Ewa Strońska, Institute of Mathematics, Bydgoszcz Academy, Plac Weyssenhoffa 11, 85-072 Bydgoszcz, Poland. e-mail: strewa@pro.onet.pl

MAXIMAL FAMILIES FOR THE CLASS OF UPPER AND LOWER SEMI-QUASICONTINUOUS FUNCTIONS

Abstract

In this article we investigate the maximal additive (multiplicative) [lattice] families for the class of real functions defined on topological spaces which are upper and lower semi-quasicontinuous at each point.

Let \mathbb{R} be the set of all reals and let (X, \mathcal{T}) be a topological space. A function $h: X \to \mathbb{R}$ is quasicontinuous (resp. upper semi-quasicontinuous) [resp. lower semi-quasicontinuous] at a point $x \in X$ if for every positive real ε and for every set $U \in \mathcal{T}$ containing x there is a nonempty open set $V \subset U$ such that $h(V) \subset (h(x) - \varepsilon, h(x) + \varepsilon)$ (resp. $h(V) \subset (-\infty, h(x) + \varepsilon)$), [resp. $h(V) \subset (h(x) - \varepsilon, \infty)$], ([2,3]).

Let Q(X) denote the family of all quasicontinuous functions $f: X \to \mathbb{R}$ and let $\mathcal{E}(X, x)$ (resp. $\mathcal{E}(X)$) be the family of all functions $g: X \to \mathbb{R}$ which are upper and lower semi-quasicontinuous at the point $x \in X$ (resp. at each point $t \in X$). It is obviously that if $f \in \mathcal{E}(X, x)$ then $-f \in \mathcal{E}(X, x)$.

Observe that for $X = \mathbb{R}$ with the Euclidean topology the family $Q(\mathbb{R})$ of all quasicontinuous functions $g : \mathbb{R} \to \mathbb{R}$ is a nowhere dense subset in the space $\mathcal{E}(\mathbb{R})$ with the metric $\rho_C(g, h) = \min(1, \sup_{x \in \mathbb{R}} |g(x) - h(x)|)$ of the uniform convergence ([4]).

Denote by D(f) the set of all discontinuity points of a function $f: X \to \mathbb{R}$, by C(f) the set of all continuity points of $f: X \to \mathbb{R}$ and by C(X) the family of all continuous real functions on X.

Moreover the symbol \mathbb{R} denotes the topological space with the Euclidean topology and nonempty subsets $A \subset \mathbb{R}$ are considered as topological subspaces of \mathbb{R} .

Mathematical Reviews subject classification: 26B05, 26A15 Received by the editors October 7, 2001

Key Words: lower and upper semi-quasicontinuity, maximal additive and multiplicative families, lattices

1 Maximal Families

If Φ is a nonempty class of functions $f: X \to \mathbb{R}$, then

$$\operatorname{Max}_{\operatorname{add}}(\Phi) = \{g : X \to \mathbb{R}; \forall_{f \in \Phi} f + g \in \Phi\}$$

is called the maximal additive family for Φ ,

 $\operatorname{Max}_{\operatorname{mult}}(\Phi) = \{g : X \to \mathbb{R}; \forall_{f \in \Phi} fg \in \Phi\}$

is called the maximal multiplicative family for Φ ,

$$\operatorname{Max}_{\max}(\Phi) = \{g : X \to \mathbb{R}; \forall_{f \in \Phi} \max(f, g) \in \Phi\}$$

is called the maximal family for Φ with respect to max; and

$$\operatorname{Max}_{\min}(\Phi) = \{g : X \to \mathbb{R}; \forall_{f \in \Phi} \min(f, g) \in \Phi\}$$

is called the maximal family for Φ with respect to min.

Let $\Phi = Q(X)$. In [3] it was proved that:

- 1. $\operatorname{Max}_{\operatorname{add}}(Q(X)) = C(X),$
- 2. $\operatorname{Max}_{\max}(Q(X)) = \operatorname{Max}_{\min}(Q(X)) = C(X)$ and
- 3. if $f \in Q(X)$ is such that $f(x) \neq 0$ for every $x \in X$ then $\frac{1}{f} \in Q(X)$.

