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Stwosza 57, 80–952 Gdańsk, Poland. e-mail: matan@julia.univ.gda.pl

ON SOME PROPERTIES OF THE CLASS OF
REAL FUNCTIONS WITH λ AND λ′

GRAPHS

Abstract

We show that (under CH) there exists a CIVP function with a λ′

graph. We examine some properties ofMa(λ) andMa(λ′) class of real
valued functions.

1 General Notation

First, let us recall a couple of definitions:

1. A set L is said to be a λ-set if every countable subset of L is Gδ relative
to L.

2. A subset L of a space X is said to be a λ′ (rel X) if for every countable
subset D of X, L ∪D has property λ.

We shall need also the following well-known fact, basic in our investigations.

Fact 1.1. If A ⊆ R has property λ′ (rel R) and is the one-to-one projection
of the subset H of R2 (i.e., H is the graph of an arbitrary real valued function
with domain A), then H has property λ′ (rel R2). The corresponding assertion
for the λ property instead λ′ holds.
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(See for example [1] or [8]). Note also that property λ′ is countably addi-
tive. On the other hand, property λ is not preserved even under taking finite
unions.

For A ⊆ R2 we denote by Ax and A(y) the x-section and y-section of A,
respectively (i.e., Ax = {y : 〈x, y〉 ∈ A}, A(y) = {x : 〈x, y〉 ∈ A}). Throughout
this paper no distinction is made between a function and its graph. Therefore,
to shorten notation we write f ∈ λ (λ′, resp.) in the case when f has a λ (λ′,
resp.) graph or we say that f is a λ (λ′, resp.) function. Let C denote as usual
the ternary Cantor set.

We say that a function f ∈ RR has the CIVP property (Cantor Interme-
diate Value Property) if for all different x, y ∈ R such that f(x) 6= f(y) and
for every Cantor set P between f(x) and f(y), there exists a Cantor set Q
between x and y such that f(Q) ⊆ P .

Let Mkb denote the Mokobodzki σ-ideal:

Mkb = {X ⊆ R2 : ∀ε>0∃U⊇X
[
U open ∧ ∀xµ(Ux) < ε

]
}.

Let us denote by Mkb−1 the “inverse” Mokobodzki σ-ideal, namely:

Mkb−1 = {i(X) : X ∈ Mkb},

where i(〈x, y〉) = 〈y, x〉. It is well known that the σ-ideals Mkb, Mkb−1 are
generated by Gδ sets; i.e.,

∀X∈I∃G∈Gδ∩IX ⊆ G.

where I = Mkb or I = Mkb−1.
In the sequel, Perf C denotes the collection of all perfect subsets of R home-

omorphic to 2ω. By Intr we denote the family of all open intervals (a, b), a < b.
We define ωEv1 (ωOd1 ) to be the set of all even (odd, respectively) ordinals from
ω1.

2 Introduction

As it was observed by T. Natkaniec and I. Rec law, under CH there exists
a function f ∈ λ′ such that f is almost continuous. Indeed, suppose that
S ⊆ R is a c-dense λ′ subset of R (for example, take any c-dense Sierpiński
set). There exists a function f1 : S → R such that for each f∗ ⊇ f1, f∗ is
almost continuous. (see for example [6] or [3]). Let f̃ : R → S be any one-
to-one function. Note that λ′ subsets of R2 forms a σ-ideal, thus if we define
f = f̃ � (R\S)∪f1, then the function f will be almost continuous and f ∈ λ′.
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On the other hand, it is obvious that there is no λ function with the Ext
property (for definition of Ext and almost continuous property see for example
[7]).

Since AC 6→ CIV P , it is a natural question whether (under CH) there
exists a λ′ function with the CIVP property. In the sequel we shall answer
this question in the affirmative. In fact, we will show something more.

Theorem 2.1. Assume CH. There exists a function f ∈ RR such that

1. f is a λ′ set.

2. for each interval (a, b) and for each P ∈ Perf there is Q ⊆ (a, b), Q ∈
Perf such that Q ⊆ f−1[P ]. (in particular, f has the CIVP property)

We shall use two (folklore?) lemmas some of which might be well known.
We give the proofs for completeness.

Lemma 2.2. Suppose that X ∈ Mkb−1. For each P ∈ Perf C and for each
interval (a, b) ⊆ R there exists Q,R ∈ Perf such that Q ⊆ (a, b), R ⊆ P and
(Q×R) ∩X = ∅.

