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SCRAMBLED SETS FOR TRANSITIVE
MAPS

Abstract

We deal with two types of chaos: the well known chaos in the sense of
Li and Yorke and ω-chaos which was introduced in [S. Li, Trans. Amer.
Math. Soc. 339 (1993)]. In this paper we prove that every bitransitive
map f ∈ C(I, I) is conjugate to g ∈ C(I, I), which satisfies the following
conditions,

1. there is a c-dense ω-scrambled set for g,

2. there is an extremely LY-scrambled set for g with full Lebesgue
measure,

3. every ω-scrambled set of g has zero Lebesgue measure.

1 Introduction

Let (X, d) be a compact metric space, by C(X,X) we denote the set of all
continuous maps f : X → X, and by I the unit interval [0, 1].

For any integer n ≥ 0, let fn denotes the nth iteration of f . For any x in
X, the sequence of iterations {fn(x)}∞n=0, where f0(x) = x, is the trajectory
of x; and the set ωf (x) of all limit points of the trajectory is the ω-limit set
of x under f .

Let A ⊂ X. By ]A we denote the cardinality of A, by (A)′ the set of all
limit points of the set A, and by λ(A) the Lebesgue measure of A. By an
interval we mean a non-degenerate one.

The next definition has been introduced by Shihai Li in [8].
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Definition 1.1. Let f ∈ C(X,X) and S ⊂ X. We say that S is an ω-
scrambled set for f if, for any x, y ∈ S with x 6= y,

1. ωf (x)\ωf (y) is uncountable,

2. ωf (x) ∩ ωf (y) is non-empty,

3. ωf (x) is not contained in the set of periodic points.

We say that f is ω-chaotic, if there exists an uncountable ω-scrambled set.

Remark. If X = I, then the third condition is superfluous (see, e.g., [8]).

Theorem 1.1. ([8], Theorem). For f ∈ C(I, I) the following statements are
equivalent,

1. f has a positive topological entropy,

2. f is ω-chaotic,

3. there is an uncountable ω-scrambled set S such that
⋂
x∈S ωf (x) 6= ∅.

Definition 1.2. Let f ∈ C(X,X). A subset S of X containing no periodic
point is called an LY-scrambled set for f if, for any x, y ∈ S with x 6= y,

1. lim supn→∞ d(fn(x), fn(y)) > 0,

2. lim infn→∞ d(fn(x), fn(y)) = 0.

We say that f is chaotic in the sense of Li and Yorke (briefly, LY-chaotic), if
there exists an uncountable LY-scrambled set.

In the case that lim supn→∞ d(fn(x), fn(y)) = diam(X) we speak about
extremal LY-scrambled set and extremal LY-chaotic map.
Remark. It is known that positive topological entropy implies LY-chaos, but
not conversely, and hence ω-chaos implies LY-chaos, but not conversely.

The measure of LY-scrambled sets of f ∈ C(I, I) was studied by many
authors. In [10] there is given an example of a function whose scrambled set
has full outer Lebesgue measure, maps in [7] and [11] have scrambled sets
with positive Lebesgue measure, [5] and [9] give examples of function chaotic
almost everywhere. Babilonová in [1] (resp. [2]) improved these results by
showing that any bitransitive continouos map of the interval is conjugate to a
map extremely LY-chaotic (resp. distributionally chaotic) almost everywhere.

It is natural to ask, what can be said about a “size” of ω-scrambled set. We
prove, that every bitransitive f ∈ C(I, I) is conjugate to g ∈ C(I, I), which
satisfies the following conditions:
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1. there is a c-dense ω-scrambled set for g,

2. there is an extremely LY-scrambled set for g with full Lebesgue measure,

3. every ω-scrambled set of g has zero Lebesgue measure.

2 Main Result

Let us recall some known definitions. The map f ∈ C(I, I) is called (topologi-
cally) transitive if for any intervals U, V in I, there exists a positive integer k,
such that fk(U)∩V 6= ∅; f is called bitransitive if f2 is transitive. Two maps
f , g ∈ C(I, I) are (topologically) conjugate (resp. semiconjugate) if there is
a homeomorphism (resp. surjective map) h ∈ C(I, I), such that h ◦ f = g ◦ h.
We say that a subset A of I is c-dense in I if, for every interval J ⊂ I, the
set A ∩ J has the continuum cardinality; i.e., ](A ∩ J) = c. Throughout this
paper c-dense set means set, which is c-dense in I.

