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DECOMPOSITION OF VARIATIONAL
MEASURE AND THE ARC-LENGTH OF A

CURVE IN Rn

Abstract

This paper discusses the decomposition of variational measures in
Rn and, by using integral expressions of variational measure, gives an
arc-length integral formula for the continuous curve in Rn.

1 Introduction

Let G = {(f1(t), f2(t), · · · , fn(t)) : t ∈ [0, c]}, then G is a continuous curve
whenever each fi is a continuous function. We see that

L(x) = sup
∑
j

√√√√ n∑
i=1

|fi(xj)− fi(xj−1)|2

is the arc-length of G from t = 0 to t = x, where the supremum is taken over
all divisions of [0, x] . If L(c) <∞, then we say that G is a rectifiable curve.

It is well known that G is a rectifiable curve if and only if each fi is a
bounded variation function on [0, c] and the following inequality

L(x) ≥
∫ x

0

√√√√ n∑
i=1

[fi′(x)]2 dt
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holds. The equality holds if and only if each fi is an absolutely continuous
function (c.f. [6] p.122-124). We find that the curve G has a definite arc-
length whenever each coordinate function fi is a bounded variation function;
but when we use the the arc-length integral formula to calculate the arc-
length of G, it is required that the coordinate function fi must be absolutely
continuous. In fact, any bounded variation function often contains a singular
part, but this singular part can not be expressed as a Lebesgue integral. It had
been discussed and expressed with a general integral formula by M. J. Pelling
in [1], however this formula can not be used in calculations of the arc length
of a curve for concrete. Here we will give a better integral formula, and use
it in the concrete calculation. This is achieved on the basis of the following
facts:
(1) A function, being singular for some (e.g. Lebesgue) measure, may be

absolutely continuous for another (e.g. Hausdorff) measure.
(2) The decomposition of the singular part may be an infinite process.
(3) There is a more clear and easier calculating formula to relate these mea-

sures than Radon-Nikodym Theorem.

2 Relations between Variational Measure and Hausdorff
Measure

We assume the readers are familiar with the definition and the properties of
the Hausdorff measure Hs. If this is not the case, the details can be found in
[2] and [5].

Let [a, b] be a closed interval and E ⊂ [a, b]. A finite sequence of intervals
{Ii} is said to be a cover of E, if ∪iIi ⊃ E; and {Ii} is said to be a division
of [a, b], if Ii∩ Ioj = φ and ∪iIi = [a, b], where Eo denotes the interior of set
E. We also denote the diameter of E by |E|, and write f(I) = f(v) − f(u),
where I = [u, v]. Thus, the f can be regarded as an additive function of a
linear interval I ⊂ [a, b].

Let f(x) be a continuous bounded variation function on [0, c], write it as
f ∈ CBV , and write the total variation of f on [0, t] as f∗(t) = sup

∑
j |f(Ij)|,

where the supremum is taken over all divisions {Ij} of [0, t]. Then we have
f∗(c) < ∞ and f∗ is a continuous monotone function. Let E ⊂ [0, c], and a
set function µ is defined as µ(E) = inf

∑
j f
∗(Ij), where the infimum is taken

over all covers {Ij} of E , it is easy to check that:
(1) µ is a Radon outer measure on [0, c].
(2) µ(I) = f∗(I) whenever E = I is a interval, so we write µ as f∗ from now

on.
In this paper, the outer measure and measure are regard as measure.
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In this section, we always assume f ∈ CBV , 0 < s ≤ 1, E ⊂ 0, c].
The absolute upper s-derivative of f at t is defined to be

Ds|f |(t) = lim
δ→0

sup
t∈I,|I|<δ

|f(I)|
|I|s

,

we see that it is the absolute upper derivative of f at t whenever s = 1 , writing
it as D|f |(t). It is easy to check that Ds|f | is a Borel measurable function.

Lemma 1. Let f ∈ CBV , then for any ε > 0, there is δ > 0 such that

f∗(c) <
∑
j

|f(Ij)|+ ε

whenever {Ij} is a division of [0, c] which satisfies |Ij | < δ for each j; therefore
we have ∑

j

f∗(Ij) <
∑
j

|f(Ij)|+ ε

whenever {Ij} is a partial division of [0, c] which satisfies |Ij | < δ for each j.