Proof. Since X ∈ Mkb−1, there exists G ∈ Gδ such that G ∈ Mkb−1 and
X ⊆ G. Then ∀y∈PG(y) ∈ N , thus G ∩ ((a, b) × P ) is of measure zero in
the space (a, b) × P . (homeomorphic to (a, b) × 2ω). Next, by the classical
Mycielski theorem (see [5]), the conclusion follows.

Throughout this proof, {Cα}α∈ωEv1
is a fixed enumeration of all countable

subsets of R2.

Lemma 2.3. Assume CH. Let 〈Gα : α ∈ ω1〉, 〈lα : α ∈ ω1〉 be a sequences of
subsets of R2 such that

1. ∀α∈ω1Gα ∈ Gδ and lα ∈ λ′,

2.
⋃
α<θ Gα ∪ lθ ⊆ Gθ and

⋃
α<θ Gα ∩ lθ = ∅ for each θ < ω1.

3. For each θ ∈ ωEv1 , Cθ \
⋃
α<θ Gα 6= ∅ ⇒ lθ ∩ Cθ 6= ∅.

Then the set l =
⋃
α<ω1

lα is a λ′ set.

Proof. Let D ⊆ l be a countable set. There exists θ ∈ ω1 such that D ⊆⋃
α≤θ lα. Since sets with a λ′ property forms a σ-ideal, we have

⋃
α≤θ lα ∈ λ′.

Hence there exists a Gδ set H such that H ∩
⋃
α≤θ lα = D. Thus

(Gθ ∩H) ∩ l =

[
(Gθ ∩H) ∩

⋃
α≤θ

lα

]
∪

[
(Gθ ∩H) ∩

⋃
θ<α<ω1

lα

]
= D.
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Therefore l ∈ λ.
Let D ⊆ R2 be a countable set such that D ∩ l = ∅. Then there exists

θ ∈ ωEv1 such that D = Cθ. We have Cθ \
⋃
α<θ Gα = ∅: if not we would have

lθ ∩ Cθ 6= ∅, a contradiction. This means that D = Cθ ⊆
⋃
α<θ Gα. Since⋃

α≤θ lα ∈ λ′, there exists H ∈ Gδ such that H ∩

[⋃
α≤θ lα ∪D

]
= D. Define

H∗ = Gθ ∩H, obviously H∗ ∈ Gδ. Next, we have

H∗ ∩ (l ∪D) = (Gθ ∩H) ∩

[ ⋃
α≤θ

lα ∪
⋃
α>θ

lα

]
∪D

=

[
H ∩

⋃
α≤θ

lα

]
∪D = D.

This finally proves l ∈ λ′ and finishes the proof of Lemma 2.3.

Proof of Theorem 2.1. Enumerate Intr × (Perf C ∩ N ) as {〈Iα;Pα〉 : α ∈
ωOd1 }. We will construct inductively sequences 〈Gθ : θ ∈ ω1〉 and 〈lθ : θ ∈ ω1〉
assuming the following induction hypothesis:

1. For each θ ∈ ω1, Gθ ∈ Gδ ∩Mkb ∩Mkb−1;

2. lθ : dom(lθ) → R is a one-to-one function such that dom(lθ) ∈ N and
lθ ⊆ Gθ.

Let θ ∈ ω1. Consider two cases:
Case 1: θ ∈ ωOd1 .

Define A∗θ =
⋃
α<θ Gα and H∗θ =

[⋃
α<θ dom(lα)

]
× R. One easily checks

that A∗θ ∈ Mkb∩Mkb−1 and H∗θ ∈ Mkb−1. It follows that A∗θ ∪H∗θ ∈ Mkb−1,
hence by Lemma 2.2 there exists Rθ ∈ Perf (Pθ) and Qθ ∈ Perf , Qθ ⊆ Iθ
such that (Qθ × Rθ) ∩ (A∗θ ∪ H∗θ ) = ∅. Without loss of generality, one can
assume that Qθ ∈ N . Since Rθ ∈ Perf , there is a λ′ set Sθ ⊆ Rθ of size 2ω.
Let lθ be any bijection from Qθ onto Sθ. Clearly lθ ∈ Mkb ∩Mkb−1 (since
Qθ ∈ N and Pθ ∈ N ). Hence A∗θ ∪ lθ ∈ Mkb ∩ Mkb−1; thus, there exists
Gθ ∈ Gδ ∩Mkb ∩Mkb−1 such that A∗θ ∪ lθ ⊆ Gθ.
Case 2: θ ∈ ωEv1 .

If Cθ ⊆
⋃
α<θ Gα, then let lθ = ∅. If Cθ \

⋃
α<θ Gα 6= ∅, then pick an

arbitrary zθ ∈ Cθ \
⋃
α<θ Gα and define lθ = {zθ}. Next, choose an arbitrary

Gδ set G from Mkb∩Mkb−1 which contains
⋃
α<θ Gα∪ lθ and define Gθ = G.