The concept of the family $Max_{mult}(Q(X))$ is more complicated. If

$$N(Q) = \{ f \in Q(X); \text{if } x \in D(f) \text{ then } f(x) = 0 \text{ and } x \in cl(C(f) \cap f^{-1}(0)) \}$$

then $\operatorname{Max}_{\operatorname{mult}}(Q(X)) = N(Q)$ for the complete metric space X, ([2,3]).

In [2] it was also observed that if X is a topological space and a function $f : X \to \mathbb{R}$ is quasicontinuous at a point $x \in X$, then for every function $g : X \to \mathbb{R}$ which is continuous at x, the product fg is quasicontinuous at x. This last remark and above description are not true for $\mathcal{E}(X)$, (see example 1). The theorems in the last part of this paper are an attempt to describe the family $\operatorname{Max}_{\operatorname{mult}}(\mathcal{E}(X))$.

Remark 1. If $f \in \mathcal{E}(X)$, then there is the function $g \in C(X)$ such that the composition $g \circ f \notin \mathcal{E}(X)$.

For example, let $f \in \mathcal{E}(\mathbb{R})$ be such that

$$f(x) = \begin{cases} \frac{1}{x} & \text{for } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

and let $g \in C(\mathbb{R})$ be g(x) = |x|. Then $g \circ f \notin \mathcal{E}(\mathbb{R}, 0)$.

2 The Results

Let $\Phi = \mathcal{E}(X)$, where (X, \mathcal{T}) is an arbitrary topological space.

Remark 2. The inclusions

$$C(X) \subset \operatorname{Max}_{\operatorname{add}}(\mathcal{E}(X)) \cap \operatorname{Max}_{\operatorname{max}}(\mathcal{E}(X)) \cap \operatorname{Max}_{\operatorname{min}}(\mathcal{E}(X)) \subset \mathcal{E}(X)$$

are true.

PROOF. If we prove five inclusions:

- (i) $C(X) \subset \operatorname{Max}_{\operatorname{add}}(\mathcal{E}(X));$
- (ii) $\operatorname{Max}_{\max}(\mathcal{E}(X)) \subset \mathcal{E}(X);$
- (iii) $\operatorname{Max}_{\min}(\mathcal{E}(X)) \subset \mathcal{E}(X);$
- (iv) $C(X) \subset \operatorname{Max}_{\max}(\mathcal{E}(X)) \cap \operatorname{Max}_{\min}(\mathcal{E}(X));$
- (v) $\operatorname{Max}_{\operatorname{add}}(\mathcal{E}(X)) \subset \mathcal{E}(X),$

then the proof will be complete.

PROOF OF (i). Let $f \in C(X)$, $g \in \mathcal{E}(X)$, $x \in X$, $U \in \mathcal{T}$ with $x \in U$ and let $\varepsilon > 0$. From the continuity of f at x it follows that there is an open set $W \subset U$ containing x such that $f(W) \subset (f(x) - \frac{\varepsilon}{2}, f(x) + \frac{\varepsilon}{2})$. Since $g \in \mathcal{E}(X)$, there are nonempty open sets $V, S \subset W$ such that

$$g(V) \subset (-\infty, g(x) + \frac{\varepsilon}{2}) \text{ and } g(S) \subset (g(x) - \frac{\varepsilon}{2}, \infty).$$

Then for $u \in V$ and $v \in S$ we have

$$f(u) + g(u) < f(x) + \frac{\varepsilon}{2} + g(x) + \frac{\varepsilon}{2} = f(x) + g(x) + \varepsilon,$$

and

$$f(v) + g(v) > f(x) - \frac{\varepsilon}{2} + g(x) - \frac{\varepsilon}{2} = f(x) + g(x) - \varepsilon$$

Hence $f + g \in \mathcal{E}(X)$ and $f \in \operatorname{Max}_{\operatorname{add}}(\mathcal{E}(X))$. PROOF OF (ii). Now, fix $f \in \operatorname{Max}_{\max}(\mathcal{E}(X))$, $x \in X$, $U \in \mathcal{T}$ with $x \in U$ and $\varepsilon > 0$. Then the function $h = \max(f, f(x) - 2\varepsilon) \in \mathcal{E}(X)$. Since h(x) = f(x), there is a nonempty open set $W \subset U$ with

$$h(W) \subset (h(x) - \varepsilon, \infty) = (f(x) - \varepsilon, \infty).$$

So, $f(W) = h(W) \subset (f(x) - \varepsilon, \infty)$.