Lemma 2.1. ([5], Proposition 4.4 or [3], Proposition 44). Let f ∈ C(I, I) be
a bitransitive map, and J,K ⊂ (0, 1) compact intervals. Then fn(J) ⊃ K, for
any sufficiently large n.

Lemma 2.2. A map f ∈ C(I, I) is transitive if and only if,

for any interval J ⊂ I, the set I\
∞⋃
n=0

fn(J) has at most three points. (1)

Proof. Let J ⊂ I be an interval. From Lemma 2.1 it follows, that I \⋃∞
n=0 f

n(J) = {0, 1} for any bitransitive map f .
If f is transitive, but not bitransitive, then there exists c ∈ (0, 1) such that

f([0, c]) = [c, 1], f([c, 1]) = [0, c] and both f2|[0,c] and f2|[c,1] are bitransitive
(see, e.g., [3], Proposition 42). Hence I \

⋃∞
n=0 f

n(J) = {0, c, 1}.
The opposite implication is obvious.

The following theorem is the main result of this paper.

Theorem 2.3. Every bitransitive f ∈ C(I, I) is conjugate to g ∈ C(I, I),
which satisfies the following conditions,

1. there is a c-dense ω-scrambled set for g (hence g is ω-chaotic),

2. there is an extremely LY-scrambled set for g with full Lebesgue measure
(consequently, g is extremely LY-chaotic),

3. every ω-scrambled set of g has zero Lebesgue measure.
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Before proving this theorem we formulate the following auxiliary lemmas.

Lemma 2.4. Let f ∈ C(I, I) be transitive, then f has a c-dense ω-scrambled
set.

Proof. It is known, that each transitive map f ∈ C(I, I) has positive topo-
logical entropy (see e.g. [3]). By Theorem 1.2 f has an ω-scrambled set S of
cardinality c. Order S into a transfinite sequence S = {xα}α<Ω, where Ω is
the first ordinal number of the power of continuum. Let I = {Iα}α<Ω be a
transfinite sequence of all subintervals of I. Let S? = {x?α}α<Ω be such that
x?α ∈ Iα and there exists nα such that fnα(x?α) = xα; this is possible by (1).
It is easy to see, that ωf (xα) = ωf (x?α) and hence S? is an ω-scrambled set
for f . The c-density of S? is obvious.

The following two lemmas and most of all the constructions from their
proofs, are almost the same as in Lemma 2 and Theorem 1 from [1]. But to
prove Lemma 2.5 we need slightly modify the original proof, and hence it is
necessary to rewrite it. And although the proof of Lemma 2.6 is similar to the
proof of Theorem 1 from [1], we give it here for completeness.

Lemma 2.5. Let f ∈ C(I, I) be bitransitive, J ⊂ (0, 1) a compact interval,
M an infinite set of positive integers, and let pn ∈ (0, 1) be such that the
accumulation points of {pn}∞n=1 are in {0, 1}, let {rn}∞n=1 be a sequence of
all rational numbers in I. Then there are a non-empty nowhere dense perfect
set P ⊂ J , and an increasing sequence {k(n)}∞n=1 in M with the following
properties,

fk(n)(P ) ⊂
[
pn −

1
n
, pn +

1
n

]
, for any n, (2)

lim sup
n→∞

|fn(x)− fn(y)| = 1, for any x, y ∈ P, x 6= y, (3)

and
ωf (x) = I, for any x ∈ P. (4)

Proof. Put qn = 1 − pn. We let the set P be in the form P =
⋂∞
n=1 Pn

where, for any n, Pn is the union of pairwise disjoint compact intervals Us,
s ∈ {0, 1}n, and Pn+1 ⊂ Pn. The intervals Us are defined inductively by n.

Stage 1: Let U0, U1 be disjoint closed subintervals of J . Put P1 = U0 ∪U1,
and let t(1, 0) < t(1, 1) < t(1, 2) be any numbers in M .

