MAXIMAL FAMILIES FOR THE CLASS OF UPPER AND LOWER SEMI-QUASICONTINUOUS FUNCTIONS

Abstract

In this article we investigate the maximal additive (multiplicative) [lattice] families for the class of real functions defined on topological spaces which are upper and lower semi-quasicontinuous at each point.

Let \mathbb{R} be the set of all reals and let (X, \mathcal{T}) be a topological space. A function $h: X \rightarrow \mathbb{R}$ is quasicontinuous (resp. upper semi- quasicontinuous) [resp. lower semi-quasicontinuous] at a point $x \in X$ if for every positive real ε and for every set $U \in \mathcal{T}$ containing x there is a nonempty open set $V \subset U$ such that $h(V) \subset(h(x)-\varepsilon, h(x)+\varepsilon)($ resp. $h(V) \subset(-\infty, h(x)+\varepsilon))$, [resp. $h(V) \subset(h(x)-\varepsilon, \infty)],([2,3])$.

Let $Q(X)$ denote the family of all quasicontinuous functions $f: X \rightarrow \mathbb{R}$ and let $\mathcal{E}(X, x)$ (resp. $\mathcal{E}(X)$) be the family of all functions $g: X \rightarrow \mathbb{R}$ which are upper and lower semi-quasicontinuous at the point $x \in X$ (resp. at each point $t \in X)$. It is obviously that if $f \in \mathcal{E}(X, x)$ then $-f \in \mathcal{E}(X, x)$.

Observe that for $X=\mathbb{R}$ with the Euclidean topology the family $Q(\mathbb{R})$ of all quasicontinuous functions $g: \mathbb{R} \rightarrow \mathbb{R}$ is a nowhere dense subset in the space $\mathcal{E}(\mathbb{R})$ with the metric $\rho_{C}(g, h)=\min \left(1, \sup _{x \in \mathbb{R}}|g(x)-h(x)|\right)$ of the uniform convergence ([4]).

Denote by $D(f)$ the set of all discontinuity points of a function $f: X \rightarrow \mathbb{R}$, by $C(f)$ the set of all continuity points of $f: X \rightarrow \mathbb{R}$ and by $C(X)$ the family of all continuous real functions on X.

Moreover the symbol \mathbb{R} denotes the topological space with the Euclidean topology and nonempty subsets $A \subset \mathbb{R}$ are considered as topological subspaces of \mathbb{R}.

[^0]
1 Maximal Families

If Φ is a nonempty class of functions $f: X \rightarrow \mathbb{R}$, then

$$
\operatorname{Max}_{\operatorname{add}}(\Phi)=\left\{g: X \rightarrow \mathbb{R} ; \forall_{f \in \Phi} f+g \in \Phi\right\}
$$

is called the maximal additive family for Φ,

$$
\operatorname{Max}_{\operatorname{mult}}(\Phi)=\left\{g: X \rightarrow \mathbb{R} ; \forall_{f \in \Phi} f g \in \Phi\right\}
$$

is called the maximal multiplicative family for Φ,

$$
\operatorname{Max}_{\max }(\Phi)=\left\{g: X \rightarrow \mathbb{R} ; \forall_{f \in \Phi} \max (f, g) \in \Phi\right\}
$$

is called the maximal family for Φ with respect to max; and

$$
\operatorname{Max}_{\min }(\Phi)=\left\{g: X \rightarrow \mathbb{R} ; \forall_{f \in \Phi} \min (f, g) \in \Phi\right\}
$$

is called the maximal family for Φ with respect to min.
Let $\Phi=Q(X)$. In [3] it was proved that:

1. $\operatorname{Max}_{\text {add }}(Q(X))=C(X)$,
2. $\operatorname{Max}_{\text {max }}(Q(X))=\operatorname{Max}_{\text {min }}(Q(X))=C(X)$ and
3. if $f \in Q(X)$ is such that $f(x) \neq 0$ for every $x \in X$ then $\frac{1}{f} \in Q(X)$.