Similarly, since h(x) = f(x), there is a nonempty open set $V \subset U$ such that

$$h(V) \subset (-\infty, h(x) + \varepsilon) = (-\infty, f(x) + \varepsilon).$$

Thus $f(V) \subset (-\infty, f(x) + \varepsilon)$. So, $f \in \mathcal{E}(X)$ and $\operatorname{Max}_{\max}(\mathcal{E}(X)) \subset \mathcal{E}(X)$. PROOF OF (iii). From the equality $\max(-f, g) = -\min(f, -g)$ it follows that if $f \in \operatorname{Max}_{\min}(\mathcal{E}(X))$, then $-f \in \operatorname{Max}_{\max}(\mathcal{E}(X)) \subset \mathcal{E}(X)$ and consequently $f \in \mathcal{E}(X)$.

PROOF OF (iv). Let $f \in C(X)$, $g \in \mathcal{E}(X)$, $x \in X$, $U \in \mathcal{T}$ with $x \in U$ and $\varepsilon > 0$. Let $h = \max(f, g)$. Suppose that $W \subset U$ is an open set such that $x \in W$ and $f(W) \subset (f(x) - \varepsilon, f(x) + \varepsilon)$. Then, for $u \in W$ we have

 $h(u) \ge f(u) \ge f(x) - \varepsilon$ for $u \in W$.

So, if $f(x) \geq g(x)$, then $h(W) \subset (h(x) - \varepsilon, \infty)$. If f(x) < g(x), then, by the relation $g \in \mathcal{E}(X)$, there is a nonempty open set $V \subset W$ with $g(V) \subset (g(x) - \varepsilon, \infty)$. Hence $h(V) \subset (h(x) - \varepsilon, \infty)$. Now, let $S \subset W$ be a nonempty open set with $g(S) \subset (-\infty, g(x) + \varepsilon)$. So, on the set S we have

$$f(u) < f(x) + \varepsilon \le h(x) + \varepsilon$$
 and $g(u) < g(x) + \varepsilon \le h(x) + \varepsilon$.

Therefore $h(S) \subset (-\infty, h(x) + \varepsilon)$.

For the proof of the inclusion $C(X) \subset \operatorname{Max}_{\min}(\mathcal{E}(X))$ fix $f \in C(X)$ and $g \in \mathcal{E}(X)$ and observe that $\min(f,g) = -\max(-f,-g) \in \mathcal{E}(X)$. PROOF OF (v). Since the function $0 \in \mathcal{E}(X)$, $\operatorname{Max}_{\operatorname{add}}(\mathcal{E}(X)) \subset \mathcal{E}(X)$. This completes the proof of Remark 2.

Theorem 1. The equality $C(X) = \text{Max}_{\text{add}}(\mathcal{E}(X))$ holds.

PROOF. Let $f \in \mathcal{E}(X) \setminus C(X)$ and let $x \in D(f)$. Then there is a positive real ε such that

$$x \in cl(int\{u; f(u) > f(x) + \varepsilon\}) \text{ or } x \in cl(int\{u; f(u) < f(x) - \varepsilon\}),$$

where cl and int denote the closure and the interior operations respectively.

Suppose that $x \in cl(int\{u; f(u) > f(x) + \varepsilon\})$. In the other case the reasoning is analogous. The function

$$g(u) = \begin{cases} f(u) & \text{if } f(u) \le f(x) + \varepsilon \text{ and } u \ne x \\ f(x) + \varepsilon & \text{if } f(u) > f(x) + \varepsilon \text{ or } u = x \end{cases}$$

belongs to $\mathcal{E}(X)$. Observe that the function $-g \in \mathcal{E}(X)$ but the sum f + (-g) does not belong to $\mathcal{E}(X)$ because

$$f(u) - g(u) \begin{cases} = 0 & \text{if } f(u) \le f(x) + \varepsilon \text{ and } u \ne x \\ > 0 & \text{if } f(u) > f(x) + \varepsilon \text{ and } u \ne x \\ = -\varepsilon & \text{if } u = x. \end{cases}$$

MAXIMAL FAMILIES

Thus f does not belong to $\operatorname{Max}_{\operatorname{add}}(\mathcal{E}(X))$ and $\operatorname{Max}_{\operatorname{add}}(\mathcal{E}(X)) \subset C(X)$. Consequently, because we have (i) in the proof of Remark 2, $\operatorname{Max}_{\operatorname{add}}(\mathcal{E}(X)) = C(X)$ and the proof of Theorem 1 is complete.

