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MONOTONICITY OF COEFFICIENTS OF
RECIPROCAL POWER SERIES

Abstract

Given a power series f(x) =
P∞

n=1 an xn with nonnegative coef-
ficients satisfying

P∞
n=1 an = 1 we give sufficient conditions on the

sequence (an) to guarantee that the coefficients of the Taylor series of
h(x) = 1/(1− f(x)) form a nonincreasing sequence. This type of result
is useful when one wishes to apply Tauberian theorems.

1 Introduction

The purpose of this article is to investigate the following question. Given a
series of nonnegative terms satisfying

∑∞
n=1 an = 1 let f(x) =

∑∞
n=1 an x

n

and define

h(x) =
1

1− f(x)
=
∞∑
n=0

pn x
n .

The problem is to determine conditions on the given series under which (pn)
is a nonincreasing sequence. We give sufficient conditions for this, which,
although not necessary, are easy enough to check, and apply to important
examples in which the monotonicity of the coefficients is needed. In particular
we show (Corollary 3.4) that if (an+1)2 ≤ an an+1 for all n ≥ 1, then (pn) is
a nonincreasing sequence.

What motivated the present investigation and is also the type of application
we have in mind, is to help verify that certain requirements are met in order
to apply Tauberian theorems. In the study of functions represented by power
series, a theorem is called Abelian if properties of the represented functions
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are found from properties of the coefficients. A theorem is called Tauberian
if properties of the coefficients are found from properties of the function. The
following is a very useful theorem of Tauberian type.

Theorem 1.1 ([5], pg. 33). Let
∑∞
n=0 pnx

n be a power series converging for
|x| < 1. Suppose that the coefficients pn are nonnegative and nonincreasing.
Suppose in addition that for some β, with 0 < β < 1,

∞∑
n=0

pnx
n =

1
(1− x)β

+ o

(
1

(1− x)β

)
.

Then limn→∞ Γ(β)n1−βpn = 1 .

This theorem is a consequence of the famous Tauberian theorem of Hardy
and Littlewood, which in turn is a converse of Appell’s theorem of Abelian
type.

Theorem 1.2 (Appell’s Theorem, [5], pg. 12). Let δ ≥ 0 and A be constants
and let SN =

∑N
n=0 bn ≈ ANδ/Γ(1 + δ), as N →∞. Then

lim
x→1−

(1− x)δ
∞∑
n=0

bn x
n = A.

Here the symbol sn ≈ tn stands for lim sn/tn = 1.

We now explain how our theorem can be employed in the application of
Tauberian results. A common situation in which Tauberian theorems are used
is in the study of renewal type equations. Given sequences (kn) and (gn) , one
would like to be able to say something about the rate of convergence to zero
of the sequence (pn), where pn satisfies

pn = kn +
n−1∑
j=1

pn−j gj .

Consider the power series

h(x) =
∞∑
n=1

pn x
n, g(x) =

∞∑
n=1

gn x
n, and k(x) =

∞∑
n=1

kn x
n.

From the recursive equation for pn above we get h(x) = k(x) + g(x)h(x), and,
therefore, h(x) = k(x)

1−g(x) . Suppose that
∑∞
n=1 gn = 1 and that SN =

∑N
n=1 kn
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behaves as SN ≈ C ·Nδ, when N →∞, for some δ with 0 < δ < 1 and some
C > 0. Setting β = 1− δ we get

h(x)
(1− x)−β

=
k(x)

(1− x)−β+1

1− x
1− g(x)

.

By Theorem 1.2 the limit of k(x)/(1− x)−β+1 as x→ 1− exists.
If gn converges to zero fast enough (for example, gn = O(n−(1+b)), with

b > 1), then g(x) is differentiable at x = 1 (see [1], Vol. II). This assures the
existence of the limit of (1− x)/(1− g(x)) as x→ 1− .

The conclusion is that limx→1−
h(x)

(1−x)−β exists. Now in order to use Theo-
rem 1.2 and obtain an estimate of the rate of convergence of pn to 0, we need
(pn) to be monotone.

When pn is obtained by means of

h(x) =
1

1− f(x)
, (1)

with f(x) =
∑∞
n=1 an x

n, our theorem can be used to establish monotonicity
of (pn).