This is a classical conclusion, cf. [3], Chapter 8, Section 3.

Lemma 2. Let λ > 0.

(1) If Ds|f |(t) ≤ λ for every t ∈ E, then we have f∗(E) ≤ λHs(E);

(2) If Ds|f |(t) ≥ λ for every t ∈ E, then we have Hs(E) ≤ λ−1f∗(E);

(3) Let E be Hs − σ finite. If Ds|f |(t) = 0 for every t ∈ E, then we have
f∗(E) = 0;

(4) If E∞ = {t ∈ E : Ds|f |(t) =∞}, then we have Hs(E∞) = 0.

Proof. (1) Let η > 0. Since Ds|f |(t) ≤ λ < λ + η for every t ∈ E, there
exists a positive function δ(t) on E, such that

|f(I)|
|I|s

< λ+ η

for any I which satisfies t ∈ I ⊂ (t− δ(t), t+ δ(t)). For k = 1, 2, · · · , let

Ek = {t ∈ E : δ(t) ≥ 1
k
},

then we have Ek ⊂ Ek+1, k = 1, 2, · · · , and E = ∪kEk.
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Given ε > 0. By Lemma 1, there is a corresponding δ > 0. Let N > 1
δ ,

then for k ≥ N , we have 1
k < δ. Take a 1

k -cover {Ij} of Ek, so that

Hs(Ek) ≥
∑
j

|Ij |s − ε,

it follows that

Hs(Ek) + ε ≥
∑
j

|Ij |s > (λ+ η)−1
∑
j

|f(Ij)|

> (λ+ η)−1(
∑
j

f∗(Ij)− ε) > (λ+ η)−1(f∗(Ek)− ε).

Therefore, we have

Hs(E) ≥ Hs(Ek) ≥ (λ+ η)−1f∗(Ek)

for any k ≥ N , by letting ε→ 0, and then

Hs(E) ≥ (λ+ η)−1 lim
k→∞

f∗(Ek) = (λ+ η)−1f∗(E),

hence (1) holds, by letting η → 0.
(2) Given any ε > 0. Since f∗ is a Radon measure, there is an open set G

such that G ⊃ E and f∗(G) < f∗(E) + ε. Let η > 0, so that λ − η > 0, and
let

V = {I ⊂ [0, c] : I ⊂ G, |I|s < (λ− η)−1|f(I)|}.
Since Ds|f |(t) > λ−η for every t ∈ E, we see that V is a Vitali covering class
of E.

Let {Ij} ⊂ V be a non-overlapping intervals, we have

∑
j

|Ij |s <
∑
j

(λ− η)−1|f(Ij)| ≤
∑
j

(λ− η)−1f∗(Ij)

≤ (λ− η)−1f∗(G) ≤ (λ− η)−1[f∗(E) + ε],

it follows that

Hs(E) < (λ− η)−1[f∗(E) + ε],

here, we have used the equivalent definitions of Hs, see [5]. It follows, by
letting ε→ 0 and η → 0, that

Hs(E) < λ−1f∗(E).
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(3) Let E = ∪iEi, then every Ei isHs− finite. Therefore, we have f∗(Ei) ≤
λHs(Ei) for every λ > 0 by 1), it follows that f∗(Ei) = 0 for every i, and
that f∗(E) = 0.

(4) Write Ek = {t ∈ E : Ds|f |(t) > k}, then E∞ ⊂ ∩kEk. Since 2), we
have

Hs(Ek) ≤ k−1f∗(Ek) ≤ k−1f∗(c)

for each k, hence Hs(E∞) = 0, and the proof is complete.

Theorem 1. Let f ∈ CBV , E ⊂ [0, c] be a Hs − σ finite set, and

E+ = {t ∈ E : Ds|f |(t) <∞},

then
f∗(E+) =

∫
E

Ds|f | dHs.

Proof. Let E∞ = {t ∈ E : Ds|f |(t) =∞}, we have Hs(E∞) = 0 by Lemma
2(4), and we see that ∫

E

Ds|f | dHs =
∫
E+

Ds|f | dHs.