Theorem 2. The equalities $C(X) = Max_{max}(\mathcal{E}(X)) = Max_{min}(\mathcal{E}(X))$ hold.

PROOF. Let $f \in \mathcal{E}(X) \setminus C(X)$ be a function and let $x \in X$ be a point belonging to D(f). Fix $\varepsilon > 0$ and let $U = int\{u; f(u) > f(x) + \varepsilon\}$ be such that $x \in cl U$. Observe that the function

$$g(u) = f(x) + \varepsilon$$
 for $u \in X \setminus cl$ and $g(u) = f(x) - \varepsilon$ on $cl U$

belongs to $\mathcal{E}(X)$. Moreover

$$\max(f(u), g(u)) \ge f(x) + \varepsilon \text{ for } u \in X \setminus (\operatorname{cl} U \cap \{u; f(u) < f(x) + \varepsilon\})$$

and
$$\max(f(u), g(u)) < f(x) + \varepsilon$$
 for $u \in N = \operatorname{cl} U \cap \{u; f(u) < f(x) + \varepsilon\}$

where N is nowhere dense in X. In particular $\max(f(x), g(x)) = f(x)$; so, $\max(f, g) \notin \mathcal{E}(X, x)$ and consequently $\max(f, g) \notin \mathcal{E}(X)$.

In the opposite case, if we consider $V = \inf\{u; f(u) \leq f(x) + \varepsilon\}$ such that $x \in \operatorname{cl} V$, the reasoning will be analogous. From these cases follows that $\operatorname{Max}_{\max}(\mathcal{E}(X)) \subset C(X)$ and, because we have (iv) in the proof of Remark 2, $\operatorname{Max}_{\max}(\mathcal{E}(X)) = C(X)$.

For the proof of the inclusion $\operatorname{Max}_{\min}(\mathcal{E}(X)) \subset C(X)$ observe that if $f \in \operatorname{Max}_{\min}(\mathcal{E}(X))$, then $-f \in \operatorname{Max}_{\max}(\mathcal{E}(X)) = C(X)$ and consequently $f \in C(X)$. The proof of theorem 2 is complete.

For the investigation of the class $\operatorname{Max}_{\operatorname{mult}}(\mathcal{E}(X))$ we first consider the following example.

Example 1. Let $g(x) = \begin{cases} 0 & \text{if } x = 0 \\ \frac{1}{x} & \text{otherwise on } \mathbb{R} \end{cases}$ and let f(x) = x for $x \in \mathbb{R}$.

Then $f \in C(\mathbb{R})$ and $g \in \mathcal{E}(\mathbb{R})$, but the product $fg \notin \mathcal{E}(\mathbb{R})$, since f(0)g(0) = 0and f(x)g(x) = 1 for each $x \neq 0$.

Theorem 3. If $f, g \in \mathcal{E}(X)$, if $x \in C(f)$ and if $f(x) \neq 0$, then $fg \in \mathcal{E}(X, x)$.

PROOF. Let $U \in \mathcal{T}$ be a nonempty set containing a point x and $\varepsilon > 0$. We will consider the following cases:

(1) f(x) > 0 and g(x) > 0. Let r > 0 be a real such that

$$f(x) - r > 0$$
 and $0 < (f(x) + g(x))r - r^2 < \varepsilon$, and $r^2 + (f(x) + g(x))r < \varepsilon$

There are a nonempty open set $P \subset U$ containing x such that $f(P) \subset (f(x) - r, f(x) + r))$ and a nonempty open set $V \subset P$ such that

$$g(u) > \max(g(x) - r, \frac{g(x)}{2})$$
 for $u \in V$.