The concept of the family $\operatorname{Max}_{\text {mult }}(Q(X))$ is more complicated. If

$$
N(Q)=\left\{f \in Q(X) \text {; if } x \in D(f) \text { then } f(x)=0 \text { and } x \in c l\left(C(f) \cap f^{-1}(0)\right)\right\}
$$

then $\operatorname{Max}_{\text {mult }}(Q(X))=N(Q)$ for the complete metric space $X,([2,3])$.
In [2] it was also observed that if X is a topological space and a function $f: X \rightarrow \mathbb{R}$ is quasicontinuous at a point $x \in X$, then for every function $g: X \rightarrow \mathbb{R}$ which is continuous at x, the product $f g$ is quasicontinuous at x. This last remark and above description are not true for $\mathcal{E}(X)$, (see example 1). The theorems in the last part of this paper are an attempt to describe the family $\operatorname{Max}_{\text {mult }}(\mathcal{E}(X))$.

Remark 1. If $f \in \mathcal{E}(X)$, then there is the function $g \in C(X)$ such that the composition $g \circ f \notin \mathcal{E}(X)$.

For example, let $f \in \mathcal{E}(\mathbb{R})$ be such that

$$
f(x)= \begin{cases}\frac{1}{x} & \text { for } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

and let $g \in C(\mathbb{R})$ be $g(x)=|x|$. Then $g \circ f \notin \mathcal{E}(\mathbb{R}, 0)$.

2 The Results

Let $\Phi=\mathcal{E}(X)$, where (X, \mathcal{T}) is an arbitrary topological space.
Remark 2. The inclusions

$$
C(X) \subset \operatorname{Max}_{\text {add }}(\mathcal{E}(X)) \cap \operatorname{Max}_{\max }(\mathcal{E}(X)) \cap \operatorname{Max}_{\min }(\mathcal{E}(X)) \subset \mathcal{E}(X)
$$

are true.
Proof. If we prove five inclusions:
(i) $C(X) \subset \operatorname{Max}_{\text {add }}(\mathcal{E}(X))$;
(ii) $\operatorname{Max}_{\max }(\mathcal{E}(X)) \subset \mathcal{E}(X)$;
(iii) $\operatorname{Max}_{\min }(\mathcal{E}(X)) \subset \mathcal{E}(X)$;
(iv) $C(X) \subset \operatorname{Max}_{\max }(\mathcal{E}(X)) \cap \operatorname{Max}_{\min }(\mathcal{E}(X))$;
(v) $\operatorname{Max}_{\text {add }}(\mathcal{E}(X)) \subset \mathcal{E}(X)$,
then the proof will be complete.
Proof of (i). Let $f \in C(X), g \in \mathcal{E}(X), x \in X, U \in \mathcal{T}$ with $x \in U$ and let $\varepsilon>0$. From the continuity of f at x it follows that there is an open set $W \subset U$ containing x such that $f(W) \subset\left(f(x)-\frac{\varepsilon}{2}, f(x)+\frac{\varepsilon}{2}\right)$. Since $g \in \mathcal{E}(X)$, there are nonempty open sets $V, S \subset W$ such that

$$
g(V) \subset\left(-\infty, g(x)+\frac{\varepsilon}{2}\right) \text { and } g(S) \subset\left(g(x)-\frac{\varepsilon}{2}, \infty\right)
$$

Then for $u \in V$ and $v \in S$ we have

$$
f(u)+g(u)<f(x)+\frac{\varepsilon}{2}+g(x)+\frac{\varepsilon}{2}=f(x)+g(x)+\varepsilon
$$

and

$$
f(v)+g(v)>f(x)-\frac{\varepsilon}{2}+g(x)-\frac{\varepsilon}{2}=f(x)+g(x)-\varepsilon
$$

