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A CHARACTERIZATION OF Ck,1

FUNCTIONS

Abstract

In this work we provide a characterization of Ck,1 functions on Rn

(that is, k times differentiable with locally Lipschitzian k-th derivatives)
by means of (k + 1)-th divided differences and Riemann derivatives. In
particular we prove that the class of Ck,1 functions is equivalent to the
class of functions with bounded (k + 1)-th divided difference. From this
result we deduce a Taylor’s formula for this class of functions and a
characterization through Riemann derivatives.

1 Introduction

In this paper we give some necessary and sufficient conditions for a real func-
tion on Rn to be of class Ck,1; that is, k times differentiable with locally Lips-
chitzian k-th derivatives. The relations mentioned above involve the bounded-
ness of the (k+1)-th divided difference or of the (k+1)-th Riemann derivatives.
The authors have studied these concepts in the case of real functions of one
real variable in [18] and in [19] and a first generalization to the case of C1,1

functions on Rn in [20]. In this paper we extend the results in [20] to the case
of Ck,1 functions on Rn. Furthermore we prove a Taylor’s formula for this
class of functions.
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The class of Ck,1 functions has been studied since the work of Hiriart-
Urruty, Strodiot and Hien Nguyen [13] who introduced the concept of gener-
alized Hessian matrix for C1,1 functions proving also second-order optimality
conditions for nonlinear constrained problems. Since that paper many works
have been written on the applications of C1,1 functions to optimization prob-
lems. In particular, Klatte and Tammer [14] obtained second-order necessary
and sufficient optimality conditions for mathematical programming problems
in terms of generalized Hessians and Cominetti and Correa [4] introduced a
generalized second-order directional derivative. Thereafter, Yang and Jeyaku-
mar [35], recalling a paper by Michel and Penot [27], introduced a different
notion of second-order directional derivative and, later, Yang [36] used this
notion to obtain optimality conditions in semi-infinite programming. Further-
more C1,1 functions have revealed their importance in optimization methods
as one can see in [3], [30], [31], [32], [33], [34].

Later, the more general case of Ck,1 functions were investigated by Luc
[25] who extended Taylor’s formula, proved higher order optimality conditions
when derivatives of order greater than k do not exist and provided character-
izations of generalized convex functions.

In this section we recall some concepts which are fundamental for under-
standing the proofs of the results. The second and the third sections are
devoted to the main results.

1.1 Divided Differences, k-Convex Functions, Peano and Riemann
Derivatives

Let us consider a function f : Ω ⊆ Rn → R, Ω open and let x ∈ Ω, h ∈ R and
d ∈ S1 = {v ∈ Rn : ‖v‖ = 1}. We define

∆d
kf(x;h) =

k∑
i=0

(−1)k−i
(
k

i

)
f(x+ ihd).

Definition 1.1. The k-th Riemann derivative of f at a point x ∈ Ω in the

direction d is defined as Dkf(x; d) = limh→0
∆d
kf(x;h)
hk

, if this limit exists.

The upper and lower k-th Riemann derivatives are respectively defined as

Dkf(x; d) = lim sup
h→0

∆d
kf(x;h)
hk

and Dkf(x; d) = lim inf
h→0

∆d
kf(x;h)
hk

Similarly we can define differences

δdkf(x;h) =
k∑
i=0

(−1)k−i
(
k

i

)
f(x+ ihd− 1

2
khd).
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The corresponding k-th Riemann-type derivative is defined by

Dkf(x; d) = lim
h→0

δdkf(x;h)
hk

.

It is easy to see that ∆d
kf(x;h) = δdkf(x+

k

2
hd;h).

Besides these expressions, in the proof of Theorem 2.1, we will consider
differences ∆̃d

kf(x;h) defined recursively by

∆̃d
1f(x;h) = f(x+ hd)− f(x), ∆̃d

kf(x;h) = ∆̃d
k−1f(x; 2h)− 2k−1∆̃d

k−1f(x;h).

As observed in [26], we have

∆̃d
kf(x;h; d) = akf(x+2k−1hd)+ak−1f(x+2k−2hd)+· · ·+a1f(x+hd)+a0f(x),

where, for any fixed k, aj depends only on j (j = 1, . . . , k − 1) and ak = 1.
The following lemma can be easily deduced from Lemma 2 in [26].

Lemma 1.1. There are constants C0, C1, . . . , C2k−1−k such that ∀x, h, d

∆̃d
kf(x;h) =

2k−1−k∑
i=0

Ci∆d
kf(x+ ihd;h).

The proof of the following lemma is straightforward from the previous
result.

Lemma 1.2. If there exist neighborhoods U ⊂ Rn of the point x0 and V ⊂ R

of the origin such that
∆d
kf(x;h)
hk

is bounded on U × V \{0} uniformly with

respect to d ∈ S1, then there exist neighborhoods U1 of x0 and V1 of the origin

such that
∆̃d
kf(x;h)
hk

is bounded on U1 × V1\{0} uniformly with respect to

d ∈ S1.

The proof of the following lemma is similar to that of Lemma 6 in [26] and
we give it for the sake of completeness.

