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ON SOME PROPERTIES OF THE CLASS OF
REAL FUNCTIONS WITH A AND X
GRAPHS

Abstract

We show that (under CH) there exists a CIVP function with a \’
graph. We examine some properties of M,(\) and M,()\’) class of real
valued functions.

1 General Notation

First, let us recall a couple of definitions:

1. A set L is said to be a A-set if every countable subset of L is G relative
to L.

2. A subset L of a space X is said to be a X' (rel X) if for every countable
subset D of X, L U D has property A.

We shall need also the following well-known fact, basic in our investigations.

Fact 1.1. If A C R has property X' (rel R) and is the one-to-one projection
of the subset H of R? (i.e., H is the graph of an arbitrary real valued function
with domain A), then H has property X' (rel R?). The corresponding assertion
for the \ property instead N holds.
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(See for example [1] or [8]). Note also that property X is countably addi-
tive. On the other hand, property A is not preserved even under taking finite
unions.

For A C R? we denote by A, and AW the z-section and y-section of A,
respectively (i.e., A, = {y: (v,y) € A}, AW) = {2: (2,y) € A}). Throughout
this paper no distinction is made between a function and its graph. Therefore,
to shorten notation we write f € A (XN, resp.) in the case when f has a A (X,
resp.) graph or we say that f is a A (A, resp.) function. Let C denote as usual
the ternary Cantor set.

We say that a function f € R® has the CIVP property (Cantor Interme-
diate Value Property) if for all different x,y € R such that f(x) # f(y) and
for every Cantor set P between f(z) and f(y), there exists a Cantor set Q
between z and y such that f(Q) C P.

Let Mkb denote the Mokobodzki o-ideal:

Mkb = {X C R*: VesoJuox [U open AVou(Uy) < €]}
Let us denote by Mkb™! the “inverse” Mokobodzki o-ideal, namely:
Mkb ™! = {i(X): X € Mkb},

where i((z,y)) = (y,z). It is well known that the o-ideals Mkb, Mkb™' are
generated by Gy sets; i.e.,

VxerdgeasnzX C G.

where 7T = Mkb or Z = Mkb ™.

In the sequel, Perf, denotes the collection of all perfect subsets of R home-
omorphic to 2¢. By Iniér we denote the family of all open intervals (a, b), a < b.
We define wf? (wf?) to be the set of all even (odd, respectively) ordinals from
w1.

2 Introduction

As it was observed by T. Natkaniec and I. Rectaw, under C'H there exists
a function f € )\ such that f is almost continuous. Indeed, suppose that
S C R is a c-dense X subset of R (for example, take any c-dense Sierpiriski
set). There exists a function f1: S — R such that for each f* 2 f1, f* is
almost continuous. (see for example [6] or [3]). Let f: R — S be any one-
to-one function. Note that \" subsets of R? forms a o-ideal, thus if we define
f=fT(R\S)Uf, then the function f will be almost continuous and f € X.
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On the other hand, it is obvious that there is no A function with the Ext
property (for definition of Ext and almost continuous property see for example

[7)-

Since AC' / CIV P, it is a natural question whether (under CH) there
exists a A’ function with the CIVP property. In the sequel we shall answer
this question in the affirmative. In fact, we will show something more.

Theorem 2.1. Assume CH. There exists a function f € RR such that
1. fisa N set.

2. for each interval (a,b) and for each P € Perf there is Q C (a,b), Q €
Perf such that Q C f~Y[P]. (in particular, f has the CIVP property)

We shall use two (folklore?) lemmas some of which might be well known.
We give the proofs for completeness.

Lemma 2.2. Suppose that X € Mkb™'. For each P € Perf. and for each
interval (a,b) C R there exists Q, R € Perf such that Q C (a,b), R C P and
(QxR)NX =0.

PROOF. Since X € Mkb™!, there exists G € Gs such that G € Mkb™! and
X C G. Then Yy,epGW € N, thus G N ((a,b) x P) is of measure zero in
the space (a,b) x P. (homeomorphic to (a,b) x 2¢). Next, by the classical
Mycielski theorem (see [5]), the conclusion follows.

Throughout this proof, {Ca}4e5v is a fixed enumeration of all countable
subsets of R2.

Lemma 2.3. Assume CH. Let (Gy: a € wy), (lo: o € w1) be a sequences of
subsets of R? such that

1. Voecw,Ga € Gs and 1, € N,

2. Upc9 Ga Ulg € Gy and |,

3. For each § € wf?, Cog\ Upyep Ga #0 =19 N Cy # 0.
Then the set 1 =

GoNlg =0 for each 6 < w.