Hence $f+g \in \mathcal{E}(X)$ and $f \in \operatorname{Max}_{\text {add }}(\mathcal{E}(X))$.
Proof of (ii). Now, fix $f \in \operatorname{Max}_{\max }(\mathcal{E}(X)), x \in X, U \in \mathcal{T}$ with $x \in U$ and $\varepsilon>0$. Then the function $h=\max (f, f(x)-2 \varepsilon) \in \mathcal{E}(X)$. Since $h(x)=f(x)$, there is a nonempty open set $W \subset U$ with

$$
h(W) \subset(h(x)-\varepsilon, \infty)=(f(x)-\varepsilon, \infty)
$$

So, $f(W)=h(W) \subset(f(x)-\varepsilon, \infty)$.

Similarly, since $h(x)=f(x)$, there is a nonempty open set $V \subset U$ such that

$$
h(V) \subset(-\infty, h(x)+\varepsilon)=(-\infty, f(x)+\varepsilon)
$$

Thus $f(V) \subset(-\infty, f(x)+\varepsilon)$. So, $f \in \mathcal{E}(X)$ and $\operatorname{Max}_{\max }(\mathcal{E}(X)) \subset \mathcal{E}(X)$.
Proof of (iii). From the equality $\max (-f, g)=-\min (f,-g)$ it follows that if $f \in \operatorname{Max}_{\min }(\mathcal{E}(X))$, then $-f \in \operatorname{Max}_{\max }(\mathcal{E}(X)) \subset \mathcal{E}(X)$ and consequently $f \in \mathcal{E}(X)$.
Proof of (iv). Let $f \in C(X), g \in \mathcal{E}(X), x \in X, U \in \mathcal{T}$ with $x \in U$ and $\varepsilon>0$. Let $h=\max (f, g)$. Suppose that $W \subset U$ is an open set such that $x \in W$ and $f(W) \subset(f(x)-\varepsilon, f(x)+\varepsilon)$. Then, for $u \in W$ we have

$$
h(u) \geq f(u) \geq f(x)-\varepsilon \text { for } u \in W .
$$

So, if $f(x) \geq g(x)$, then $h(W) \subset(h(x)-\varepsilon, \infty)$. If $f(x)<g(x)$, then, by the relation $g \in \mathcal{E}(X)$, there is a nonempty open set $V \subset W$ with $g(V) \subset$ $(g(x)-\varepsilon, \infty)$. Hence $h(V) \subset(h(x)-\varepsilon, \infty)$. Now, let $S \subset W$ be a nonempty open set with $g(S) \subset(-\infty, g(x)+\varepsilon)$. So, on the set S we have

$$
f(u)<f(x)+\varepsilon \leq h(x)+\varepsilon \text { and } g(u)<g(x)+\varepsilon \leq h(x)+\varepsilon .
$$

Therefore $h(S) \subset(-\infty, h(x)+\varepsilon)$.
For the proof of the inclusion $C(X) \subset \operatorname{Max}_{\text {min }}(\mathcal{E}(X))$ fix $f \in C(X)$ and $g \in \mathcal{E}(X)$ and observe that $\min (f, g)=-\max (-f,-g) \in \mathcal{E}(X)$.
Proof of (v). Since the function $0 \in \mathcal{E}(X), \operatorname{Max}_{\text {add }}(\mathcal{E}(X)) \subset \mathcal{E}(X)$.
This completes the proof of Remark 2.
Theorem 1. The equality $C(X)=\operatorname{Max}_{\operatorname{add}}(\mathcal{E}(X))$ holds.
Proof. Let $f \in \mathcal{E}(X) \backslash C(X)$ and let $x \in D(f)$. Then there is a positive real ε such that

$$
x \in \operatorname{cl}(\operatorname{int}\{u ; f(u)>f(x)+\varepsilon\}) \text { or } x \in \operatorname{cl}(\operatorname{int}\{u ; f(u)<f(x)-\varepsilon\}),
$$