Observe that
∀α,β∈ωOd1

α 6= β ⇒ dom(lα) ∩ dom(lβ) = ∅.
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Indeed, suppose that α < β. Since (Qβ × Rβ) ∩ (A∗β ∪ H∗β) = ∅, we have
Qβ ∩

⋃
µ<β dom(lµ) = ∅, thus dom(lα) ∩ dom(lβ) = ∅. Let us define k =⋃

θ∈ωOd1
lθ. It is easy to see that k is a real function a domain of which is

a subset of R. Since the sequences 〈Gθ : θ ∈ ω1〉 and 〈lθ : θ ∈ ω1〉 fulfill the
conditions (1)-(3) of Lemma 2.3, we conclude that

⋃
α∈ω1

lα ∈ λ′, thus k ∈ λ′.
Suppose that I ∈ Intr , P ∈ Perf C . We will show that there exists a perfect

set Q such that Q ⊆ k−1(P )∩I. Choose θ ∈ ωOd1 such that I = Iθ and P = Pθ.
Then we have

Qθ ⊆ l−1
θ (Pθ) ⊆ k−1(Pθ).

Moreover, Qθ ⊆ Iθ = I. Therefore if we extend k arbitrarily to l ∈ λ′ defined
on whole real line we obtain the conclusion of Theorem 2.1.

3 Compositions

Theorem 3.1. Assume that there exists a set X ∈ λ′ of size 2ω. Then every
real function h ∈ RR can be expressed as the composition of two λ′ functions.

Proof. Let Λ ⊆ R be a λ′ set of size 2ω. Let h ∈ RR be arbitrary. Let
f : R→ Λ be an arbitrary bijection. Let us define g : R→ R as follows:

g(x) =
{
h(f−1(x)) if x ∈ Λ
f(x) if x 6∈ Λ

Since g � Λ ∈ λ′ and f � (R \ Λ) ∈ λ′ we infer that g ∈ λ′. It is evident that
g ◦ f = h.

We end this chapter by an example which is useful later in this article. We
use it in Example 4.4, Theorem 4.5 and Theorem 5.1.

Example 3.2.

Assume CH. Let P be a perfect set and A its countable, dense subset. Let
S ⊆ [ω]ω be a scale of size ω1. Let us denote: D = [ω]<ω. It is well known (see
for example Theorem 5.6 of [4]) that S is a λ-set and for each H ∈ Gδ such that
D ⊆ H we have H ∩ S 6= ∅. We may assume that D ⊆ C, D = C and S ⊆ C.
Let fD : A → D be a function such that ∀d∈Df−1

D ({d}) = P . Let S1 ⊆ S be
any subset of S of size ω1 such that |S \ S1| = ω1 and for each H ∈ Gδ such
that D ⊆ H we have H∩S1 6= ∅. Set S1 can be easy constructed by transfinite
induction. Let R1 be any subset of P \A of size ω1 such that R1 is a comeager
subset or P and |P \ R1| = ω1. Let {Hθ}θ∈ω1 be an enumeration of all Gδ
subsetsH of R2 such that fD ⊆ H. We will construct a sequence {〈xθ, yθ〉}θ∈ω1

such that xθ ∈ R1 and yθ ∈ S1 by transfinite induction. Suppose that we have



716 Andrzej Nowik

already constructed {〈xα, yα〉}α<θ. It is folklore that if H is a Gδ set, then
the set {y : H(y) ∩ P ∈ co − MGR(P )} is a Gδ set. Since fD ⊆ Hθ and
∀d∈Df−1

D ({d}) = P , the set H∗θ = {y ∈ C : H(y)
θ ∩ P ∈ co−MGR(P )} is a Gδ

and comeager subset of C. Moreover D ⊆ H∗θ hence H∗θ ∩S1\{yα : α < θ} 6= ∅.
Let yθ be an arbitrary element of H∗θ ∩ S1 \ {yα : α < θ}. Next, choose an
arbitrary xθ from the set R1 \ {xα : α < θ}∩H(yθ)

θ . Extend {〈xθ, yθ〉 : θ ∈ ω1}
to a one-to-one function f∗ : (R \A)→ S and then define: f (P,A) = f∗ ∪ fD.

