Zbigniew Grande, Institute of Mathematics, Bydgoszcz Academy, Plac Weyssenhoffa 11, 85-072 Bydgoszcz, Poland.
e-mail: grande@wsp.bydgoszcz.pl

ON FUNCTIONS OF TWO VARIABLES WHOSE VERTICAL SECTIONS HAVE CLOSED GRAPHS

Abstract

In this article we investigate some properties of functions $f: X \times$ $Y \rightarrow \mathcal{R}$ (the cliquishness, the Baire property, the measurability) whose vertical sections f_{x} have closed graphs.

We say that a function $f: X \rightarrow Y$, where X and Y are topological spaces, is a function with a closed graph, if the graph of the function f; i.e., the set

$$
G(f)=\{(x, y) \in X \times Y ; x \in X \text { and } y=f(x)\}
$$

is a closed subset of the product space $X \times Y$.
Let \mathcal{R} be the space of all reals with the Euclidean topology T_{e}. In this article we will show some properties of functions of two variables $f: X \times Y \rightarrow$ \mathcal{R} whose sections $f_{x}(y)=f(x, y), x \in X$ and $y \in Y$, have closed graphs $G\left(f_{x}\right)$ in the product space $Y \times \mathcal{R}$.

It is well known that there are discontinuous functions $f: \mathcal{R}^{2} \rightarrow[0,1]$ with continuous sections f_{x} and $f^{y}(x)=f(x, y), x, y \in \mathcal{R}$. Evidently the graphs of such functions are not closed in \mathcal{R}^{3}. While continuous real functions defined on topological spaces have closed graphs, there are functions $f: \mathcal{R}^{2} \rightarrow[0,1]$ having continuous sections f^{y} and f_{x} with closed graphs such that the graphs $G(f)$ are not closed in $\mathcal{R}^{2} \times[0,1]$. However the following theorem holds.

Theorem 1. Let $\left(X, T_{X}\right)$ and $\left(Y, T_{Y}\right)$ be topological spaces. If the sections $f^{y}, y \in Y$, are equi-continuous at each point $x \in X$ and if the graphs $G\left(f_{x}\right)$ of the sections $f_{x}, x \in X$, are closed in $Y \times \mathcal{R}$, then the graph $G(f)$ of the function f is closed in $X \times Y \times \mathcal{R}$.

[^0]Proof. Assume, to the contrary, that the graph $G(f)$ is not closed. Then there is a point

$$
\begin{equation*}
(x, y, z) \in \operatorname{cl}(G(f)) \backslash G(f) \subset X \times Y \times \mathcal{R} \tag{*}
\end{equation*}
$$

where cl denotes the closure operation. Since the graph $G\left(f_{x}\right)$ of the section f_{x} is closed and $z \neq f(x, y)$, there are an open neighborhood $V \in T_{Y}$ of the point y and an open interval $(z-3 r, z+3 r), r>0$, such that

$$
\begin{equation*}
\left(f_{x}\right)^{-1}([z-3 r, z+3 r]) \cap V=\emptyset \tag{**}
\end{equation*}
$$

From equi-continuity of the sections $f^{y}, y \in Y$, at the point x it follows that there is a neighborhood $U \in T_{X}$ of the point x such that

$$
|f(u, v)-f(x, v)|<r \text { for } u \in U \text { and } v \in Y
$$

We will prove that

$$
\begin{equation*}
(U \times V \times(z-r, z+r)) \cap G(f)=\emptyset \tag{***}
\end{equation*}
$$

Of course, if there is a point

$$
\left(u_{1}, v_{1}\right) \in U \times V \text { with }\left|f\left(u_{1}, v_{1}\right)-z\right|<r
$$

then

$$
\left|f\left(x, v_{1}\right)-z\right| \leq\left|f\left(x, v_{1}\right)-f\left(u_{1}, v_{1}\right)\right|+\left|f\left(u_{1}, v_{1}\right)-z\right|<r+r=2 r
$$

is a contradiction with $(* *)$.
So the relation $(* * *)$ is true, a contradiction with $(*)$, and the proof is complete.