Let E0 = {t ∈ E : Ds|f |(t) = 0}, 1 < p <∞ and

E(k) = {t ∈ E : pk ≤ Ds|f |(t) < pk+1}

for k = 0,±1,±2, · · · , we see that E+ = E0∪+∞
k=−∞E

(k) , and that f∗(E0) = 0
by Lemma 2(3). It follows from Lemma 2(1) and 2(2) that

f∗(E+) =
∑
k

f∗(E(k)) ≤
∑
k

pk+1Hs(E(k)) = p
∑
k

pkHs(E(k))

≤ p
∑
k

∫
E(k)

Ds|f | dHs = p

∫
E+

Ds|f | dHs,

and

f∗(E+) =
∑
k

f∗(E(k)) ≥
∑
k

pkHs(E(k)) = p−1
∑
k

pk+1Hs(E(k))

≥ p−1
∑
k

∫
E(k)

Ds|f | dHs = p−1

∫
E+

Ds|f | dHs,

respectively. By letting p→ 1+, we see that
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f∗(E+) =
∫
E+

Ds|f | dHs =
∫
E

Ds|f | dHs,

and the proof is complete.

Remark 1. This theorem indicates that E can be decomposed into two parts
E+ and E∞, where f∗ is absolute continuous with respect to Hs over E+, and
is singular with respect to Hs over E∞.

Theorem 2. Let f ∈ CBV . If there exist sk and Ek which satisfying: 1 = s1

> s2 > · · · > sq > 0; E0 = [0, c], Ek = {t ∈ E0 : Dsk |f |(t) = ∞}(k = 1, 2,
· · · , q), and Ek is Hsk+1 − σ finite (k = 1, 2, · · · , q − 1). Write E+

k−1 = {t ∈
Ek−1 : Dsk |f |(t) <∞} (k = 1, 2, · · · , q), then we have

f∗(E0) =
q∑

k=1

f∗(E+
k−1) + f∗(Eq) =

q∑
k=1

∫
Ek−1

Dsk |f | dHsk + f∗(Eq).

If we assume further that f∗ is absolute continuous with respect to Hsq , then
we have

f∗(E0) =
q∑

k=1

∫
Ek−1

Dsk |f | dHsk .

Proof. Noticing that if Dsk |f |(t) = ∞, then Dsk−1 |f |(t) = ∞, so we have
Ek ⊂ Ek−1(k = 1, 2, · · · , q). Since E+

k−1 = Ek−1 − Ek, we can see that
E+

0 , E
+
1 , · · · , E

+
q−1 and Eq are non-intersecting Borel sets, and also E0 =⋃q

k=1E
+
k−1 ∪ Eq. It follows from Theorem 1 that the first conclusion follows.

If f∗ is absolute continuous with respect to Hsq , then Hsq (Eq) = 0 by the
definition of Eq and Lemma 2(4), and then we have f∗(Eq) = 0, the second
equality is proved.

3 The Arc-Length of a Curve

Theorem 3. Let fi ∈ CBV (i = 1, 2, · · · , n). If, for each i, there exist
si,k and Ei,k which satisfying: 1 = si,1 > si,2 > · · · > si,q(i) > 0; Ei,0 = [0, c],
Ei,k = {t ∈ [0, c] : Dsi,k |fi|(t) = ∞} (k = 1, 2, · · · , q(i)), Ei,k is Hsi,k+1 − σ
finite (k = 1, 2, · · · , q(i) − 1), and f∗i (Ei,q(i)) = 0. Let us put the finite
sequence {si,k} in order as 1 = s1 > s2 > · · · > sq > 0; and write E0 = [0, c],
Ej = {t ∈ E0 : there is fi such that Dsj |fi|(t) =∞}(j = 1, 2, · · · , q), then we
have

L(c) =
q∑
j=1

∫
Ej−1

√√√√ n∑
i=1

(Dsj |fi|)2 dHsj .
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Proof. Let I ⊂ [0, c], write P (I) =
√∑n

i=1(fi(I))2 . By the fact that

L(c) = sup
∑
j

P (Ij),

where the supremum is taken over all divisions {Ij} of [0, c] , we see that L is
a total variation of P , because the relation between L and P is the same as
f∗ and f in the beginning of Section 2. Noticing that

DsP (t) = lim
δ→0

sup
t∈I,|I|<δ

√∑n
i=1(fi(I))2

|I|s

= lim
δ→0

sup
t∈I,|I|<δ

√√√√ n∑
i=1

(
fi(I)
|I|s

)2 =

√√√√ n∑
i=1

(Ds|fi|(t))2,

and Theorem 2, the conclusion follows.

