
\end{equation*}
$$

We also have

$$
\begin{equation*}
g\left(\left|I_{j i}^{n-1}\right|\right)=g\left(2 e_{n}\right)=\frac{1}{2 a_{n} c_{n-1}}>\frac{2}{b_{n} c_{n-1}}=\frac{2}{c_{n}}=\mu\left(I_{j i}^{n-1}\right) \tag{6}
\end{equation*}
$$

We fix an $m \geq 1$ and define

$$
\mathcal{I}_{m}=\left\{I_{j i}^{m-1}: 1 \leq j \leq c_{m-1}, 1 \leq i \leq a_{m}-1\right\}
$$

and if $\mathcal{I}_{m}, \mathcal{I}_{m+1}, \ldots, \mathcal{I}_{n}$ have been defined for an $n \geq m$, then we put

$$
\mathcal{I}_{n+1}=\left\{I_{j i}^{n}: 1 \leq j \leq c_{n}, 1 \leq i \leq a_{n+1}-1, I_{j}^{n} \not \subset \bigcup_{\ell=m}^{n} \cup \mathcal{I}_{\ell}\right\}
$$

Then $\bigcup_{\ell=m}^{\infty} \cup \mathcal{I}_{\ell}$ is a $2 e_{m}$-packing of L. It is easy to see from (5) by induction that $\mu\left(L \backslash \bigcup_{\ell=m}^{m+k-1} \cup \mathcal{I}_{\ell}\right) \leq(8 / 10)^{k}$. Thus $\mu\left(\bigcup_{\ell=m}^{\infty} \cup \mathcal{I}_{\ell}\right)=1$. Therefore, from (6) we obtain $\mathcal{P}_{2 e_{m}}^{g}(L) \geq 1$ for every $m \geq 1$ and thus $\mathcal{P}_{0}^{g}(L) \geq 1$.

Proof that $\mathcal{P}_{0}^{g}(L)<\infty$.
Let I be an arbitrary interval whose midpoint belongs to L, and for which $|I|<d_{1}=1 / 80$. Let the midpoint of I be x. If $x \in K$, then we know $g(I)<3 / 4 \cdot \mu(I)$ from the proof of $\mathcal{P}_{0}^{g}(K)<1$. If $x \notin K$, then

$$
x=x_{j}^{m-1}+i \cdot \frac{d_{m-1}}{2 a_{m}}
$$

for some m, j, i.
If $|I| \leq 10 d_{m}=g_{m}$, then $|I| / 2 \leq 5 d_{m} \in\left[e_{m+1}, g_{m}\right]$. Thus

$$
\begin{equation*}
g(|I|) \leq \frac{1}{2 a_{m+1} c_{m}}=\frac{1}{4 a_{m} c_{m}}=\frac{1}{4 a_{m} b_{m} c_{m-1}} \tag{7}
\end{equation*}
$$

If $10 d_{m}<|I|$, then I covers at least 2 of the intervals of \mathcal{I}^{m} and of course x belongs to an interval of \mathcal{I}^{m-1} and does not belong to \mathcal{I}^{m}.

As before, let n be the smallest index for which I intersects only one of the intervals of \mathcal{I}^{n-1}, but at least 2 of the intervals of \mathcal{I}^{n}. We have seen in the proof of $\mathcal{P}_{0}^{g}(K)<1$, that if the midpoint of I belongs to \mathcal{I}^{n}, then $g(|I|)<3 / 4 \cdot \mu(I)$. If the midpoint of I does not belong to \mathcal{I}^{n}, then $m-1<n$. On the other hand, I intersects 2 intervals of \mathcal{I}^{m}. Thus $n \leq m$. So in this case $n=m$. We have

$$
\begin{equation*}
\mu(I)>2 / c_{n} \tag{8}
\end{equation*}
$$

and (since x belongs to \mathcal{I}^{n-1} and I intersects only one of the intervals of \mathcal{I}^{n-1}) we obtain $|I|<2 g_{n-1}$. From (8)

$$
g(|I|) \leq g\left(2 g_{n-1}\right)=\frac{1}{2 a_{n} c_{n-1}}=\frac{4 a_{n}+2}{2 a_{n} c_{n}} \leq \frac{2 a_{n}+1}{2 a_{n}} \cdot \mu(I)<2 \cdot \mu(I) .
$$

So for every I, either $g(|I|)<2 \mu(I)$ or $x=x_{j}^{m-1}+i \cdot \frac{d_{m-1}}{2 a_{m}}$ and $g(|I|)$ can be estimated by (7). But

$$
\sum_{m=1}^{\infty} \sum_{j=1}^{c_{m-1}} \sum_{i=0}^{2 a_{m}} \frac{1}{4 a_{m} b_{m} c_{m-1}}<\sum_{m=1}^{\infty} \frac{1}{b_{m}}<1
$$

This proves $\mathcal{P}_{0}^{g}(L)<3<\infty$.

Proof of Doubling.
It is enough to prove that there exists a constant C, such that if t is small enough, then $g(2 t) / g(t)<C$. We put $\tilde{g}(u)=g(u / 2)$, and prove $\frac{\tilde{g}(2 u)}{\tilde{g}(u)}<C$ for every u small enough. We fix a small u, let n be the index for which $u \in\left[e_{n+1}, e_{n}\right]$. It is easy to check that $2 e_{n}<g_{n-1}$. Thus $2 u<g_{n-1}$. We know that \tilde{g} is constant $5 \tilde{g}\left(f_{n}\right)$ on $\left[e_{n}, g_{n-1}\right]$.

If u is small enough, then n is large enough. It is easy to see that

$$
\frac{\tilde{g}\left(e_{n+1}\right)}{e_{n+1}}=\frac{\tilde{g}\left(g_{n}\right)}{e_{n+1}}>\frac{\tilde{g}\left(g_{n}\right)}{g_{n}}
$$

and for suitable large n

$$
\frac{\tilde{g}\left(g_{n}\right)}{g_{n}}>\frac{\tilde{g}\left(f_{n}\right)}{f_{n}}
$$

that is, the function $\tilde{g}(x) / x$ monotone decreases on $\left[e_{n+1}, f_{n}\right]$. Thus if u and $2 u \in\left[e_{n+1}, f_{n}\right]$, then $\tilde{g}(u) / u>\tilde{g}(2 u) / 2 u$; that is, $\tilde{g}(2 u) / \tilde{g}(u)<2$. If $u \in$ $\left[e_{n+1}, f_{n}\right]$ and $2 u>f_{n}$, then $\tilde{g}(2 u)=5 \tilde{g}\left(f_{n}\right)$, and $\tilde{g}\left(f_{n}\right) / f_{n}<\tilde{g}(u) / u$ where $f_{n}<2 u$. Thus $\tilde{g}(2 u) / \tilde{g}(u)<10$. Finally, if $u>f_{n}$, then it is immediate that $\tilde{g}(2 u) / \tilde{g}(u)=5 \tilde{g}\left(f_{n}\right) / \tilde{g}(u) \leq 5$.

References

[1] D. J. Feng, S. Hua and Z. Y. Wen, Some relations between packing premeasure and packing measure, Bull. London Math. Soc., 31 (1999), 665-670.
[2] P. Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge University Press, 1995.
[3] E. Seneta, Regularly varying functions, Lecture Notes in Math., 508, Springer, 1971.

[^0]: Key Words: packing measure, premeasure, doubling gauge function
 Mathematical Reviews subject classification: 28A78, 28A80
 Received by the editors May 27, 2000
 *Supported by the Hungarian National Foundation for Scientific Research, grant \# F029768 and FKFP 0192/1999.