Then for $u \in V$ we have

$$f(u)g(u) > (f(x)-r)(g(x)-r) = f(x)g(x) + r^2 - (f(x)+g(x))r > f(x)g(x) - \varepsilon.$$

If there is a point $t \in P$ such that g(t) < 0, then there is a nonempty open set $W \subset P$ with $g(W) \subset (-\infty, 0)$ and consequently, $f(u)g(u) < 0 < f(x)g(x) + \varepsilon$ for $u \in W$. If $g(u) \ge 0$ for each point $u \in P$ then there is a nonempty open set $W \subset P$ such that g(u) < g(x) + r for $u \in W$. Consequently, for $u \in W$ we have

$$f(u)g(u) < (f(x)+r)(g(x)+r) = f(x)g(x)+r^2 + (f(x)+g(x))r < f(x)g(x) + \varepsilon$$

(2) f(x) < 0 and g(x) < 0. This case may be reduced to case (1), since

$$fg = (-f)(-g)$$
 and $-f, -g \in \mathcal{E}(X)$.

- (3) f(x) < 0 and g(x) > 0. This case may be reduced to case (1) since
 - -f(x) > 0, g(x) > 0, and $-f, g \in \mathcal{E}(X)$ imply $-fg \in \mathcal{E}(X, x)$ and so $fg \in \mathcal{E}(X, x)$.

(4) f(x) > 0 and g(x) < 0. As in case (2) this case may be reduced to case (3).

(5) f(x) > 0 and g(x) = 0. If there is a nonempty open set $P \subset U \cap g^{-1}(0)$, then the proof is evident. So, we can suppose that $\operatorname{int}(U \cap g^{-1}(0)) = \emptyset$. Then let $P \subset U$ be an open nonempty set containing x such that $f(P) \subset (f(x) - r, f(x) + r)$, where r > 0 is a real such that f(x) - r > 0 and $(f(x) + r)r < \varepsilon$. If there is a point $t \in P$ with g(t) < 0, then there is a nonempty open set $W \subset P$ such that $g(W) \subset (-\infty, 0)$, and consequently for $u \in W$ we have

$$f(u)g(u) < 0 < f(x)g(x) + \varepsilon.$$

If $g(t) \ge 0$ for each point $t \in P$, then there is a nonempty open set $W \subset P$ such that g(u) < r for $u \in W$. So, for $u \in W$ we obtain

$$f(u)g(u) < (f(x) + r)r < \varepsilon = f(x)g(x) + \varepsilon.$$

If there is a point $t \in P$ with g(t) > 0, then there is a nonempty open set $V \subset P$ such that g(u) > 0 for each point $u \in V$. Then for $u \in V$ we obtain

$$f(u)g(u) > 0 > -\varepsilon = f(x)g(x) - \varepsilon$$

If $g(u) \leq 0$ for each point $u \in P$, then, by the equality g(x) = 0, there is a nonempty open set $V \subset P$ such that g(u) > -r for $u \in V$. Then for each $u \in V$ we obtain

$$f(u)g(u) > -(f(x) + r)r > -\varepsilon = f(x)g(x) - \varepsilon.$$

(6) f(x) < 0 and g(x) = 0. This case can be reduced to case (5). This completes the proof of Theorem 3.

Theorem 4. If $f : X \to \mathbb{R}$ and if $x \in X$ are such that f(x) = 0 and $x \in cl(int(f^{-1}(0)))$, then for each function $g : X \to \mathbb{R}$ the product $fg \in \mathcal{E}(X, x)$.

PROOF. This theorem is evident.

Lemma 1. If
$$f \in \mathcal{E}(X)$$
 and $f(u) > 0$ for all $u \in X$, then $\frac{1}{f} \in \mathcal{E}(X)$.

PROOF. Fix a point $y \in X$, a set $U \in \mathcal{T}$ containing y and a positive real ε . Since $f \in \mathcal{E}(X, y)$ and $f(y) > \frac{f(y)}{1 + \varepsilon f(y)}$ there is a nonempty set $W \subset U$ such that $f(u) > \frac{f(y)}{1 + \varepsilon f(y)}$ for all $u \in W$. Consequently, for $u \in W$, we have

$$\frac{1}{f(u)} < \frac{1 + \varepsilon f(y)}{f(y)} = \frac{1}{f(y)} + \varepsilon.$$

So, the upper semi-quasicontinuous of $\frac{1}{f}$ is proved.