Here is an example about the arc-length of a curve.
(1) First, we construct three Cantor-like sets E(j)(j = 1, 2, 3). For each j ∈

{1, 2, 3}, by removing an open interval ∆(j)
1 from [0, 1], we obtain two closed

intervals ∆(j)
0 and ∆(j)

2 which satisfying |∆(j)
0 | = |∆

(j)
2 | = 1

j+2 ; recursively, for

closed intervals ∆(j)
σ , σ = ε1ε2 · · · εk, εi = 0 or 2 (i = 1, 2, · · · , k), by removing

an open interval ∆(j)
σ1 from ∆(j)

σ , we obtain two closed intervals ∆(j)
σ0 and ∆(j)

σ2

which satisfying |∆(j)
σ0 | = |∆

(j)
σ2 | =

|∆(j)
σ |

j+2 . Let

E(j) =
∞⋂
k=1

⋃
εi=0 or 2
i=1,2,··· ,k

∆(j)
ε1ε2···εk ,

E(j) is said to be a Cantor-like set, E(1) is especially the Cantor set. It is easy
to check that their Hausdorff dimension is

dimHE(1) = s1 =
log 2
log 3

,

dimHE(2) = s2 =
1
2
,

dimHE(3) = s3 =
log 2
log 5

.

For each j, define a Cantor-like function gj : [0, 1]→ R as follows:

gj(t) =


∑k
i=1 εi2

−i−1 + 2−k−1, t ∈ ∆(j)
ε1ε2···εk1,

sup
x/∈E(j),x≤t

gj(x), t ∈ E(j).
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Clearly, these are continuous monotone increasing functions, gj(0) = 0, gj(1) =
1, and Dgj(t) = 0, t ∈ [0, 1]\E(j).

We will compute Dsj |gj |(t) = Dsjgj(t) = 1, t ∈ E(j). Because of the same
method, we will only compute Ds1g1(t), and for convenience, will omit the
index j = 1.

Let t ∈ E. If t ∈ ∆ε1 ∩∆ε1ε2∩ · · · , where εi = 0 or 2 (i = 1, 2, · · · ), we
write t = 0.ε1ε2 · · · , then t =

∑
i εi3

−i and g(t) =
∑
i εi2

−i−1.
Since t ∈ ∆ε1ε2···εk , |∆ε1ε2···εk | = 3−k and g(∆ε1ε2···εk) = 2−k, we have

g(∆ε1ε2···εk)
|∆ε1ε2···εk |s

=
2−k

(3−k)
log 2
log 3

= 1,

therefore Dsg(t) ≥ 1, t ∈ E.
In order to prove the inequality Dsg(t) ≤ 1, t ∈ E, let t ∈ I = [t1, t2], we

might as well assume that t1, t2 ∈ E, otherwise we can appropriately reduce

I (this will not reduce
g(I)
|I|s

), therefore t2 − t1 = 0.0 · · · 0αkαk+1 · · · , where

αk = 2, αi = 0 or ±2, i ≥ k + 1. Since g(I) = g(t2) − g(t1) =
∑
i≥k αi2

−i−1,
|I| = t2 − t1 =

∑
i≥k αi3

−i, we shall only need to prove

(
∑
i≥k

αi3−i)s ≥
∑
i≥k

αi2−i−1. (1)

Since the power function xs is continuous, it suffices to show that

(
k+p∑
i=k

αi3−i)s ≥
k+p∑
i=k

αi2−i−1 (2)

holds for any non-negative integer p and
∑k+p
i=k αi3

−i ≥ 0. We shall prove (2)
by induction.