where cl and int denote the closure and the interior operations respectively.
Suppose that $x \in \operatorname{cl}(\operatorname{int}\{u ; f(u)>f(x)+\varepsilon\})$. In the other case the reasoning is analogous. The function

$$
g(u)= \begin{cases}f(u) & \text { if } f(u) \leq f(x)+\varepsilon \text { and } u \neq x \\ f(x)+\varepsilon & \text { if } f(u)>f(x)+\varepsilon \text { or } u=x\end{cases}
$$

belongs to $\mathcal{E}(X)$. Observe that the function $-g \in \mathcal{E}(X)$ but the sum $f+(-g)$ does not belong to $\mathcal{E}(X)$ because

$$
f(u)-g(u) \begin{cases}=0 & \text { if } f(u) \leq f(x)+\varepsilon \text { and } u \neq x \\ >0 & \text { if } f(u)>f(x)+\varepsilon \text { and } u \neq x \\ =-\varepsilon & \text { if } u=x\end{cases}
$$

Thus f does not belong to $\operatorname{Max}_{\text {add }}(\mathcal{E}(X))$ and $\operatorname{Max}_{\text {add }}(\mathcal{E}(X)) \subset C(X)$. Consequently, because we have (i) in the proof of Remark $2, \operatorname{Max}_{\text {add }}(\mathcal{E}(X))=C(X)$ and the proof of Theorem 1 is complete.

Theorem 2. The equalities $C(X)=\operatorname{Max}_{\max }(\mathcal{E}(X))=\operatorname{Max}_{\min }(\mathcal{E}(X))$ hold.
Proof. Let $f \in \mathcal{E}(X) \backslash C(X)$ be a function and let $x \in X$ be a point belonging to $D(f)$. Fix $\varepsilon>0$ and let $U=\operatorname{int}\{u ; f(u)>f(x)+\varepsilon\}$ be such that $x \in \operatorname{cl} U$. Observe that the function

$$
g(u)=f(x)+\varepsilon \text { for } u \in X \backslash \mathrm{cl} \text { and } g(u)=f(x)-\varepsilon \text { on } \mathrm{cl} U
$$

belongs to $\mathcal{E}(X)$. Moreover

$$
\max (f(u), g(u)) \geq f(x)+\varepsilon \text { for } u \in X \backslash(\operatorname{cl} U \cap\{u ; f(u)<f(x)+\varepsilon\})
$$

and $\max (f(u), g(u))<f(x)+\varepsilon$ for $u \in N=\operatorname{cl} U \cap\{u ; f(u)<f(x)+\varepsilon\}$,
where N is nowhere dense in X. In particular $\max (f(x), g(x))=f(x)$; so, $\max (f, g) \notin \mathcal{E}(X, x)$ and consequently $\max (f, g) \notin \mathcal{E}(X)$.

In the opposite case, if we consider $V=\operatorname{int}\{u ; f(u) \leq f(x)+\varepsilon\}$ such that $x \in \mathrm{cl} V$, the reasoning will be analogous. From these cases follows that $\operatorname{Max}_{\max }(\mathcal{E}(X)) \subset C(X)$ and, because we have (iv) in the proof of Remark 2, $\operatorname{Max}_{\text {max }}(\mathcal{E}(X))=C(X)$.

For the proof of the inclusion $\operatorname{Max}_{\min }(\mathcal{E}(X)) \subset C(X)$ observe that if $f \in$ $\operatorname{Max}_{\text {min }}(\mathcal{E}(X))$, then $-f \in \operatorname{Max}_{\max }(\mathcal{E}(X))=C(X)$ and consequently $f \in$ $C(X)$. The proof of theorem 2 is complete.