. /
a<wy lo 18 a N set.

PROOF. Let D C [ be a countable set. There exists 6 € w; such that D C
Ua<p la- Since sets with a A" property forms a o-ideal, we have [J, <4 lo € \'.
Hence there exists a Gs set H such that H NJ,<ylo = D. Thus

(GoyNH)N Ul]

a<6

(GeNnH)NI= |( GonH)N |J la|=D.

f<a<wi
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Therefore [ € A.

Let D C R? be a countable set such that D N{ = (). Then there exists
0 € wF? such that D = Cy. We have Cp \ Uasco Ga = 0: if not we would have
lg N Cy # 0, a contradiction. This means that D Cy C Ua<9 G,. Since

Uago lo € N, there exists H € G such that H N [Ua@ I, U D] = D. Define

= Gy N H, obviously H* € G5. Next, we have

H*N(UD)=(GgnH)N leuUz]

a<6 a>0

HN Uza] UD=D.
a<f

This finally proves | € X' and finishes the proof of Lemma 2.3. O

PROOF OF THEOREM 2.1. Enumerate Intr x (Perf, NN) as {{I,; Pa): a €
w94}, We will construct inductively sequences (Gg: 0 € w;) and (lg: 6 € wy)
assuming the following induction hypothesis:

1. For each 6 € wy, Gy € Gs N Mkb N Mkb ™!

2. lp: dom(lyg) — R is a one-to-one function such that dom(ly) € N and
lo C Go.

Let 6 € wy. Consider two cases:
Case 1: 0 ¢ w9
Define Ay = J,cp Ga and Hy = | U, dom(la)} x R. One easily checks

that A5 € MkbNMkb ™! and Hy € Mkb™". It follows that AU H; € Mkb™",
hence by Lemma 2.2 there exists Ry € Perf(Py) and Qp € Perf, Qo C Iy
such that (Q¢ X Rg) N (A U H;) = 0. Without loss of generality, one can
assume that Qg € N. Since Ry € Perf, there is a X set Sy C Ry of size 2¢.
Let lp be any bijection from Qg onto Sy. Clearly lp € Mkb N Mkb~! (since
Qo € N and Py € N). Hence A} Uly € Mkb N Mkb™'; thus, there exists
Gg € G5 N Mkb N Mkb ™" such that A% Uly C G.
Case 2: 0 € wF

If Cy C Ua<0 a, then let lg = 0. If Cg \ U,c9Ga # 0, then pick an
arbitrary zgp € Cg \ J,cg Ga and define lp = {2¢}. Next, choose an arbitrary
G set G from MkbN Mkb~! which contains U GoUlg and define Gy = G.
Observe that

a<b

Vo, pewodc # 3 = dom(ls) Ndom(lg) = 0.
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Indeed, suppose that o < (. Since (Qp x Rg) N (A5 U Hj) = 0, we have
Qs NU,5dom(l,) = 0, thus dom(ls) Ndom(lg) = 0. Let us define k =
erwlod lg. It is easy to see that k is a real function a domain of which is
a subset of R. Since the sequences (Gp: 0 € wy) and (lg: 6 € wy) fulfill the
conditions (1)-(3) of Lemma 2.3, we conclude that [ J,¢,, la € X', thus k € X".

Suppose that I € Intr, P € Perf.. We will show that there exists a perfect
set @ such that Q C k~*(P)NI. Choose § € wP? such that I = Iy and P = Py.
Then we have

Qo Cly ' (Py) C k™' (Py).

Moreover, Qg C Iy = I. Therefore if we extend k arbitrarily to [ € ' defined
on whole real line we obtain the conclusion of Theorem 2.1. O

3 Compositions

Theorem 3.1. Assume that there exists a set X € X' of size 2¥. Then every
real function h € R® can be expressed as the composition of two N functions.

PRrROOF. Let A C R be a )X set of size 2°. Let h € RR be arbitrary. Let
f: R — A be an arbitrary bijection. Let us define g: R — R as follows:

(=) if xeA
g(sc)—{ f(2) if v A

Since g | A € X and f | (R\ A) € X we infer that g € X. It is evident that
go f=h. O

We end this chapter by an example which is useful later in this article. We
use it in Example 4.4, Theorem 4.5 and Theorem 5.1.

Example 3.2.

Assume C'H. Let P be a perfect set and A its countable, dense subset. Let
S C [w]“ be a scale of size w;. Let us denote: D = [w]<“. It is well known (see
for example Theorem 5.6 of [4]) that S is a A-set and for each H € G such that
D C H we have HN S # (). We may assume that D CC, D =C and S C C.