Now, let $\varepsilon_0 = \min(\varepsilon, \frac{1}{2f(y)})$. Since $f \in \mathcal{E}(X, y)$ and $f(y) < \frac{f(y)}{1-\varepsilon_0 f(y)}$, there is a nonempty set $V \subset U$ such that $f(u) < \frac{f(y)}{1-\varepsilon_0 f(y)}$ for all $u \in V$. Consequently, $\frac{1}{f}$ is lower semi-quasicontinuous, since

$$\frac{1}{f(u)} > \frac{1 - \varepsilon_0 f(y)}{f(y)} = \frac{1}{f(y)} - \varepsilon_0 \ge \frac{1}{f(y)} - \varepsilon \text{ for all } u \in V.$$

From $\frac{1}{f} \in \mathcal{E}(X, y)$ it follows that $\frac{1}{f} \in \mathcal{E}(X)$ and this completes the proof of Lemma 1.

Remark 3. If $f \in \mathcal{E}(X)$ and f(u) < 0 for all $u \in X$, then $\frac{1}{f} \in \mathcal{E}(X)$.

PROOF. Apply Lemma 1 to -f.

Remark 4. There exists a function $f \in \mathcal{E}(X)$ such that if f(u) > 0 for some $u \in X$ and f(v) < 0 for some $v \in X$, then $\frac{1}{f} \notin \mathcal{E}(X)$.

Example 2. Let

$$f(x) = \begin{cases} 2 & \text{for } x \in (0, \infty) \\ 1 & \text{for } x = 0 \\ -1 & \text{for } x \in (-\infty, 0). \end{cases}$$

Then $f \in \mathcal{E}(X)$ but $\frac{1}{f} \notin \mathcal{E}(X)$.

Theorem 5. If $f \in \mathcal{E}(X)$ and a point $x \in X$ are such that f(x) = 0, $f(u) \neq 0$ for $u \neq x$ and $x \in cl(f^{-1}((-\infty, 0)))$, and $x \in cl(f^{-1}((0, \infty)))$, then there is a function $g \in \mathcal{E}(X)$ such that $fg \notin \mathcal{E}(X)$.

PROOF. Since the function $h(u) = \frac{1}{f(u)}$ for $u \in X \setminus \{x\}$ belongs to $\mathcal{E}(X \setminus \{x\})$, the function g(x) = 0 and g(u) = h(u) for $u \neq x$ belongs to $\mathcal{E}(X)$. But the product f(x)g(x) = 0 and f(u)g(u) = 1 for $u \neq x$, is not in $\mathcal{E}(X)$. This completes the proof.

Theorem 6. If a function $f \in \mathcal{E}(X)$ is discontinuous at a point $x \in X$ and $f(x) \neq 0$, then there is a function $g \in \mathcal{E}(X)$ such that the product $fg \notin \mathcal{E}(X)$.

PROOF. Suppose that f(x) > 0. If f(x) < 0, then we can consider the function -f. In this situation we have three cases:

(1) $l = \liminf f(x) < f(x) < \limsup f(x) = d$. Let $U \in \mathcal{T}$ be a nonempty set containing x and let

Let $U \in \mathcal{T}$ be a nonempty set containing x and let a be a real such that l < f(x) < a < d. Denote $V = int\{u \in U; f(u) < a\}$ and suppose that $x \in cl V$. Of course, because $f \in \mathcal{E}(X)$, such a choice is possible.

Let $g: X \to \mathbb{R}$ be a function such that

$$g(t) = \begin{cases} 1 & \text{for } t \in \operatorname{cl} V \\ 0 & \text{for } t \in X \setminus \operatorname{cl} V \end{cases}$$

In particular g(x) = 1. Observe that $g \in Q(X)$; so $g \in \mathcal{E}(X)$. Moreover, the product $fg \notin \mathcal{E}(X, x)$ because

$$(fg)(t) \begin{cases} = f(x) < a & \text{for } t = x \\ = 0 < a & \text{for } t \in X \setminus \operatorname{cl} V \\ < a & \text{for } t \in \{u \in U; f(u) < a\}, \end{cases}$$

but (fg)(t) > a for $t \in \operatorname{cl} V \setminus \{u \in U; f(u) < a\},\$

MAXIMAL FAMILIES

where $\operatorname{cl} V \setminus \{u \in U; f(u) < a\}$ is nowhere dense in X, so $fg \notin \mathcal{E}(X,t)$ for $t \in \operatorname{cl} V \setminus \{ u \in U; f(u) < a \}.$

(2) $l = \liminf f(x) = f(x) < \limsup f(x) = d.$

Fix reals a, b such that $0 < \frac{f(x)}{2} < a < l = f(x) < b < d$. Let $U \in \mathcal{T}$ be a nonempty set containing x such that $f(U) \subset (a, \infty)$ and $V = \operatorname{int}(\operatorname{cl} U)$. Observe that $f(V) \subset [a, \infty)$. In addition, since $U \subset V$, the set V is a neighborhood of x and if $u \in X \setminus V$, then $u \in cl(int(X \setminus V))$.