For the investigation of the class $\operatorname{Max}_{\text {mult }}(\mathcal{E}(X))$ we first consider the following example.
Example 1. Let $g(x)=\left\{\begin{array}{cc}0 & \text { if } x=0 \\ \frac{1}{x} & \text { othervise on } \mathbb{R}\end{array}\right.$ and let $f(x)=x$ for $x \in \mathbb{R}$.
Then $f \in C(\mathbb{R})$ and $g \in \mathcal{E}(\mathbb{R})$, but the product $f g \notin \mathcal{E}(\mathbb{R})$, since $f(0) g(0)=0$ and $f(x) g(x)=1$ for each $x \neq 0$.

Theorem 3. If $f, g \in \mathcal{E}(X)$, if $x \in C(f)$ and if $f(x) \neq 0$, then $f g \in \mathcal{E}(X, x)$.
Proof. Let $U \in \mathcal{T}$ be a nonempty set containing a point x and $\varepsilon>0$.
We will consider the following cases:
(1) $f(x)>0$ and $g(x)>0$. Let $r>0$ be a real such that
$f(x)-r>0$ and $0<(f(x)+g(x)) r-r^{2}<\varepsilon$, and $\quad r^{2}+(f(x)+g(x)) r<\varepsilon$.

There are a nonempty open set $P \subset U$ containing x such that $f(P) \subset(f(x)-$ $r, f(x)+r)$) and a nonempty open set $V \subset P$ such that

$$
g(u)>\max \left(g(x)-r, \frac{g(x)}{2}\right) \text { for } u \in V
$$

Then for $u \in V$ we have
$f(u) g(u)>(f(x)-r)(g(x)-r)=f(x) g(x)+r^{2}-(f(x)+g(x)) r>f(x) g(x)-\varepsilon$.
If there is a point $t \in P$ such that $g(t)<0$, then there is a nonempty open set $W \subset P$ with $g(W) \subset(-\infty, 0)$ and consequently, $f(u) g(u)<0<f(x) g(x)+\varepsilon$ for $u \in W$. If $g(u) \geq 0$ for each point $u \in P$ then there is a nonempty open set $W \subset P$ such that $g(u)<g(x)+r$ for $u \in W$. Consequently, for $u \in W$ we have
$f(u) g(u)<(f(x)+r)(g(x)+r)=f(x) g(x)+r^{2}+(f(x)+g(x)) r<f(x) g(x)+\varepsilon$.
(2) $f(x)<0$ and $g(x)<0$. This case may be reduced to case (1), since

$$
f g=(-f)(-g) \text { and }-f,-g \in \mathcal{E}(X)
$$

(3) $f(x)<0$ and $g(x)>0$. This case may be reduced to case (1) since

$$
\begin{gathered}
-f(x)>0, g(x)>0, \text { and }-f, g \in \mathcal{E}(X) \text { imply } \\
-f g \in \mathcal{E}(X, x) \text { and so } f g \in \mathcal{E}(X, x)
\end{gathered}
$$

(4) $f(x)>0$ and $g(x)<0$. As in case (2) this case may be reduced to case (3).
(5) $f(x)>0$ and $g(x)=0$. If there is a nonempty open set $P \subset U \cap g^{-1}(0)$, then the proof is evident. So, we can suppose that $\operatorname{int}\left(U \cap g^{-1}(0)\right)=\emptyset$. Then let $P \subset U$ be an open nonempty set containing x such that $f(P) \subset(f(x)-$ $r, f(x)+r)$, where $r>0$ is a real such that $f(x)-r>0$ and $(f(x)+r) r<\varepsilon$. If there is a point $t \in P$ with $g(t)<0$, then there is a nonempty open set $W \subset P$ such that $g(W) \subset(-\infty, 0)$, and consequently for $u \in W$ we have

$$
f(u) g(u)<0<f(x) g(x)+\varepsilon
$$

If $g(t) \geq 0$ for each point $t \in P$, then there is a nonempty open set $W \subset P$ such that $g(u)<r$ for $u \in W$. So, for $u \in W$ we obtain