Let fp: A — D be a function such that Ygepfp'({d}) = P. Let S; C S be
any subset of S of size w; such that |S\ S1| = wy and for each H € G such
that D C H we have HNSy # (). Set Sy can be easy constructed by transfinite
induction. Let R; be any subset of P\ A of size w; such that R; is a comeager
subset or P and |P \ Ry| = wi. Let {Hp}pen, be an enumeration of all G
subsets H of R? such that fp C H. We will construct a sequence {{zg, yo) toca,
such that xy € R; and yy € Sy by transfinite induction. Suppose that we have
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already constructed {(Za,¥Ya)}a<o- It is folklore that if H is a Gs set, then
the set {y: H¥) N P € co — MGR(P)} is a Gs set. Since fp C Hy and
Vaenf5 ({d}) = P, the set Hi = {y € C: HY’ NP € co— MGR(P)} is a Gy
and comeager subset of C. Moreover D C Hj hence H;NS1\{ya: o <0} # 0.
Let yg be an arbitrary element of Hy NS\ {ya: @ < 0}. Next, choose an
arbitrary zg from the set Ry \ {zo: o <0} N H(gye). Extend {(zg,yg): 0 € w1}
to a one-to-one function f*: (R\ A) — S and then define: f(74) = f*u fp.

Suppose that H is a G5 set such that fp C H. Then there exists § € w;
such that H = Hy. On the other hand, (zg,ys) € Hp. Thus HoN(f N\ fp) #
(. This witnesses f(©*4) ¢ X. Furthermore, suppose that v € R, |y| > 1.

Define -
(P,A) _ f > (.’L’) if x€A
f'y (1') { f(P’A)(.’L‘) + 7 if x ¢A

If v > 1, then £ = (fPA 1 A) N [R x (—o0; )] U (FPA [ (R\ A)+9) N
[R X (1;00)}. Since f(74) | A is countable, f(74) | A is a A set. Moreover,
fEA 1T (R\A): (R\ A) — S is one-to-one, hence f("4) [ (R\ A) +v € A

As R x (—o0;1) and R x (1;00) are G5 sets we obtain that fASP’A) €eX Ina
similar fashion we can prove that fﬁP’A) is a A set for v < —1. O

4 Additive Families

Let F C RE be a family of real functions. The following notion was first
defined and examined by T. Natkaniec in [6].

Definiton 4.1 (T. Natkaniec).
Ma(F) = {f €R®: Vyer f + h € F}
M (F)={f eRE: Ve f-h e F}

The goal of this section is to provide a detailed investigation of the families
My (N), Mo (). We start with a straightforward observation:

Theorem 4.2. Every continuous function belongs to My(X) and to M, (\').

PROOF. Suppose that f is a continuous real function. Define a function
®s: R? — R? as follows:

Qp(z,y) = (z,y + f(2)).

The following lists some easy properties of the function defined above:
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1. & is a bijection.

2. If f is a continuous function, then ®¢ is an automorphism of R?.

3. For each g € RE, ®;[g] = f + g.

From this the theorem follows. O

Theorem 4.3. Suppose that a function f € R® is such that there exist a
sequence of functions {fn}tnew from Ma(N) and a partition {X,}new of R
such that f =, c., f | Xn. Then f belongs to My (\).

PROOF. Suppose that [ € R® has the A\’ property. Then for each n € w we

have f¥ 41 € X, therefore f +1 = U, c,(fn +1) [ X,y € X, since X is a
o—ideal. m

The next example shows that our previous theorem is no longer valid for
the functions with a A\ graph.

Example 4.4. Assume CH. The function 2D: R — R defined by

[0 if cR\Q
2D<x)_{2 if z€Q

does not belong to Mg (N).

Proor. We will use the function fllf D from Example 3.2. We have

£59(@) +2D(x) = fED(z) + 2 for 2 € Q, and
FED () 4 2D(x) = FRD(z) + 2 for 2 € R\ Q.

8

Therefore (f5'Y +2D) = f®Q 12 ¢ X Since f{*Y € X we obtain that
2D & My(N). O

This example can be generalized to the following theorem.
Theorem 4.5. Assume CH. Suppose that A C R is a countable set.
1. If |A| < w, then xa € My(\).