Suppose that H is a Gδ set such that fD ⊆ H. Then there exists θ ∈ ω1

such thatH = Hθ. On the other hand, 〈xθ, yθ〉 ∈ Hθ. ThusHθ∩(f (P,A)\fD) 6=
∅. This witnesses f (P,A) 6∈ λ. Furthermore, suppose that γ ∈ R, |γ| ≥ 1.
Define

f (P,A)
γ (x) =

{
f (P,A)(x) if x ∈ A

f (P,A)(x) + γ if x 6∈ A

If γ ≥ 1, then f (P,A)
γ = (f (P,A) � A)∩

[
R× (−∞; 1〉

]
∪
(
f (P,A) � (R \A) + γ

)
∩[

R × 〈1;∞)
]
. Since f (P,A) � A is countable, f (P,A) � A is a λ set. Moreover,

f (P,A) � (R \ A) : (R \ A) → S is one-to-one, hence f (P,A) � (R \ A) + γ ∈ λ.
As R × (−∞; 1〉 and R × 〈1;∞) are Gδ sets we obtain that f (P,A)

γ ∈ λ. In a
similar fashion we can prove that f (P,A)

γ is a λ set for γ ≤ −1.

4 Additive Families

Let F ⊆ RR be a family of real functions. The following notion was first
defined and examined by T. Natkaniec in [6].

Definiton 4.1 (T. Natkaniec).

Ma(F) = {f ∈ RR : ∀h∈Ff + h ∈ F}
Mm(F) = {f ∈ RR : ∀h∈Ff · h ∈ F}

The goal of this section is to provide a detailed investigation of the families
Ma(λ),Ma(λ′). We start with a straightforward observation:

Theorem 4.2. Every continuous function belongs to Ma(λ) and to Ma(λ′).

Proof. Suppose that f is a continuous real function. Define a function
Φf : R2 → R2 as follows:

Φf (x, y) = 〈x, y + f(x)〉.

The following lists some easy properties of the function defined above:
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1. Φf is a bijection.

2. If f is a continuous function, then Φf is an automorphism of R2.

3. For each g ∈ RR, Φf [g] = f + g.

From this the theorem follows.

Theorem 4.3. Suppose that a function f ∈ RR is such that there exist a
sequence of functions {fn}n∈ω from Ma(λ′) and a partition {Xn}n∈ω of R
such that f =

⋃
n∈ω f

∗
n � Xn. Then f belongs to Ma(λ′).

Proof. Suppose that l ∈ RR has the λ′ property. Then for each n ∈ ω we
have f∗n + l ∈ λ′, therefore f + l =

⋃
n∈ω(f∗n + l) � Xn ∈ λ′, since λ′ is a

σ–ideal.

The next example shows that our previous theorem is no longer valid for
the functions with a λ graph.

Example 4.4. Assume CH. The function 2D : R→ R defined by

2D(x) =
{

0 if x ∈ R \Q
2 if x ∈ Q

does not belong to Ma(λ).

Proof. We will use the function f
R,Q)
γ from Example 3.2. We have

f
(R,Q)
2 (x) + 2D(x) = f (R,Q)(x) + 2 for x ∈ Q, and

f
(R,Q)
2 (x) + 2D(x) = f (R,Q)(x) + 2 for x ∈ R \Q.

Therefore (fR,Q)
2 + 2D) = f (R,Q) + 2 6∈ λ. Since f (R,Q)

2 ∈ λ we obtain that
2D 6∈ Ma(λ).

This example can be generalized to the following theorem.

Theorem 4.5. Assume CH. Suppose that A ⊆ R is a countable set.

1. If |A| ≤ ω, then χA ∈Ma(λ).

2. If A is a perfect set, then χA 6∈ Ma(λ).
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Proof. 1. Let l ∈ RR be a function such that l ∈ λ and suppose that D ⊆ R
is a countable set. Without loss of generality we may assume that A ⊆ D.
Since l is a λ set, there exists a Gδ set G ⊆ R2 such that G ∩ l = l � D. Then
we have

(χA + l) � D = (χA + l) � A ∪ (χA + l) � (D \A)

= (χA + l) � A ∪ l � D \A
=
[
(A× R) ∪ [G ∩ (A

c × R)]
]
∩ (χA + l).

Since (A× R) and (A
c × R) are Gδ sets we conclude that χA + l is a λ-set.

2. Let us assume that |A| ≤ ω and A is a perfect set. We will use the
function f

(A,A)
γ from Example 3.2. We have

f
(A,A)
2 (x) + 2χA(x) = f (A,A)(x) + 2 for x ∈ A, and

f
(A,A)
2 (x) + 2χA(x) = f (A,A)(x) + 2 for x ∈ R \A.

Therefore (f (A,A)
2 + 2χA) = f (A,A) + 2 6∈ λ. Since f (A,A)

2 ∈ λ we obtain that
2χA 6∈ Ma(λ), hence χA 6∈ Ma(λ).