$$
f(u) g(u)<(f(x)+r) r<\varepsilon=f(x) g(x)+\varepsilon
$$

If there is a point $t \in P$ with $g(t)>0$, then there is a nonempty open set $V \subset P$ such that $g(u)>0$ for each point $u \in V$. Then for $u \in V$ we obtain

$$
f(u) g(u)>0>-\varepsilon=f(x) g(x)-\varepsilon
$$

If $g(u) \leq 0$ for each point $u \in P$, then, by the equality $g(x)=0$, there is a nonempty open set $V \subset P$ such that $g(u)>-r$ for $u \in V$. Then for each $u \in V$ we obtain

$$
f(u) g(u)>-(f(x)+r) r>-\varepsilon=f(x) g(x)-\varepsilon
$$

(6) $f(x)<0$ and $g(x)=0$. This case can be reduced to case (5). This completes the proof of Theorem 3.

Theorem 4. If $f: X \rightarrow \mathbb{R}$ and if $x \in X$ are such that $f(x)=0$ and $x \in$ $\operatorname{cl}\left(\operatorname{int}\left(f^{-1}(0)\right)\right)$, then for each function $g: X \rightarrow \mathbb{R}$ the product $f g \in \mathcal{E}(X, x)$.

Proof. This theorem is evident.
Lemma 1. If $f \in \mathcal{E}(X)$ and $f(u)>0$ for all $u \in X$, then $\frac{1}{f} \in \mathcal{E}(X)$.
Proof. Fix a point $y \in X$, a set $U \in \mathcal{T}$ containing y and a positive real ε. Since $f \in \mathcal{E}(X, y)$ and $f(y)>\frac{f(y)}{1+\varepsilon f(y)}$ there is a nonempty set $W \subset U$ such that $f(u)>\frac{f(y)}{1+\varepsilon f(y)}$ for all $u \in W$. Consequently, for $u \in W$, we have

$$
\frac{1}{f(u)}<\frac{1+\varepsilon f(y)}{f(y)}=\frac{1}{f(y)}+\varepsilon
$$

So, the upper semi-quasicontinuous of $\frac{1}{f}$ is proved.
Now, let $\varepsilon_{0}=\min \left(\varepsilon, \frac{1}{2 f(y)}\right)$. Since $f \in \mathcal{E}(X, y)$ and $f(y)<\frac{f(y)}{1-\varepsilon_{0} f(y)}$, there is a nonempty set $V \subset U$ such that $f(u)<\frac{f(y)}{1-\varepsilon_{0} f(y)}$ for all $u \in V$. Consequently, $\frac{1}{f}$ is lower semi-quasicontinuous, since

$$
\frac{1}{f(u)}>\frac{1-\varepsilon_{0} f(y)}{f(y)}=\frac{1}{f(y)}-\varepsilon_{0} \geq \frac{1}{f(y)}-\varepsilon \text { for all } u \in V
$$

From $\frac{1}{f} \in \mathcal{E}(X, y)$ it follows that $\frac{1}{f} \in \mathcal{E}(X)$ and this completes the proof of Lemma 1.

Remark 3. If $f \in \mathcal{E}(X)$ and $f(u)<0$ for all $u \in X$, then $\frac{1}{f} \in \mathcal{E}(X)$.
Proof. Apply Lemma 1 to $-f$.

Remark 4. There exists a function $f \in \mathcal{E}(X)$ such that if $f(u)>0$ for some $u \in X$ and $f(v)<0$ for some $v \in X$, then $\frac{1}{f} \notin \mathcal{E}(X)$.

