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ON FUNCTIONS OF TWO VARIABLES
WHOSE VERTICAL SECTIONS HAVE

CLOSED GRAPHS

Abstract

In this article we investigate some properties of functions f : X ×
Y → R (the cliquishness, the Baire property, the measurability) whose
vertical sections fx have closed graphs.

We say that a function f : X → Y , where X and Y are topological spaces,
is a function with a closed graph, if the graph of the function f ; i.e., the set

G(f) = {(x, y) ∈ X × Y ;x ∈ X and y = f(x)},

is a closed subset of the product space X × Y .
Let R be the space of all reals with the Euclidean topology Te. In this

article we will show some properties of functions of two variables f : X×Y →
R whose sections fx(y) = f(x, y), x ∈ X and y ∈ Y , have closed graphs G(fx)
in the product space Y ×R.

It is well known that there are discontinuous functions f : R2 → [0, 1] with
continuous sections fx and fy(x) = f(x, y), x, y ∈ R. Evidently the graphs of
such functions are not closed in R3. While continuous real functions defined
on topological spaces have closed graphs, there are functions f : R2 → [0, 1]
having continuous sections fy and fx with closed graphs such that the graphs
G(f) are not closed in R2 × [0, 1]. However the following theorem holds.

Theorem 1. Let (X,TX) and (Y, TY ) be topological spaces. If the sections
fy, y ∈ Y , are equi-continuous at each point x ∈ X and if the graphs G(fx)
of the sections fx, x ∈ X, are closed in Y × R, then the graph G(f) of the
function f is closed in X × Y ×R.
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Proof. Assume, to the contrary, that the graph G(f) is not closed. Then
there is a point

(∗) (x, y, z) ∈ cl(G(f)) \G(f) ⊂ X × Y ×R,

where cl denotes the closure operation. Since the graph G(fx) of the section
fx is closed and z 6= f(x, y), there are an open neighborhood V ∈ TY of the
point y and an open interval (z − 3r, z + 3r), r > 0, such that

(∗∗) (fx)−1([z − 3r, z + 3r]) ∩ V = ∅.

From equi-continuity of the sections fy, y ∈ Y , at the point x it follows that
there is a neighborhood U ∈ TX of the point x such that

|f(u, v)− f(x, v)| < r for u ∈ U and v ∈ Y.

We will prove that

(∗ ∗ ∗) (U × V × (z − r, z + r)) ∩G(f) = ∅.

Of course, if there is a point

(u1, v1) ∈ U × V with |f(u1, v1)− z| < r,

then

|f(x, v1)− z| ≤ |f(x, v1)− f(u1, v1)|+ |f(u1, v1)− z| < r + r = 2r,

is a contradiction with (∗∗).
So the relation (∗ ∗ ∗) is true, a contradiction with (∗), and the proof is

complete.

Theorem 2. Suppose that (X,TX) and (Y, TY ) are topological spaces with
countable bases and moreover (Y, TY ) is a perfectly normal topological space.
If the sections fx, x ∈ X, have closed graphs and the sections fy, y ∈ Y ,
have the Baire property, then f has the Baire property as a function of two
variables.

In the proof of this theorem we will apply the following lemma:
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Lemma 1. If (Z, TZ) is a topological space with a countable basis and if a
function f : Z → R satisfies the condition

(a) for each positive real η and for each set A ⊂ Z with the Baire property
and of the second category there is a set B ⊂ A with the Baire property
and of the second category on which oscBf ≤ η,

then f has the Baire property.

Proof of Lemma 1. For a given real η > 0 we can find a countable family
of pairwise disjoint sets An ⊂ Z having the Baire property and of the second
category such that oscAnf ≤ η for n ≥ 1 and

Z \
∞⋃
n=1

An is of the first category.

For each integer n ≥ 1 we choose a point an ∈ An and define

g(x) =
{
f(an) for x ∈ An, n = 1, 2, . . .
f(x) otherwise on Z.

Then the function g has the Baire property and |g − f | ≤ η, so f has the
Baire property as the uniform limit of a sequence of functions with the Baire
property. This completes the proof of Lemma 1.

Proof of Theorem 2. Since the space (X × Y, TX × TY ) has a countable
basis, it suffices to prove that the function f satisfies the condition (a) from
the above Lemma 1. Fix a real η > 0 and a set A ⊂ X × Y with the Baire
property and of the second category. There are nonempty open sets U ∈ TX
and V ∈ TY such that the set (U × V ) \A is of the first category.

Since (Y, TY ) is a perfectly normal topological space and the sections fx
have closed graphs, by Dobos’s theorem from [5] the sets of all discontinuity
points D(fx) of the sections fx are nowhere dense in Y . So, for each point
u ∈ U there are an open set W (u) ⊂ V from a countable basis B(Y ) of the
space Y and an open interval I(u) = (a(u), b(u)) with rational endpoints such
that

b(u)− a(u) <
η

2
and fu(W (u)) ⊂ I(u).