Indeed, our result was applied with this purpose by A. Fisher and A.
Lopes in [2], to estimate a lower bound for the polynomial decay of correlation
for the Gibbs measure of a certain one-dimensional dynamical system with
an indifferent fixed point. This system is a piecewise linear version of the
Manneville-Pomeau map (see [4]). More precisely, for T a two–to–one map
of the interval [0, 1] to itself, and ψ : [0, 1] → R a non-Hölder potential, the
associated Ruelle-Perron-Frobenius operator L, defined by

(Lϕ)(x) =
∑

T (y)=x

eψ(y)ϕ(y) ,

is known to satisfy

lim
n→∞

(Lnϕ) (x) =
∫
ϕ(y) dµ(y)

for any x ∈ [0, 1] and observable ϕ : [0, 1] → R , where µ is the equilibrium
measure for the potential ψ. In [2], in order to estimate the velocity of decay
of the nth order correlation

cn =
∫
ϕ (Tn(x))ϕ(x) dµ(x)−

(∫
ϕ(y) dµ(y)

)2

=
∫
ϕ(x)(Lnϕ)(x) dµ(x)−

∫
ϕ(x)

(∫
ϕ(y) dµ(y)

)
dµ(x)

=
∫
ϕ(x)

(
Lnϕ(x)−

∫
ϕ(y) dµ(y)

)
dµ(x) ,
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an estimate is needed for the velocity of convergence in n of the term

dn = (Lnϕ)(x)−
∫
ϕ(y) dµ(y)

for different values of x. For each given x there is an associated renewal
equation for dn, from which functional equations of type (1) follow. Corollary
3.5 of the present paper is used in [2] to estimate a lower bound for dn. The
final result in [2] is that the correlation cn is of order n−γ , γ > 1.

2 Kaluza’s Theorem

In this section, for the sake of completeness, we state and transcribe the proof
of a result of T. Kaluza [3] that is used in the proof of our main theorem.

Theorem 2.1 ([3], Theorem 3). If(
1 +

∞∑
n=1

βn x
n

)(
1−

∞∑
n=1

αn x
n

)
= 1 (2)

for two power series with positive radius of convergence, β1 > 0, and∣∣∣∣ βn−1 βn
βn βn+1

∣∣∣∣ ≥ 0 , for all n ≥ 1 (3)

(take β0 = 1), then αn ≥ 0 , for all n ≥ 1.

Remark. Condition (3) can be rephrased as a condition relating the geometric
means (βn+1)2 ≤ βn βn+2 or still by saying that the sequence (βn+1/βn) is
nondecreasing. Note that (3) implies that βn > 0,∀n. Indeed suppose we
already know that βn−1 > 0 and βn > 0. From (3) it follows that βn−1 βn+1 ≥
β2
n > 0, and then βn+1 > 0. Since 1 = β0 > 0 and β1 > 0, the conclusion

follows. Therefore (3) is equivalent to∣∣∣∣ βm βn
βm+1 βn+1

∣∣∣∣ ≥ 0 , for all n ≥ m . (4)

Proof of Theorem 2.1. From (2) it follows

1 + (β1−α1)x+ (β2−α1 β1−α2)x2 + (β3−α1 β2−α2 β1−α3)x3 + · · · = 1 ,

and, from this, the recursive relation

βn =
n∑
k=1

αk βn−k , (5)
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where β0 = 1. Solving (5) for αn , we get

αn+1 = βn+1 −
n∑
k=1

αk βn−k+1 . (6)

Multiplying (5) by βn+1 and (6) by βn, and adding the results together, it
follows that

βn αn+1 =
n∑
k=1

∣∣∣∣ βn−k βn
βn−k+1 βn+1

∣∣∣∣ αk (7)

Note that from (4) it follows that all the determinants appearing in (7) are
nonnegative. Combining this with the fact that βn > 0 , for all n , and α0 > 0 ,
we obtain, by induction on n , αn ≥ 0 , for all n .

3 Main Theorem

Given a series
∑∞
n=1 an of nonnegative terms satisfying

∞∑
n=1

an = 1 , (8)

it follows that the series

f(x) =
∞∑
n=1

an x
n (9)

has radius of convergence at least 1, and satisfies |f(x)| < 1 if |x| < 1 and
f(1) = 1. Define

h(x) =
1

1− f(x)
=
∞∑
n=0

pn x
n . (10)

Since also h(x) = 1
1−f(x) =

∑∞
n=0

[
f(x)

]n, the series of h(x) has radius of
convergence 1, and p0 = 1, pn > 0,∀n, and

∑∞
n=0 pn =∞.