Example 2. Let

$$
f(x)= \begin{cases}2 & \text { for } x \in(0, \infty) \\ 1 & \text { for } x=0 \\ -1 & \text { for } x \in(-\infty, 0)\end{cases}
$$

Then $f \in \mathcal{E}(X)$ but $\frac{1}{f} \notin \mathcal{E}(X)$.
Theorem 5. If $f \in \mathcal{E}(X)$ and a point $x \in X$ are such that $f(x)=0, f(u) \neq 0$ for $u \neq x$ and $x \in \operatorname{cl}\left(f^{-1}((-\infty, 0))\right)$, and $x \in \operatorname{cl}\left(f^{-1}((0, \infty))\right)$, then there is a function $g \in \mathcal{E}(X)$ such that $f g \notin \mathcal{E}(X)$.

Proof. Since the function $h(u)=\frac{1}{f(u)}$ for $u \in X \backslash\{x\}$ belongs to $\mathcal{E}(X \backslash\{x\})$, the function $g(x)=0$ and $g(u)=h(u)$ for $u \neq x$ belongs to $\mathcal{E}(X)$. But the product $f(x) g(x)=0$ and $f(u) g(u)=1$ for $u \neq x$, is not in $\mathcal{E}(X)$. This completes the proof.

Theorem 6. If a function $f \in \mathcal{E}(X)$ is discontinuous at a point $x \in X$ and $f(x) \neq 0$, then there is a function $g \in \mathcal{E}(X)$ such that the product $f g \notin \mathcal{E}(X)$.

Proof. Suppose that $f(x)>0$. If $f(x)<0$, then we can consider the function $-f$. In this situation we have three cases:
(1) $l=\liminf f(x)<f(x)<\lim \sup f(x)=d$.

Let $U \in \mathcal{T}$ be a nonempty set containing x and let a be a real such that $l<f(x)<a<d$. Denote $V=\operatorname{int}\{u \in U ; f(u)<a\}$ and suppose that $x \in \operatorname{cl} V$. Of course, because $f \in \mathcal{E}(X)$, such a choice is possible.

Let $g: X \rightarrow \mathbb{R}$ be a function such that

$$
g(t)= \begin{cases}1 & \text { for } t \in \mathrm{cl} V \\ 0 & \text { for } t \in X \backslash \mathrm{cl} V\end{cases}
$$

In particular $g(x)=1$. Observe that $g \in Q(X)$; so $g \in \mathcal{E}(X)$. Moreover, the product $f g \notin \mathcal{E}(X, x)$ because

$$
(f g)(t) \begin{cases}=f(x)<a & \text { for } t=x \\ =0<a & \text { for } t \in X \backslash \operatorname{cl} V \\ <a & \text { for } t \in\{u \in U ; f(u)<a\}\end{cases}
$$

but $\quad(f g)(t)>a$ for $t \in \operatorname{cl} V \backslash\{u \in U ; f(u)<a\}$,
where $\mathrm{cl} V \backslash\{u \in U ; f(u)<a\}$ is nowhere dense in X, so $f g \notin \mathcal{E}(X, t)$ for $t \in \operatorname{cl} V \backslash\{u \in U ; f(u)<a\}$.
(2) $l=\liminf f(x)=f(x)<\lim \sup f(x)=d$.

Fix reals a, b such that $0<\frac{f(x)}{2}<a<l=f(x)<b<d$. Let $U \in \mathcal{T}$ be a nonempty set containing x such that $f(U) \subset(a, \infty)$ and $V=\operatorname{int}(\operatorname{cl} U))$. Observe that $f(V) \subset[a, \infty)$. In addition, since $U \subset V$, the set V is a neighborhood of x and if $u \in X \backslash V$, then $u \in \operatorname{cl}(\operatorname{int}(X \backslash V))$.