Since the set U is of the second category and the set of all pairs (W (u), I(u))
is countable, there are a nonempty open set W ∈ TY and an open interval
I = (a, b) such that the set

C = {u ∈ U ;W (u) = W and I(u) = I}
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is of the second category. Let S ∈ TX be a nonempty set such that each subset
E ⊂ S \ C with the Baire property is of the first category. Let [c, d] = J ⊃
cl(I) = [a, b] be a closed interval such that

c < a, d > b and d− c < η.

We will prove that the set

H = (S ×W ) \ f−1(J)

is of the first category. Of course, if H is of the second category, then for each
point

u ∈ PrX(H) = {u ∈ S;∃v∈W (u, v) ∈ H}

there is an open set K(u) ∈ B(Y ) such that

fu(K(u)) ⊂ R \ J and K(u) ⊂W.

Consequently, there is a nonempty set K ∈ TY such that the set

M = {u ∈ PrX(H);K(u) = K}

is of the second category. Fix a point y ∈ K and consider the section fy.
Since for x ∈ C we have f(x, y) ∈ I and for x ∈ M we have f(x, y) ∈ R \ J ,
we obtain a contradiction with the Baire property of the section fy. So the
set H is of the first category. The set

B = A ∩ [(S ×W ) \H] = A ∩ (S ×W ) ∩ f−1(J)

has the Baire property and it is of the second category. Moreover,

B ⊂ A and oscBf ≤ η,

so by Lemma 1 our theorem is proved.

Remember that a function h : X → R is cliquish at a point x ∈ X if for
each real η > 0 and for each set U ∈ TX containing x there is a nonempty set
V ⊂ U belonging to TX such that oscV f < η ([2]).

Theorem 3. Let (X,TX) and (Y, TY ) be topological spaces satisfying the sec-
ond countability axiom such that (Y, TY ) is a Baire space. If all sections fx,
x ∈ X, of a function f : X × Y → R have closed graphs and all sections
fy, y ∈ Y , are cliquish at all points x ∈ X then f is cliquish at each point
(x, y) ∈ X × Y .
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Proof. Fix a nonempty set A ∈ TX × TY and a positive real η. Let U ∈ TX
and V ∈ TY be nonempty sets such that U ×V ⊂ A. Let B(X) be a countable
basis in the space (X,TX). Since the sections fy, y ∈ Y , are cliquish, for
each point y ∈ Y there are a set U(y) ∈ B(X) and an open interval I(y) =
(a(y), b(y)) with rational endpoints such that

b(y)− a(y) < η and fy(U(y)) ⊂ I(y) and U(y) ⊂ U.

(Y, TY ) is a Baire space, so the set V is of the second category. Consequently,
there are a nonempty set W ∈ TX and an open interval I = (a, b) such that
the set

C = {y ∈ V ;U(y) = W and I(y) = I}
is of the second category. There is a nonempty set S ∈ TY in which the set
S ∩ C is dense in S. For x ∈ W the restrictions fx/S have closed graphs (in
S ×R) and are bounded on S ∩ C, so they are continuous on S. From this

f(W × S) ⊂ cl(I) = [a, b] and oscW×Sf ≤ b− a < η

and the proof is complete.

Theorem 4. Let (X,TX) = (Y, TY ) = (R, Te) and let f : R2 → R be a
function such that the sections fx, x ∈ R, have closed graphs and the sections
fy, y ∈ R, are measurable (in the Lebesgue sense). Then f is measurable (in
the Lebesgue sense) as the function of two variables.

In the proof of this theorem we will apply the density topology Td. For
this denote by µe the outer Lebesgue measure in R and remember ([3]) that
x ∈ R is said to be an outer density point of a set A ⊂ R if

lim
h→0+

µe([x− h, x+ h] ∩A)
2h

= 1.

If A is a Lebesgue measurable set then an outer density point x of A is said
to be a density point of A. The family

Td = {A ⊂ R;A is measurable and if x ∈ A then x is a density point of A}

is a topology called the density topology ([3, 8]).
Moreover in this proof we will apply the following Davies’s Lemma from

[4] (Lemma 2).

Lemma 2. Let (X,M, v) be a finite measure space, and let f : X → R be
such that for every ε > 0 the class

Dε = {D ∈M : oscf ≤ ε on D}
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satisfies the following condition: for every set A ∈ M of positive v-measure,
there exists a set D ∈ Dε such that D ⊂ A and v(D) > 0. Then f is v̄-
measurable (where v̄ is the completion of v).

Remark 1. Evidently the above Davies’s lemma is also true for every σ-finite
measure v.