Theorem 2. Suppose that $\left(X, T_{X}\right)$ and $\left(Y, T_{Y}\right)$ are topological spaces with countable bases and moreover $\left(Y, T_{Y}\right)$ is a perfectly normal topological space. If the sections $f_{x}, x \in X$, have closed graphs and the sections $f^{y}, y \in Y$, have the Baire property, then f has the Baire property as a function of two variables.

In the proof of this theorem we will apply the following lemma:

Lemma 1. If $\left(Z, T_{Z}\right)$ is a topological space with a countable basis and if a function $f: Z \rightarrow \mathcal{R}$ satisfies the condition
(a) for each positive real η and for each set $A \subset Z$ with the Baire property and of the second category there is a set $B \subset A$ with the Baire property and of the second category on which $\operatorname{osc}_{B} f \leq \eta$,
then f has the Baire property.
Proof of Lemma 1. For a given real $\eta>0$ we can find a countable family of pairwise disjoint sets $A_{n} \subset Z$ having the Baire property and of the second category such that $\operatorname{osc}_{A_{n}} f \leq \eta$ for $n \geq 1$ and

$$
Z \backslash \bigcup_{n=1}^{\infty} A_{n} \text { is of the first category. }
$$

For each integer $n \geq 1$ we choose a point $a_{n} \in A_{n}$ and define

$$
g(x)=\left\{\begin{array}{ccl}
f\left(a_{n}\right) & \text { for } & x \in A_{n}, n=1,2, \ldots \\
f(x) & \text { otherwise on } & Z .
\end{array}\right.
$$

Then the function g has the Baire property and $|g-f| \leq \eta$, so f has the Baire property as the uniform limit of a sequence of functions with the Baire property. This completes the proof of Lemma 1.

Proof of Theorem 2. Since the space $\left(X \times Y, T_{X} \times T_{Y}\right)$ has a countable basis, it suffices to prove that the function f satisfies the condition (a) from the above Lemma 1. Fix a real $\eta>0$ and a set $A \subset X \times Y$ with the Baire property and of the second category. There are nonempty open sets $U \in T_{X}$ and $V \in T_{Y}$ such that the set $(U \times V) \backslash A$ is of the first category.

Since $\left(Y, T_{Y}\right)$ is a perfectly normal topological space and the sections f_{x} have closed graphs, by Dobos's theorem from [5] the sets of all discontinuity points $D\left(f_{x}\right)$ of the sections f_{x} are nowhere dense in Y. So, for each point $u \in U$ there are an open set $W(u) \subset V$ from a countable basis $\mathcal{B}(Y)$ of the space Y and an open interval $I(u)=(a(u), b(u))$ with rational endpoints such that

$$
b(u)-a(u)<\frac{\eta}{2} \text { and } f_{u}(W(u)) \subset I(u)
$$

Since the set U is of the second category and the set of all pairs $(W(u), I(u))$ is countable, there are a nonempty open set $W \in T_{Y}$ and an open interval $I=(a, b)$ such that the set

$$
C=\{u \in U ; W(u)=W \text { and } I(u)=I\}
$$

is of the second category. Let $S \in T_{X}$ be a nonempty set such that each subset $E \subset S \backslash C$ with the Baire property is of the first category. Let $[c, d]=J \supset$ $c l(I)=[a, b]$ be a closed interval such that

$$
c<a, d>b \text { and } d-c<\eta .
$$

We will prove that the set

$$
H=(S \times W) \backslash f^{-1}(J)
$$

is of the first category. Of course, if H is of the second category, then for each point

$$
u \in \operatorname{Pr}_{X}(H)=\left\{u \in S ; \exists_{v \in W}(u, v) \in H\right\}
$$

there is an open set $K(u) \in \mathcal{B}(Y)$ such that

$$
f_{u}(K(u)) \subset \mathcal{R} \backslash J \text { and } K(u) \subset W
$$

Consequently, there is a nonempty set $K \in T_{Y}$ such that the set

$$
M=\left\{u \in \operatorname{Pr}_{X}(H) ; K(u)=K\right\}
$$

is of the second category. Fix a point $y \in K$ and consider the section f^{y}. Since for $x \in C$ we have $f(x, y) \in I$ and for $x \in M$ we have $f(x, y) \in \mathcal{R} \backslash J$, we obtain a contradiction with the Baire property of the section f^{y}. So the set H is of the first category. The set

$$
B=A \cap[(S \times W) \backslash H]=A \cap(S \times W) \cap f^{-1}(J)
$$

has the Baire property and it is of the second category. Moreover,

$$
B \subset A \text { and } \operatorname{osc}_{B} f \leq \eta
$$

so by Lemma 1 our theorem is proved.
Remember that a function $h: X \rightarrow \mathcal{R}$ is cliquish at a point $x \in X$ if for each real $\eta>0$ and for each set $U \in T_{X}$ containing x there is a nonempty set $V \subset U$ belonging to T_{X} such that $\operatorname{osc}_{V} f<\eta([2])$.