Stage n+ 1: Sets P1, ..., Pn, and positive integers
t(1, 0) < t(1, 1) < t(1, 2) < t(2, 0) < t(2, 1) < t(2, 2) < t(2, 3) < ... <

t(n, 0) < t(n, 1) < ... < t(n, n+ 1) in M are available from stage n such that,
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for any s = s1...sv ∈ {0, 1}v, 1 ≤ v ≤ n, 1 ≤ j ≤ v + 1,

|Us| ≤
1
v
, (5)

f t(v,j)(Us) ⊂
[
pv −

1
v
, pv +

1
v

]
if j = 1 or sj = 0, (6)

f t(v,j)(Us) ⊂
[
qv −

1
v
, qv +

1
v

]
if sj = 1, (7)

f t(v,0)(Us) ⊂
[
rv −

1
v
, rv +

1
v

]
. (8)

By Lemma 2.1 there is an integer t(n + 1, 0) > t(n, n) in M such that, for
any s ∈ {0, 1}n, rn+1 ∈ f t(n+1,0)(Us). Hence, for any s ∈ {0, 1}n, there is a
compact interval Vs ⊂ Us such that

f t(n+1,0)(Vs) ⊂
[
rn+1 −

1
n+ 1

, rn+1 +
1

n+ 1

]
. (9)

Again by Lemma 2.1 there is an integer t(n + 1, 1) > t(n + 1, 0) in M such
that, for any s ∈ {0, 1}n, pn+1 ∈ f t(n+1,0)(Us). Hence, for any s ∈ {0, 1}n,
there is a compact interval V 1

s ⊂ Vs such that

f t(n+1,1)(V 1
s ) ⊂

[
pn+1 −

1
n+ 1

, pn+1 +
1

n+ 1

]
. (10)

Next, there is a t(n + 1, 2) > t(n + 1, 1) in M such that, for any s ∈ {0, 1}n,
{pn+1, qn+1} ⊂ f t(n+1,2)(V 1

s ). Hence, for any s = s1s2...sn ∈ {0, 1}n there is
a compact interval V 2

s ⊂ V 1
s such that x ∈ f t(n+1,2)(V 2

s ), where x = pn+1 if
s1 = 0, and x = qn+1 otherwise, and such that |f t(n+1,2)(V 2

s )| ≤ 1/(n + 1).
Applying this process n times we obtain integers t(n + 1, 2) < t(n + 1, 3) <
... < t(n+ 1, n+ 1) in M , and compact intervals V 2

s ⊃ V 3
s ⊃ ... ⊃ V n+1

s such
that, for any s = s1s2...sn ∈ {0, 1}n, and any 2 ≤ j ≤ n+ 1,

f t(n+1,j)(V js ) ⊂
[
pn+1 −

1
n+ 1

, pn+1 +
1

n+ 1

]
if sj = 0, (11)

and

f t(n+1,j)(V js ) ⊂
[
qn+1 −

1
n+ 1

, qn+1 +
1

n+ 1

]
if sj = 1. (12)
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Finally, let t(n + 1, n + 2) > t(n + 1, n + 1) be from M and such that, for
any s ∈ {0, 1}n, f t(n+1,n+2)(V n+1

s ) ⊃ {pn+1, qn+1}. Then there are disjoint
compact intervals Us0, Us1 ⊂ V n+1

s such that

|Us0|, |Us1| ≤
1

n+ 1
, (13)

f t(n+1,n+2)(Us0) ⊂
[
pn+1 −

1
n+ 1

, pn+1 +
1

n+ 1

]
, (14)

and

f t(n+1,n+2)(Us1) ⊂
[
qn+1 −

1
n+ 1

, qn+1 +
1

n+ 1

]
. (15)

Thus we have sets Us defined for any s ∈ {0, 1}n+1. They satisfy (5) by (13),
(6) by (10), (11), (14); (7) by (12), and (15); and (8) by (9). This completes
the induction.

Put P =
⋂∞
k=1

⋃
s∈{0,1}k Us and for any n , k(n) = t(n, 1). Then P is a

nowhere dense perfect set; this follows by (5). By (6), P satisfies (2). Let us
prove (3).