Proof of Theorem 4. We will prove that for each Lebesgue measurable
set A ⊂ R2 of positive Lebesgue measure and for each positive real η there
is a Lebesgue measurable set B ⊂ A of positive Lebesgue measure µ2(B) >
0 on which oscBf ≤ η. By Davies’s Lemma 2 this condition implies the
measurability of the function f . Let A ⊂ R2 be a Lebesgue measurable set
with µ2(A) > 0 and let η > 0 be a real. As is known (compare Saks [7], pp.
130–131) there is a measurable set E ⊂ A such that all sections

Ex = {y; (x, y) ∈ E} ∈ Td and µ2(A \ E) = 0.

For each point (x, y) ∈ E the restriction fx/cl(Ex) of the section fx to the
closure cl(Ex) of the section Ex has a closed graph, and by Dobos’s theorem
from [5], the set D(f/cl(Ex)) of all discontinuity points of the restriction
f/cl(Ex) is nowhere dense in cl(Ex). So for each point (x, y) ∈ E there are
an open interval I(x, y) with rational endpoints and a closed interval J(x, y)
with rational endpoints and of length |J(x, y)| < η

2 such that

I(x, y) ∩ cl(Ex) 6= ∅ and fx(I(x, y) ∩ cl(Ex)) ⊂ J(x, y).

Let (In)n be an enumeration of all open intervals with rational endpoints and
let (Jn)n be a sequence of all closed intervals with rational endpoints and of
the length |Jn| < η

2 . For n,m = 1, 2, . . . let

An,m = {(x, y) ∈ E; I(x, y) = In and J(x, y) = Jm}.

Since the set of all pairs of intervals with rational endpoints is countable and
µ2(E) > 0, there is a pair (I, J) of intervals such that the set

H = {(x, y) ∈ E; I(x, y) = I and J(x, y) = J}

is not of measure zero. Consequently,

µe(PrX(H) = {x;∃y(x, y) ∈ H}) > 0,

and there is a nonempty set K ∈ Td such that each measurable set L ⊂
K \ PrX(H) is of measure zero. Evidently the set

G = E ∩ (K × I)



Functions Whose Vertical Sections Have Closed Graphs 667

is Lebesgue measurable and by Fubini’s theorem µ2(G) > 0. Let M ⊂ G be a
measurable set such that all sections

Mx ∈ Td and µ2(G \M) = 0.

If (x, y) ∈M is a point such that f(x, y) ∈ R\J then there is an open interval
I ′(x, y) ⊂ I with rational endpoints such that

I ′(x, y) ∩ cl(Mx) 6= ∅ and fx(I ′(x, y) ∩ cl(Mx)) ⊂ R \ J.

Of course, this is evident if fx/cl(Mx) is continuous at y. In the case where
fx/cl(Mx) is discontinuous at y it suffices to observe that the set D(fx/cl(Mx))
of all discontinuity points of fx/cl(Mx) is nowhere dense in cl(Mx) and for each
sequence of points

yn ∈ cl(Mx) \D(fx/cl(Mx)) \ {y}

converging to y and such that the corresponding sequence (fx(yn)) has a limit
(finite or infinite) we have

lim
n→∞

fx(yn) ∈ {fx(y),∞,−∞}.

If the set
M \ f−1(J)

is not of measure zero, then there is an open interval P ⊂ I such that the set

M1 = {(x, y) ∈M ; f(x, y) ∈ R \ J and I ′(x, y) = P}

is not of measure zero. So there is a nonempty set S ∈ Td such that S ⊂ K
and such that each measurable subset L ⊂ S \ PrX(M1) is of measure zero.
Then for y ∈ P such that µe(My) > 0 we obtain

fy(S ∩ PrX(H)) ⊂ J and fy(S ∩ PrX(M1)) ⊂ R \ J,

a contradiction with the measurability of the section fy. This contradiction
completes the proof.

If (X, ρX) and (Y, ρY ) are separable metric space then each function f :
X × Y → R having the continuous sections fy, y ∈ Y , and the sections fx,
x ∈ X, with the closed graphs must be of the second Baire class (since the
sections fy are of the first Baire class ([6])). However there are nonborelien
functions f : R2 → R such that all their sections fx and fy, x, y ∈ R, have
closed graphs.
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Example 1. For x ∈ R \ {0} let

g(x) =
1
|x|
.

Let
R = A ∪B, where A ∩B = ∅ and A is not borelien.

For (x, y) ∈ R2 let’s put

f(x, y) =

 g(x− y) if x− y 6= 0
1 if x ∈ A and x− y = 0
2 if x ∈ B and x− y = 0.

Then f is a nonborelien function but the sections fx and fy, x, y ∈ R, have
closed graphs.
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