Theorem 3. Let $\left(X, T_{X}\right)$ and $\left(Y, T_{Y}\right)$ be topological spaces satisfying the second countability axiom such that $\left(Y, T_{Y}\right)$ is a Baire space. If all sections f_{x}, $x \in X$, of a function $f: X \times Y \rightarrow \mathcal{R}$ have closed graphs and all sections $f^{y}, y \in Y$, are cliquish at all points $x \in X$ then f is cliquish at each point $(x, y) \in X \times Y$.

Proof. Fix a nonempty set $A \in T_{X} \times T_{Y}$ and a positive real η. Let $U \in T_{X}$ and $V \in T_{Y}$ be nonempty sets such that $U \times V \subset A$. Let $\mathcal{B}(X)$ be a countable basis in the space $\left(X, T_{X}\right)$. Since the sections $f^{y}, y \in Y$, are cliquish, for each point $y \in Y$ there are a set $U(y) \in \mathcal{B}(X)$ and an open interval $I(y)=$ $(a(y), b(y))$ with rational endpoints such that

$$
b(y)-a(y)<\eta \text { and } f^{y}(U(y)) \subset I(y) \text { and } U(y) \subset U .
$$

$\left(Y, T_{Y}\right)$ is a Baire space, so the set V is of the second category. Consequently, there are a nonempty set $W \in T_{X}$ and an open interval $I=(a, b)$ such that the set

$$
C=\{y \in V ; U(y)=W \text { and } I(y)=I\}
$$

is of the second category. There is a nonempty set $S \in T_{Y}$ in which the set $S \cap C$ is dense in S. For $x \in W$ the restrictions f_{x} / S have closed graphs (in $S \times \mathcal{R}$) and are bounded on $S \cap C$, so they are continuous on S. From this

$$
f(W \times S) \subset \operatorname{cl}(I)=[a, b] \text { and } o s c_{W \times S} f \leq b-a<\eta
$$

and the proof is complete.
Theorem 4. Let $\left(X, T_{X}\right)=\left(Y, T_{Y}\right)=\left(\mathcal{R}, T_{e}\right)$ and let $f: \mathcal{R}^{2} \rightarrow \mathcal{R}$ be a function such that the sections $f_{x}, x \in \mathcal{R}$, have closed graphs and the sections $f^{y}, y \in \mathcal{R}$, are measurable (in the Lebesgue sense). Then f is measurable (in the Lebesgue sense) as the function of two variables.

In the proof of this theorem we will apply the density topology T_{d}. For this denote by μ_{e} the outer Lebesgue measure in \mathcal{R} and remember ([3]) that $x \in \mathcal{R}$ is said to be an outer density point of a set $A \subset \mathcal{R}$ if

$$
\lim _{h \rightarrow 0^{+}} \frac{\mu_{e}([x-h, x+h] \cap A)}{2 h}=1
$$

If A is a Lebesgue measurable set then an outer density point x of A is said to be a density point of A. The family

$$
T_{d}=\{A \subset \mathcal{R} ; A \text { is measurable and if } x \in A \text { then } x \text { is a density point of } A\}
$$

is a topology called the density topology $([3,8])$.
Moreover in this proof we will apply the following Davies's Lemma from [4] (Lemma 2).
Lemma 2. Let (X, \mathcal{M}, v) be a finite measure space, and let $f: X \rightarrow \mathcal{R}$ be such that for every $\varepsilon>0$ the class

$$
\mathcal{D}_{\varepsilon}=\{D \in \mathcal{M}: o s c f \leq \varepsilon \text { on } D\}
$$

satisfies the following condition: for every set $A \in \mathcal{M}$ of positive v-measure, there exists a set $D \in \mathcal{D}_{\varepsilon}$ such that $D \subset A$ and $v(D)>0$. Then f is \bar{v} measurable (where \bar{v} is the completion of v).

