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Abstract

In this paper we introduce a measure on an interval connected with
variation of given function f. Next we use this measure to calculate
variation of a composition.

Let f : [0,1] — [0,1] be a given continuous function. For every closed
interval [a, b] C [0,1] let v*([a, b]) = \/Z f. (We allow [a,b] to be a degenerate
interval, ; i.e., a = b. In this case v*([a,b]) = 0.) Now for every set A C [0, 1]

let
vo(A) = inf {) v*(I): AcC | J L}
{n} neN neN

where {I,,} denotes an arbitrary family of closed intervals covering A.

Proposition 1. The function v, : 201 — R, U {+o0} is an outer measure
in sense of Carathéodory.

The proof is easy and hence is omitted.

Proposition 2. FEvery closed interval [a,b] C [0,1] satisfies Carathodory’s
condition.

PRrROOF. Let [a,b] C [0,1] and let W C [a,b], Z C [0,1]\ [a, b]. Let {I,, }nen be
a family of closed intervals covering WU Z. For every n € N, let J,, = I,,N[a, b];
K, =1,Nn[0,a); L, = I, N [b,1]. Then the family {.J,,} covers set W, and the
family {K,,} U{L,} covers set Z, moreover,

S 0t T) =Y vt (n) + Y vt (EK) + > vt (L)

neN neN neN neN
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So
v WUZ)>v.(W)+v.(2).

O

Corollary 1. By virtue of the Carathodory’s theorem, the function v, cut to
the o-algebra of sets satisfying condition of Carathodory is a measure.

Let’s denote this measure by v, and this o-algebra by S. Of course both
S and v depend on function f. However by virtue of Proposition 2, S always
contains the Borel sets.

Proposition 3. For every interval [a,b] C [0,1], v([a,b]) = \/Z I

PROOF. The single-element family consisting of the interval [a, b] covers this
interval. So clearly v([a,b]) < \/Z f. Now let (I,)nen be a family of closed
intervals covering [a,b]. We show that >° .V, f > \/Z f. Let N be the
indicatrix of function f cut to the interval Ij. Then \/Ik f= f[O,l] Nidu. We
show, that 7, .y Ny > N, where N stands for the indicatrix of function f cut
to the interval [a,b]. Let y € [0,1] and let ¢ € N be a given number less than
or equal to N(y). Then there exists at least ¢ different roots x1, z, ...x4 of the
equation f(x) = y. For every ¢ < ¢, there exists at least one number n such
that z; € (I,,). Let ng € N be a number such that the set [J!°; I; contains
every point &1, 2z, ...xq. Thend, - Ni(y) = D% Ni(y) > ¢ so it follows that

ZkeN Ni(y) > N(y).
The series ), N; of non-negative functions converges to some function

N*:[0,1] = R, and N* > N. So

b
R S B A

neN I, neN [0,1] a
O

Theorem 1. Let f:[0,1] — [0,1] be a continuous function, and let us define
the measure vy using f the same way as above. Let g : [0,1] — [0,1] be a
continuous function, and Ny : [0,1] — N U {oco} stands for the indicatriz of
function g. Then variation of composition f o g can be expressed by following

formula: \/(1) fog= fol Nydvy.

PROOF. Let the sequence af = 2% divide the interval [0,1] into 2" equal

parts. Let m} and M’ stand for the minimum and maximum of the function
g on interval [af,a},,]. Let A} = \/%f f and let A" = Zi:gl A7, At the
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beginning we observe, that the sequence A™ is increasing. In order to do this
let us consider an arbitrary interval [a,b] C [0,1]. Let m and M stand for
the minimum and maximum of function g on this interval. Now let m; and
M; stand for the minimum and maximum of the function g on [a, 2], and
mo and My on [%*b,b], respectively. Since function ¢ is continuous, it has

Darboux property, so
[m1, Ml] U [mg, Mg] = [m, M]

and then \/%11 f+ \/%j f> \/fyvl[ f. As aresult A5 JrAg];:}l > A} and at last
At > An,

Now observe, that for every n € N A™ < \/(1) fog. In fact, we only have to
show that A7 < \/3**' fog. Let us consider an arbitrary interval [a,b] C [0,1].
Let m and M stand for the minimum and maximum of the function g on this
interval. Let A = \/% f- We show, that A < \/Zf og.Let P:m =yy <
y1 < ... < yp = M be a given division of interval [m, M]. Let ¢,d € [a, b], be
numbers such that g(¢) = m and g(d) = M. For instance suppose that ¢ < d.
Since the function g has Darboux property, there exists z1 € (¢,d) such that
g(x1) = y1. Next, there exists zo € (z1,d) such that g(x2) = y2. And so on,
to x,,_1. The sequence x,, is increasing, and commonly with ¢ and d forms the
division of the interval [c, d]. Therefore

n—1 n—1 d b
D oIFw) = Fyi)l = Y 1 (g(@) = fg(zia ) <\ feg<\/fog.
=0 1=0 c a

Since the division P was arbitrary, we obtain that A = \/% f< \/Z fog.

Now we show that lim,, .., A™ = \/éf og. Let € > 0. Let P:0 =129 <
x1 < ... < 2, = 1 be a given division of the interval [0, 1]. The function fog is
uniformly continuous on [0, 1]. Let us take 6 > 0 such that |f(g())—f(9(3))] <
5 if |a — 8| < 6. Let n € N be such number, that 5 < 4, and at the same
time % < ming—1_ p(x; —x;—1). Let al = 2%, 1=1.2"—1.

Let us consider Q) : a9 < a1 < ... < @ constructed with points x; and af.
Hence

-1

k—1
S 1f(g(@) - Flg@i)| < 3 1F(g() = Flglais))]-
1=0

i=0

The last sum contains 2k — 2 components of type |f(g(a})) — f(g(z;))| or
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|f(g(x;)) — f(g(a}))|. Each of them can be estimated by 5. Consequently,

-1 on—1
> 1f(glaw)) = Flglair))l < > 1£(gla)) = flglafyi))| + €
i=0 i=0
< Z_: A +e=A"+e
i=0

It implies, that for every e and every division P there exists n which satisfies
the above inequality. Therefore lim,, ., A" = \/(1) fog.

Now we show, that lim,,_,,, A™ = f[o,u Nydvy. Let us fix an n € N. For
k' =0.2"—11let N :[0,1] — oo be a characteristic function of interval
[mj, Mj!]. Next let N = 212;;1 N{'. Sequence N™ is increasing. We write
C = {5 :ne€Nji=1,.,2"} For every y such that y ¢ g(C) we have
N™(y) — Ng4(y). Since g(C) is at most countable, we obtain, that the sequence
N™ is converging to function N, vs-almost everywhere. By virtue of propo-
sition 2 every function N;' is measurable with respect to v¢. Therefore N is
measurable, and consequently N, is measurable too. Moreover, by virtue of

Proposition 3, [, Nftdv = \/yk f = Ap. So [,/ N"dv = A", and finally,
by Lebesgue’s Monotone Convergence Theorem f[o 1 Ngdvy = lim,_ A™.
Hence \/éfog:fo1 Ny dvy. O
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