2. If A is a perfect set, then x4 & Ma(N).
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PROOF. 1. Let I € RE be a function such that [ € A and suppose that D C R
is a countable set. Without loss of generality we may assume that A C D.
Since [ is a A set, there exists a G5 set G C R? such that GNIl=1] D. Then
we have

(xa+D) 1D =(xa+0) [ AU(xa+1D) [ (D\A)
— (xa+1) [ AUL[D\A
— [AxR) UGN @A xR)]] N (xa+D).

Since (A x R) and (A° x R) are Gj sets we conclude that xa +1 is a A-set.
2. Let us assume that |A] < w and A is a perfect set. We will use the

function fA(,Z’A) from Example 3.2. We have
fQ(Z’A)(a:) +2xa(x) = FAA () +2for z € A, and
fQ(A’A)(a:) +2xa(x) = fAY(z) + 2 for z € R\ A.

Therefore (f; (A4 4 2xa) = fAY 42 ¢ A, Since f(A 4 ¢ X we obtain that
24 & Ma(), hence x4 & Ma(\). O

Theorem 4.6. Assume CH. Suppose that T is a o-ideal generated by G sets
containing all singletons. Let f € RR be a function from M, (\'). Then f has
the following property:

VpPePerf3PoP cPerfIEE co —2f(P1) + E € MGR.

PROOF. By way of contradiction, assume that there exists a perfect set P
such that for every perfect Py C P and for every £ € co — I we have
f(P)+ E 9_1 MGR. Let Qp be any countable, dense subset of P. Let
(Gg: 0 € wl 4y be an enumeration of all G5 sets containing Qp x Q. Let
(Cp: 0 € wE?) be an enumeration of all countable subsets of R. We will use
the followmg result:

Fact 4.7 ([2], Exercise 19.3). If R C 2¥ x R is a comeager subset, then there
exist a perfect set QQ and a dense G5 set G C R such that Q@ x G C R.

We will construct by induction on 6 € wy a sequences {(xg,yp): 0 € w1}
and {Hy: 0 € w1} such that Hy are G5 sets from Z. Assume that (z,,y,) and
H,, have been chosen for 1 < 6. Let us consider two cases.

Case 1. 0 € wf?
Choose zg € P\ [{z,: p < 6} UQp]. There are two possible cases. If
Co\U,<o Hu # (), then we pick any Yo € Co \ U,,<¢ Hy:- In the other case

choose an arb1trary Yo € R\ U, H,
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Case 2. 0 € wP?

Since Gg N (P x R) is a comeager set in P x R, by Fact 4.7 there exists a
perfect set Qg C P and a comeager set Ky such that Qg x Ky C Gy.
Without loss of generality we may assume that Qo N [Qp U{z,: p < 0} = 0.
By the assumption, f(Qg) + [Uu<9 HM]C is not meager. Hence

(f(Qo) + [Uu<0 H“]c) N Ky # . Choose zp € Qg and yg € R\ U, o Hy
such that f(xg) + yg € Kp.

In both those cases we define Hy in the following way. Since

U,<o HuU{ve} € Z, so we can choose a G set Hy € T such that

U,<e HuU{ve} C Hy. The construction is complete.

Let Y be defined by Y = {yg: 6 € w1 }. It is easy to see that such defined set
Y is a N-set. Thus the set [* defined by I* = {(xg,yp): 0 € w1} is a N -set,
too.

Next, let [ be any X\ extension of the function I* onto R. We have

f+l={{z, f(x)+1(x)): 2 € R} D

D {(wo, f(x0) + yo): 0 € W}

For each 0 € w{? we have: f(zg)+ yg € Ky, thus

(g, f(zo) + yo) € Qo x Ky C Gy. Therefore [(f +0)N Gg] \ [Qp X Q] £ 0.
This proves that f + 1 ¢ X, which is a contradiction. This ends the proof of
Theorem 4.6. O

Problem 4.8. Characterize the classes

Ma(N) and My (X).

5 Minima and Maxima

It is obvious that for every two functions fi, fo with a A graph we have
min{ f1, fo} € M. The next example shows that the analogous result does not
hold for functions with a A graph.

Theorem 5.1. Assume CH. There ezist two functions gi,92: R — R such
that 91,92 € )\u but min{gth} g A.

PrROOF. We will use the function fA(,R’Q) from Example 3.2. Define ¢, =
fﬁﬂi’@) +2and g5 = fQ(R’Q). Note that

RO)+2 if z€Q
91(z) = { d f(R,cg()x) if i ZQ
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and
FRD () if teQ

92(x) = { RO +2 if 2¢Q
It is easy to see that min{gy, go}(x) = f(R’Q)(x)- Hence, min{gy, go} ¢ A [
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