Remark 1. Evidently the above Davies's lemma is also true for every σ-finite measure v.

Proof of Theorem 4. We will prove that for each Lebesgue measurable set $A \subset \mathcal{R}^{2}$ of positive Lebesgue measure and for each positive real η there is a Lebesgue measurable set $B \subset A$ of positive Lebesgue measure $\mu_{2}(B)>$ 0 on which $\operatorname{osc}_{B} f \leq \eta$. By Davies's Lemma 2 this condition implies the measurability of the function f. Let $A \subset \mathcal{R}^{2}$ be a Lebesgue measurable set with $\mu_{2}(A)>0$ and let $\eta>0$ be a real. As is known (compare Saks [7], pp. $130-131$) there is a measurable set $E \subset A$ such that all sections

$$
E_{x}=\{y ;(x, y) \in E\} \in T_{d} \text { and } \mu_{2}(A \backslash E)=0
$$

For each point $(x, y) \in E$ the restriction $f_{x} / \operatorname{cl}\left(E_{x}\right)$ of the section f_{x} to the closure $\operatorname{cl}\left(E_{x}\right)$ of the section E_{x} has a closed graph, and by Dobos's theorem from [5], the set $D\left(f / c l\left(E_{x}\right)\right)$ of all discontinuity points of the restriction $f / \operatorname{cl}\left(E_{x}\right)$ is nowhere dense in $\operatorname{cl}\left(E_{x}\right)$. So for each point $(x, y) \in E$ there are an open interval $I(x, y)$ with rational endpoints and a closed interval $J(x, y)$ with rational endpoints and of length $|J(x, y)|<\frac{\eta}{2}$ such that

$$
I(x, y) \cap c l\left(E_{x}\right) \neq \emptyset \text { and } f_{x}\left(I(x, y) \cap c l\left(E_{x}\right)\right) \subset J(x, y)
$$

Let $\left(I_{n}\right)_{n}$ be an enumeration of all open intervals with rational endpoints and let $\left(J_{n}\right)_{n}$ be a sequence of all closed intervals with rational endpoints and of the length $\left|J_{n}\right|<\frac{\eta}{2}$. For $n, m=1,2, \ldots$ let

$$
A_{n, m}=\left\{(x, y) \in E ; I(x, y)=I_{n} \text { and } J(x, y)=J_{m}\right\}
$$

Since the set of all pairs of intervals with rational endpoints is countable and $\mu_{2}(E)>0$, there is a pair (I, J) of intervals such that the set

$$
H=\{(x, y) \in E ; I(x, y)=I \text { and } J(x, y)=J\}
$$

is not of measure zero. Consequently,

$$
\mu_{e}\left(\operatorname{Pr}_{X}(H)=\left\{x ; \exists_{y}(x, y) \in H\right\}\right)>0
$$

and there is a nonempty set $K \in T_{d}$ such that each measurable set $L \subset$ $K \backslash \operatorname{Pr}_{X}(H)$ is of measure zero. Evidently the set

$$
G=E \cap(K \times I)
$$

is Lebesgue measurable and by Fubini's theorem $\mu_{2}(G)>0$. Let $M \subset G$ be a measurable set such that all sections

$$
M_{x} \in T_{d} \text { and } \mu_{2}(G \backslash M)=0
$$

If $(x, y) \in M$ is a point such that $f(x, y) \in \mathcal{R} \backslash J$ then there is an open interval $I^{\prime}(x, y) \subset I$ with rational endpoints such that

$$
I^{\prime}(x, y) \cap c l\left(M_{x}\right) \neq \emptyset \text { and } f_{x}\left(I^{\prime}(x, y) \cap c l\left(M_{x}\right)\right) \subset \mathcal{R} \backslash J .
$$