Let $A=\{u \in V ; f(u) \geq b\}$. Then obviously $x \in \operatorname{cl}(\operatorname{int} A))$. Put

$$
g(u)= \begin{cases}-1 & \text { for } u \in V \cap \operatorname{cl} A \\ -\frac{2 f(x)}{f(u)} & \text { for } u \in V \backslash \operatorname{cl} A \\ 0 & \text { for } u \in X \backslash V\end{cases}
$$

Observe that $g \in \mathcal{E}(X, u)$ for $u \in(X \backslash V) \cup(V \cap \operatorname{cl} A)$ because g is quasicontinuous at this points. From Lemma 1 it follows that $g \in \mathcal{E}(X, u)$ for each $u \in V \backslash \operatorname{cl} A$. But

$$
(f g)(u) \begin{cases}=-f(x) & \text { for } u=x \\ \leq-b<-f(x) & \text { for } u \in A \\ =-2 f(x)<-f(x) & \text { for } u \in V \backslash \operatorname{cl} A \\ =0 & \text { for } u \in X \backslash V\end{cases}
$$

and $(f g)(u) \in \mathbb{R}$ for $u \in N=(\operatorname{cl} A) \backslash A$, where N is nowhere dense in X, which means that $f g \notin \mathcal{E}(X, x)$.
(3) $l=\liminf f(x)<f(x)=\lim \sup f(x)=d$.

Fix reals a, b such that $l<\frac{f(x)}{2}<a<f(x)=d<b$. Let $U \in \mathcal{T}$ be a nonempty set containing x such that $f(U) \subset(-\infty, b)$. If $V=\operatorname{int}(\operatorname{cl} U)$, then $f(V) \subset(-\infty, b]$ and in addition, since $U \subset V$, the set V is a neighborhood of x. Moreover, if $u \in X \backslash V$, then $u \in \operatorname{cl}(\operatorname{int}(X \backslash V))$.

Let $A=\{u \in V ; f(u) \leq a\}$. Obviously in this case $x \in \operatorname{cl}($ int $A)$. Put

$$
g(u)= \begin{cases}1 & \text { for } u \in V \cap \operatorname{cl} A \\ \frac{f(x)}{2 f(u)} & \text { for } u \in V \backslash \operatorname{cl} A \\ 0 & \text { for } u \in X \backslash V\end{cases}
$$

As in case (2), the function $g \in \mathcal{E}(X)$. Observe that

$$
(f g)(u)= \begin{cases}f(x) & \text { for } u=x \\ 0<a & \text { for } u \in X \backslash V \\ \frac{1}{2} f(x)<a & \text { for } u \in V \backslash \operatorname{cl} A \\ f(u) \leq a & \text { for } u \in A\end{cases}
$$

and $(f g)(u) \in \mathbb{R}$ for $u \in N=\operatorname{cl} A \backslash A$, where N is nowhere dense in X. Thus $f g \notin \mathcal{E}(X, x)$.

From the cases (1), (2), (3) follows that $f g \notin \mathcal{E}(X)$ and this completes the proof of Theorem 6.

Acknowledgments. The author is thankful to the referee for all comments and suggestions.

References

[1] A. M. Bruckner, Differentiation of real functions, Lectures Notes in Math. 659, Springer-Verlag, Berlin (1978).
[2] Z. Grande, On the Maximal Multiplicative Family for the Class of Quasicontinuous Functions, Real Analysis Exch., 15 (1989-90), 437-441.
[3] Z. Grande , Soltysik L.; Some remarks on quasi-continuous real function, Problemy Matematyczne, Zeszyty Naukowe WSP w Bydgoszczy, 10 (1990), 79-86.
[4] Z. Grande, Quasicontinuity, cliquishness and the Baire property of functions of two variables, Tatra Mountains Math. Public. (2001), to appear.
[5] S. Kempisty, Sur les fonctions quasi-continues, Fund. Math. 19 (1932), 184-197.
[6] T. Neubrunn, Quasi-continuity, Real Anal. Exchange 14 No. 2 (198889), 259-306.

[^0]: Key Words: lower and upper semi-quasicontinuity, maximal additive and multiplicative families, lattices

 Mathematical Reviews subject classification: 26B05, 26A15
 Received by the editors October 7, 2001