Theorem 3.1. Let
∑∞
n=1 an be a series of positive decreasing terms satisfying

(8) and let f(x) and h(x) be defined by (9) and (10), respectively. If

a2 ≤ (1− a1) a1 (11)

and
rn+1 (an − an+1)− (an+1)2 ≥ 0, ∀n ≥ 2 , (12)

where rn =
∑∞
m=n+1 am = 1 − (a1 + a2 + · · · + an) is the tail of the series,

then the sequence (pn) of coefficients of h(x) is nonincreasing.
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Proof. Note that

h(x) =
1

1−
∞∑
n=1

an x
n

=
1

∞∑
n=1

an −
∞∑
n=1

an x
n

=
1

(1− x)
∞∑
n=1

(1 + x+ · · ·+ xn−1) an

=
1

1− x
1

1 + r1 x+ r2 x2 + · · ·
.

Let αn be given by

1
1 + r1 x+ r2 x2 + · · ·

= 1−
∞∑
n=1

αn x
n.

We then have

h(x) =

( ∞∑
n=0

xn

)(
1−

∞∑
n=1

αn x
n

)
and, hence, pn = 1 − α1 − α2 − · · · − αn. Therefore to show that (pn) is
nonincreasing, it suffices to show that αn ≥ 0, for all n . Since r1 = a1 > 0,
by Theorem 2.1, it suffices to verify that

(r1)2 ≤ r2 (13)

and that
(rn)2 ≤ rn−1 rn+1 , ∀n ≥ 2 . (14)

But (13) is equivalent to (11), and (14) follows from (12).

Corollary 3.2. Let
∑∞
n=1 an be a series of positive decreasing terms satis-

fying (8) and let f(x) and h(x) be defined by (9) and (10), respectively. If the
sequence (an) satisfies (11) and

(an+1)2 ≤ an an+2 , (15)

for all n ≥ 2 , then the sequence (pn) of coefficients of h(x) is nonincreasing.

Proof. It suffices to show that

(an+1)2

an − an+1
≤ an+2 + an+3 + an+4 + · · · . (16)
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But
(an+1)2

an − an+1
= an+1

[
an+1

an
+
(
an+1

an

)2

+
(
an+1

an

)3

+ · · ·
]
. (17)

Therefore for (16) it is enough to have each term on the right-hand side of
(16) less than or equal to the corresponding term on the right-hand side of
(17); i.e., it is sufficient that

(an+1)k ≤ (an)k−1 an+k , ∀ k ≥ 2, and ∀n ≥ 1. (18)

But (15) is a special case of (18), and the general case follows by an induction
argument.

Lemma 3.3. If
∑∞
n=1 an = 1 is a series of positive terms satisfying (15) for

all n ≥ 1 , then (11) holds.

Proof. Since (an+1/an) is nondecreasing,
(
a2
a1

)n
≤ a2

a1

a3
a2
· · · an+1

an
, for all

n ≥ 1. Therefore an+1 ≥ (a2)
n

(a1)n−1 , for all n ≥ 1. But combining this with
1 = a1 + a2 + a3 + · · · yields a2 ≤ (1− a1) a1 .

Corollary 3.4. Let
∑∞
n=1 an be a series of positive decreasing terms, and let

f(x) and h(x) be defined by (9) and (10), respectively. If the sequence (an)
satisfies (15) for all n ≥ 1, then the sequence (pn) of coefficients of h(x) is
nonincreasing.

Remark. The hypotheses of Corollary 3.4 are slightly weaker than those of
Corollary 3.2. In practice, what makes the former easier to apply than the
latter, is that for a sequence to satisfy a condition like (an+1)2 ≤ an an+2, it
suffices that some positive multiple of the sequence satisfies it. The same is
not true for the condition a2 ≤ (1− a1) a1 . Nevertheless a series may satisfy
the hypotheses of Corollary 3.2 but not those of Corollary 3.4. An example is

f(x) =
1
2
x+

1
4
x2 +

1
16
x3 +

1
16

3
4
x4 +

1
16

(
3
4

)2

x5 + · · · .

Corollary 3.5. Under the same general assumptions as above, if (an) satisfies

an = F (n), for all n ≥ 1, (19)

with F : [1,∞) −→ (0,∞) a log-convex function (i.e., a function such that
log(F (x)) is convex), then the same conclusion of Corollary 3.4 holds; i.e., the
Taylor coefficients of h(x) form a nonincreasing sequence.
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4 Application

For any real γ > 1 , let fγ(x) =
∑∞
n=1

n−γ

ζ(γ) x
n, where ζ(x) =

∑∞
n=1

1
nx is the

Riemann Zeta function. Here, an = F (n) , with F (x) =
x−a

ζ(a)
, and

log(F (x)) = − log(ζ(a))− a log(x)

is a convex function. By Corollary 3.5, the Taylor coefficients of h(x) = 1
1−f(x)

are nonincreasing.
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