Let x and y be distinct points in P . Then for any positive integer K there
are s, s̃ ∈ {0, 1}K such that x ∈ Us, y ∈ Us̃. Take K sufficiently large so that
the sets Us and Us̃ are disjoint. Thus, s 6= s̃ and hence, sj 6= s̃j for some
j, where s = s1...sK , s̃ = s̃1...s̃K . Without loss of generality assume sj = 0
and s̃j = 1. Let n > K. Then by (6) and (7), |f t(n,j)(x) − f t(n,j)(y)| ≥
|pn − qn| − 2/n→ 1 for n→∞, which implies (3).

Finally, it remains to prove (4). Since ({rn}∞n=1)′ = I and (8) is fulfilled,
it is easy to see, that (4) is satisfied.

Lemma 2.6. Let f ∈ C(I, I) be bitransitive. Then there exists a set S, which
is c-dense, Fσ, extremely LY-chaotic and ωf (x) = I, for every x ∈ S.

Proof. Define by induction a sequence S1 ⊂ S2 ⊂ ... of perfect extremely
LY-scrambled sets, and a sequence M1 ⊃ M2 ⊃ ... of infinite sets of positive
integers such that

fd(n)(Sm) ⊂
[
0,

1
n

]
for every n, (16)

where {d(n)}∞n=1 is an enumeration of Mm. Apply Lemma 2.5 to pn = 1/(n+
1), J = [1/3, 2/3], and the set of positive integers M , to get P and {k(n)}∞n=1.
Denote S1 = P and M1 = {k(n)}∞n=1.

Now, assume there are sets Sm and Mm satisfying (16). Let J be the
middle third of the interval complementary to Sm of maximal length. Apply
Lemma 2.5 to M = Mm, pn = 1/(n + 1) for n odd, pn = 1 − 1/(n + 1) for
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n even, and qn = 1 − pn, to get P and {k(n)}∞n=1. Then Sm+1 = Sm ∪ P
is a perfect extremely LY-scrambled set since, for x ∈ Sm and y ∈ P , by (2)
and (16), limn→∞ |fk(n)(x) − fk(n)(y)| = 1. To complete the induction put
Mm+1 = {k(2n+ 1)}∞n=1.

Let S =
⋃∞
m=1 Sm. Then S is an extremely LY-scrambled set of type Fσ,

which is c-dense in I. By (4) it is obvious that ωf (x) = I, for every x ∈ S.

Now, we can prove Theorem 2.3.

Proof of Theorem 2.3. Let f ∈ C(I, I) be bitransitive. Let S be the set
from Lemma 2.6, and ϕ ∈ C(I, I) be a homeomorphism such that λ(ϕ(S)) = 1
(such a homeomorphism exists since, by [6], any c-dense Fσ set is homeomor-
phic to a set of full Lebesgue measure). Put g = ϕ ◦ f ◦ ϕ−1. So f and g are
conjugate.

1. Since f and g are conjugate, they are both bitransitive and it suffices to
apply Lemma 2.4 to obtain our assertion.

2. Since S is extremely LY-scrambled for f , and f and g are conjugate,
ϕ(S) must be extremely LY-scrambled for g.

3. Let Sω be an ω-scrambled set for g. It is easily seen that ](Sω∩ϕ(S)) ≤ 1.
Since λ(ϕ(S)) = 1, every ω-scrambled set Sω has zero Lebesgue measure.

Remark. The first condition from Theorem 2.3 is true for any transitive map,
since Lemma 2.4 is true for transitive maps.

Theorem 2.7. Let f ∈ C(I, I) be a map with positive topological entropy.
Then, for some k ≥ 1, fk is semiconjugate to a map g ∈ C(I, I), which
satisfies the following conditions,

1. there is a c-dense ω-scrambled set for g,

2. there is an extremely LY-scrambled set for g with full Lebesgue measure,

3. every ω-scrambled set of g has zero Lebesgue measure.

Proof. There exists a positive integer k such that fk is semiconjugate to a
bitransitive map g ∈ C(I, I) (see [4]). Using Theorem 2.3. we obtain the
assertion.
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