Let $A = \{u \in V; f(u) \ge b\}$. Then obviously $x \in cl(int A)$). Put

$$g(u) = \begin{cases} -1 & \text{for } u \in V \cap clA \\ -\frac{2f(x)}{f(u)} & \text{for } u \in V \setminus clA \\ 0 & \text{for } u \in X \setminus V. \end{cases}$$

Observe that $g \in \mathcal{E}(X, u)$ for $u \in (X \setminus V) \cup (V \cap \operatorname{cl} A)$ because g is quasicontinuous at this points. From Lemma 1 it follows that $g \in \mathcal{E}(X, u)$ for each $u \in V \setminus \operatorname{cl} A$. But

$$(fg)(u) \begin{cases} = -f(x) & \text{for } u = x \\ \leq -b < -f(x) & \text{for } u \in A \\ = -2f(x) < -f(x) & \text{for } u \in V \setminus \operatorname{cl} A \\ = 0 & \text{for } u \in X \setminus V, \end{cases}$$

and $(fg)(u) \in \mathbb{R}$ for $u \in N = (cl A) \setminus A$, where N is nowhere dense in X, which means that $fg \notin \mathcal{E}(X, x)$.

(3) $l = \liminf f(x) < f(x) = \limsup f(x) = d$. Fix reals a, b such that $l < \frac{f(x)}{2} < a < f(x) = d < b$. Let $U \in \mathcal{T}$ be a nonempty set containing x such that $f(U) \subset (-\infty, b)$. If V = int(cl U), then $f(V) \subset (-\infty, b]$ and in addition, since $U \subset V$, the set V is a neighborhood of x. Moreover, if $u \in X \setminus V$, then $u \in cl(int(X \setminus V))$.

Let $A = \{u \in V; f(u) \le a\}$. Obviously in this case $x \in cl(int A)$. Put

$$g(u) = \begin{cases} 1 & \text{for } u \in V \cap \operatorname{cl} A\\ \frac{f(x)}{2f(u)} & \text{for } u \in V \setminus \operatorname{cl} A\\ 0 & \text{for } u \in X \setminus V. \end{cases}$$

As in case (2), the function $g \in \mathcal{E}(X)$. Observe that

$$(fg)(u) = \begin{cases} f(x) & \text{for } u = x\\ 0 < a & \text{for } u \in X \setminus V\\ \frac{1}{2}f(x) < a & \text{for } u \in V \setminus \operatorname{cl} A\\ f(u) \le a & \text{for } u \in A, \end{cases}$$

and $(fg)(u) \in \mathbb{R}$ for $u \in N = \operatorname{cl} A \setminus A$, where N is nowhere dense in X. Thus $fg \notin \mathcal{E}(X, x)$.

From the cases (1), (2), (3) follows that $fg \notin \mathcal{E}(X)$ and this completes the proof of Theorem 6.

Acknowledgments. The author is thankful to the referee for all comments and suggestions.

References

- A. M. Bruckner, Differentiation of real functions, Lectures Notes in Math. 659, Springer-Verlag, Berlin (1978).
- [2] Z. Grande, On the Maximal Multiplicative Family for the Class of Quasicontinuous Functions, Real Analysis Exch., 15 (1989-90), 437–441.
- [3] Z. Grande, Soltysik L.; Some remarks on quasi-continuous real function, Problemy Matematyczne, Zeszyty Naukowe WSP w Bydgoszczy, 10 (1990), 79–86.
- [4] Z. Grande, Quasicontinuity, cliquishness and the Baire property of functions of two variables, Tatra Mountains Math. Public. (2001), to appear.
- [5] S. Kempisty, Sur les fonctions quasi-continues, Fund. Math. 19 (1932), 184–197.
- [6] T. Neubrunn, *Quasi-continuity*, Real Anal. Exchange 14 No. 2 (1988-89), 259–306.