First, let p = 0, it is obvious that the inequality (2) holds when αk = 0;
when αk = 2, by the fact that

(2 · 3−k)s = 2s · 2−k ≥ 2−k = 2 · 2−k−1,

the inequality (2) holds.
Next, assume the inequality (2) has been proved for p − 1. To obtain the

inequality (2) for p, if αk = 0, notice that
∑k+p
i=k+1 αi3

−i =
∑k+p
i=k αi3

−i ≥ 0,
the inequality (2) follows from the inequality

(
k+p∑
i=k+1

αi3−i)s = (3−1

k+p−1∑
i=k

αi+13−i)s = 2−1(
k+p−1∑
i=k

αi+13−i)s
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≥ 2−1

k+p−1∑
i=k

αi+12−i−1 =
k+p∑
i=k+1

αi2−i−1;

if αk = 2, we need to check that

(2 · 3−k +
k+p∑
i=k+1

αi3−i)s ≥ 2−k +
k+p∑
i=k+1

αi2−i−1. (3)

When
∑k+p
i=k+1 αi3

−i ≥ 0, we consider the function

h(t) = (2 · 3−k + t)s − 2−k − ts, t ∈ [0, 3−k].

Since h′(t) < 0, we see that h(t) is decreasing on [0, 3−k], but
∑k+p
i=k+1 αi3

−i ≤
3−k we have h(

∑k+p
i=k+1 αi3

−i) ≥ h(3−k) = 0, the inequality (3) holds. When∑k+p
i=k+1 αi3

−i < 0 , by considering the function

h(t) = (2 · 3−k − t)s − 2−k + ts, t ∈ [0, 3−k],

the inequality (3) can be easily proved in the same way. So the inequality (2)
holds and Dsg(t) ≤ 1, t ∈ E.

By Lemma 2, we have Hs(E) = g∗([0, 1]) = g(1)− g(0) = 1.

Remark 2. Actually, the above procedure has given a method of calculating
Hs(E).

(2) Let

f1(t) = t+ g1(t)− g2(t), f2(t) = 2t− g1(t) + g3(t),

G = {(f1(t), f2(t)) : t ∈ [0, 1]}.

We will calculate the arc-length of the curve which is generated by G. It
suffices to check that

(a) D|f1|(t) = 1 a.e. on [0, 1];
(b) D|f2|(t) = 2 a.e. on [0, 1];
(c) Ds1 |f1|(t) = Ds1 |f2|(t) = Ds1g1(t) Hs1 − a.e. over E(1);
(d) Ds2 |f1|(t) = Ds2g2(t) Hs2 − a.e. over E(2);
(e) Ds3 |f2|(t) = Ds3g3(t) over E(3).
In fact, (a) and (b) are obvious. For (c), consider the equality

Ds1 |f1|(t) = Ds1g1(t) Hs1 − a.e. over E(1) (4)
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first. For I ⊂ [0, 1], we clearly have

|f1(I)| ≤ |I|+ |g1(I)|+ |g2(I)|, (5)

|g1(I)| ≤ |f1(I)|+ |I|+ |g2(I)|. (6)

For any t ∈ E(1)\E(2), there is some ∆(2)
σ1 such that t ∈ I ⊂ ∆(2)

σ1 , this gives

g2(I) = 0. By the fact
|I|
|I|s1

→ 0(|I| → 0), using (5) and (6), we obtain

Ds1 |f1|(t) = Ds1 |g1|(t) = Ds1g1(t).

But Hs1(E(2)) = 0, the equality (4) follows. The equality

Ds1 |f2|(t) = Ds1g1(t) Hs1 − a.e. over E(1)

can be proved in the same way.
Similarly, we can prove the inequality (d) and (e). It follows that

L(1) =
∫ 1

0

√
1 + 22 dt+

∫
E(1)

√
1 + 1 dHs1 +

∫
E(2)

dHs2 +
∫
E(3)

dHs3

=
√

5 +
√

2 + 1 + 1 = 2 +
√

5 +
√

2,

which is the arc-length of the curve as required.
The authors wish to thank the referee for a number of suggestions which

improved the exposition of this paper.
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