Theorem 4.6. Assume CH. Suppose that I is a σ-ideal generated by Gδ sets
containing all singletons. Let f ∈ RR be a function from Ma(λ′). Then f has
the following property:

∀P∈Perf ∃P⊇P1∈Perf ∃E∈ co −If(P1) + E ∈MGR.

Proof. By way of contradiction, assume that there exists a perfect set P
such that for every perfect P1 ⊆ P and for every E ∈ co − I we have
f(P1) + E 6∈ MGR. Let QP be any countable, dense subset of P . Let
〈Gθ : θ ∈ ωOd1 〉 be an enumeration of all Gδ sets containing QP × Q. Let
〈Cθ : θ ∈ ωEv1 〉 be an enumeration of all countable subsets of R. We will use
the following result:

Fact 4.7 ([2], Exercise 19.3). If R ⊆ 2ω × R is a comeager subset, then there
exist a perfect set Q and a dense Gδ set G ⊆ R such that Q×G ⊆ R.

We will construct by induction on θ ∈ ω1 a sequences {〈xθ, yθ〉 : θ ∈ ω1}
and {Hθ : θ ∈ ω1} such that Hθ are Gδ sets from I. Assume that 〈xµ, yµ〉 and
Hµ have been chosen for µ < θ. Let us consider two cases.

Case 1. θ ∈ ωEv1

Choose xθ ∈ P \
[
{xµ : µ < θ} ∪QP

]
. There are two possible cases. If

Cθ \
⋃
µ<θHµ 6= ∅, then we pick any yθ ∈ Cθ \

⋃
µ<θHµ. In the other case

choose an arbitrary yθ ∈ R \
⋃
µ<θHµ.
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Case 2. θ ∈ ωOd1

Since Gθ ∩ (P × R) is a comeager set in P × R, by Fact 4.7 there exists a
perfect set Qθ ⊆ P and a comeager set Kθ such that Qθ ×Kθ ⊆ Gθ.
Without loss of generality we may assume that Qθ ∩

[
QP ∪ {xµ : µ < θ}

]
= ∅.

By the assumption, f(Qθ) +
[⋃

µ<θHµ

]c is not meager. Hence(
f(Qθ) +

[⋃
µ<θHµ

]c) ∩Kθ 6= ∅. Choose xθ ∈ Qθ and yθ ∈ R \
⋃
µ<θHµ

such that f(xθ) + yθ ∈ Kθ.
In both those cases we define Hθ in the following way. Since⋃
µ<θHµ ∪ {yθ} ∈ I, so we can choose a Gδ set Hθ ∈ I such that⋃
µ<θHµ ∪ {yθ} ⊆ Hθ. The construction is complete.

Let Y be defined by Y = {yθ : θ ∈ ω1}. It is easy to see that such defined set
Y is a λ′-set. Thus the set l∗ defined by l∗ = {〈xθ, yθ〉 : θ ∈ ω1} is a λ′-set,
too.
Next, let l be any λ′ extension of the function l∗ onto R. We have

f + l = {〈x, f(x) + l(x)〉 : x ∈ R} ⊇

⊇ {〈xθ, f(xθ) + yθ〉 : θ ∈ ωOd1 }.

For each θ ∈ ωOd1 we have: f(xθ) + yθ ∈ Kθ, thus
〈xθ, f(xθ) + yθ〉 ∈ Qθ ×Kθ ⊆ Gθ. Therefore

[
(f + l) ∩Gθ

]
\
[
QP ×Q

]
6= ∅.

This proves that f + l 6∈ λ′, which is a contradiction. This ends the proof of
Theorem 4.6.

Problem 4.8. Characterize the classes

Ma(λ) and Ma(λ′).

5 Minima and Maxima

It is obvious that for every two functions f1, f2 with a λ′ graph we have
min{f1, f2} ∈ λ′. The next example shows that the analogous result does not
hold for functions with a λ graph.

Theorem 5.1. Assume CH. There exist two functions g1, g2 : R → R such
that g1, g2 ∈ λ, but min{g1, g2} 6∈ λ.

Proof. We will use the function f
(R,Q)
γ from Example 3.2. Define g1 =

f
(R,Q)
−2 + 2 and g2 = f

(R,Q)
2 . Note that

g1(x) =
{
f (R,Q)(x) + 2 if x ∈ Q
f (R,Q)(x) if x 6∈ Q
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and

g2(x) =
{

f (R,Q)(x) if x ∈ Q
f (R,Q)(x) + 2 if x 6∈ Q

It is easy to see that min{g1, g2}(x) = f (R,Q)(x). Hence, min{g1, g2} 6∈ λ.
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