Of course, this is evident if $f_{x} / \operatorname{cl}\left(M_{x}\right)$ is continuous at y. In the case where $f_{x} / \operatorname{cl}\left(M_{x}\right)$ is discontinuous at y it suffices to observe that the set $D\left(f_{x} / \operatorname{cl}\left(M_{x}\right)\right)$ of all discontinuity points of $f_{x} / \operatorname{cl}\left(M_{x}\right)$ is nowhere dense in $\operatorname{cl}\left(M_{x}\right)$ and for each sequence of points

$$
y_{n} \in \operatorname{cl}\left(M_{x}\right) \backslash D\left(f_{x} / \operatorname{cl}\left(M_{x}\right)\right) \backslash\{y\}
$$

converging to y and such that the corresponding sequence $\left(f_{x}\left(y_{n}\right)\right)$ has a limit (finite or infinite) we have

$$
\lim _{n \rightarrow \infty} f_{x}\left(y_{n}\right) \in\left\{f_{x}(y), \infty,-\infty\right\}
$$

If the set

$$
M \backslash f^{-1}(J)
$$

is not of measure zero, then there is an open interval $P \subset I$ such that the set

$$
M_{1}=\left\{(x, y) \in M ; f(x, y) \in \mathcal{R} \backslash J \text { and } I^{\prime}(x, y)=P\right\}
$$

is not of measure zero. So there is a nonempty set $S \in T_{d}$ such that $S \subset K$ and such that each measurable subset $L \subset S \backslash \operatorname{Pr}_{X}\left(M_{1}\right)$ is of measure zero. Then for $y \in P$ such that $\mu_{e}\left(M^{y}\right)>0$ we obtain

$$
f^{y}\left(S \cap \operatorname{Pr}_{X}(H)\right) \subset J \text { and } f^{y}\left(S \cap \operatorname{Pr}_{X}\left(M_{1}\right)\right) \subset \mathcal{R} \backslash J,
$$

a contradiction with the measurability of the section f^{y}. This contradiction completes the proof.

If $\left(X, \rho_{X}\right)$ and $\left(Y, \rho_{Y}\right)$ are separable metric space then each function f : $X \times Y \rightarrow \mathcal{R}$ having the continuous sections $f^{y}, y \in Y$, and the sections f_{x}, $x \in X$, with the closed graphs must be of the second Baire class (since the sections f^{y} are of the first Baire class ([6])). However there are nonborelien functions $f: \mathcal{R}^{2} \rightarrow \mathcal{R}$ such that all their sections f_{x} and $f^{y}, x, y \in \mathcal{R}$, have closed graphs.

Example 1. For $x \in \mathcal{R} \backslash\{0\}$ let

$$
g(x)=\frac{1}{|x|}
$$

Let

$$
\mathcal{R}=A \cup B, \text { where } A \cap B=\emptyset \text { and } A \text { is not borelien. }
$$

For $(x, y) \in \mathcal{R}^{2}$ let's put

$$
f(x, y)=\left\{\begin{array}{cll}
g(x-y) & \text { if } \quad x-y \neq 0 \\
1 & \text { if } \quad x \in A \text { and } x-y=0 \\
2 & \text { if } \quad x \in B \text { and } x-y=0
\end{array}\right.
$$

Then f is a nonborelien function but the sections f_{x} and $f^{y}, x, y \in \mathcal{R}$, have closed graphs.

References

[1] I. Baggs, Functions with closed graphs, Proc. Amer. Math. Soc., 43 (1974), 439-442.
[2] W. Bledsoe, Neighbourly functions, Proc. Amer. Math. Soc., 3 (1952), 114-115.
[3] A. M. Bruckner, Differentiation of real functions, Lectures Notes in Math. 659, Springer-Verlag, Berlin, 1978.
[4] R. O. Davies, Approximate continuity implies measurability, Proc. Camb. Philos. Soc., 73 (1973), 461-465.
[5] J. Dobos, On the set of points of discontinuity of functions with closed graphs, Cas. pest. mat., 110 (1985), 60-68.
[6] P. Kostyrko and T. Salat, On the functions with closed graphs, (in Russian), Cas. pest. mat., 89 (1964), 426-432.
[7] S. Saks, Theory of the integral, Warsaw, 1937.
[8] Tall F. D.; The density topology, Pacific J. Math., 62 (1976), 275-284.

[^0]: Key Words: Functions with closed graphs, section, continuity, cliquishness, Baire property, measurability

 Mathematical Reviews subject classification: 26A15
 Received by the editors January 17, 2001