Lemma 1.3. Assume that f is bounded in a neighborhood of the point x0.
If there exist neighborhoods U of the point x0 and V of the origin such that
∆̃d
kf(x;h)
hk

is bounded on U × V \{0} uniformly with respect to d ∈ S1, then

also
∆̃d
k−1f(x;h)
hk−1

is bounded on U × V \{0} uniformly with respect to d ∈ S1.
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Proof. From the hypotheses we obtain that there exists a number δ > 0,
such that ∀x ∈ U , ∀h with |h| ≤ δ, h 6= 0 and ∀d ∈ S1

∣∣∣∣∆̃d
k−1f(x;h)− 2k−1∆̃d

k−1f(x;
h

2
)
∣∣∣∣ ≤M ∣∣∣∣h2

∣∣∣∣k ,∣∣∣∣∆̃d
k−1f(x;

h

2
)− 2k−1∆̃d

k−1f(x;
h

4
)
∣∣∣∣ ≤M ∣∣∣∣h4

∣∣∣∣k , . . .∣∣∣∣∆̃d
k−1f(x;

h

2n−1
)− 2k−1∆̃d

k−1f(x;
h

2n
)
∣∣∣∣ ≤M ∣∣∣∣ h2n

∣∣∣∣k .
Multiplying these inequalities by 1, 2k−1, 22(k−1), . . . , 2(n−1)(k−1) respectively,
by addition we obtain∣∣∣∣∆̃d

k−1f(x;h)− 2n(k−1)∆̃d
k−1f(x;

h

2n
)
∣∣∣∣ ≤ 2M

∣∣∣∣h2
∣∣∣∣k ,

and hence ∣∣∣∣∣∣∣
2n(k−1)∆̃d

k−1f(x;
h

2n
)

hk−1

∣∣∣∣∣∣∣ ≤M ′
for 1

2δ ≤ |h| ≤ δ, by using the boundedness of f . Hence, writing ξ =
h

2n
, we

have ∣∣∣∣∣∆̃d
k−1f(x; ξ)
ξk−1

∣∣∣∣∣ ≤M ′ for
δ

2n+1
≤ |ξ| ≤ δ

2n
, n = 0, 1, . . . ,

and the lemma is established, since n can be chosen arbitrarily.

Definition 1.2. If there exist numbers f1(x; d), . . . , fk(x; d) such that

f(x+ hd) = f(x) + hf1(x; d) +
h2

2
f2(x; d) + · · ·+ hk

k!
fk(x; d) + r(x;h; d),

where
r(x;h; d)

hk
→ 0 as h→ 0, then f is said to admit a k-th Peano derivative

at x in the direction d ∈ S1. The number fk(x; d) is called the k-th Peano
derivative of f at x in the direction d ∈ S1.

In the following we set

f ′(x; d1) = lim
h→0

f(x+ hd1)− f(x)
h
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and recursively define f (k)(x; d1, . . . , dk) to be

lim
h→0

f (k−1)(x+ hdk; d1, . . . , dk−1)− f (k−1)(x; d1, . . . , dk−1)
h

,

where d1, . . . , dk ∈ S1.
In particular, we will set f (k)(x; d) = f (k)(x; d, . . . , d). It is well known

that the existence of the ordinary k-th directional derivative of f at x in the
direction d, f (k)(x; d) implies the existence of fk(x; d) and this in turn implies
the existence of Dkf(x; d).

Definition 1.3. If there exist i-linear functions α̃i(x; ·, . . . , ·) : Rn×i → R,
i = 1 . . . k (where Rn×i = Rn × · · · × Rn i times), such that

f(x+ u) = f(x) + α̃1(x;u) +
1
2
α̃2(x;u, u) + · · ·+ 1

k!
α̃k(x;u, . . . , u) + r(x;u),

where
r(x; d)
‖u‖k

→ 0 as u → 0, then f is said to admit a k-th uniform Peano

differential at x.

Remark 1.1. The previous definition is equivalent to

f(x+ hd) = f(x) + hα̃1(x; d) +
h2

2
α̃2(x; d) + · · ·+ hk

k!
α̃k(x; d) + r(x;h; d),

where
r(x;h; d)

hk
→ 0 as h → 0, uniformly with respect to d ∈ S1 (or equiva-

lently with respect to d ∈ B(0, δ) = {d ∈ Rn : ‖d‖ ≤ δ}, whenever δ > 0).

Lemma 1.4. [26] If fk(x; d) exists, then so does limh→0
∆̃d
kf(x;h)
hk

and there

exists a number λk, depending only on k ∈ N, such that λk limh→0
∆̃d
kf(x;h)
hk

=

fk(x; d).

For a survey on Riemann and Peano derivatives one can see for instance
[7], [12], [28] and [38]. Further properties of Peano and Riemann derivatives
are given in [9], [10] and [11].

Definition 1.4. A continuous function f : Ω ⊆ Rn → R is said to be locally

k-convex at x0 ∈ Ω when
∆d
k+1f(x;h)
hk+1

≥ 0, ∀x in a neighborhood U of x0,

∀d ∈ S1 and ∀h such that x+ (k + 1)hd ∈ U .
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Remark 1.2. If f is not continuous, the definition of k-convex function has
to be given considering divided differences at arbitrary (not equally spaced)
points (see for instance [2] and [8] for details).

When k = 1 the previous definition reduces to that of convex function.

Remark 1.3. Let f : Ω → R be a function such that
∆d
k+1(x, h)
hk+1

≥ M , for

each x in a neighborhood U of x0 ∈ Ω, h in a neighborhood V of 0 and d ∈ S1.
If M ≥ 0, then f is obviously k-convex. If M < 0, let

p(x) = p(x1, . . . , xn) =
k+1∑
j=0

∑
i1+...+in=j

ci1,...,inx
i1
1 · · ·xinn

be a polynomial of degree at most k + 1 in the real variables x1, . . . , xn. It is
known that, letting d = (d1, . . . , dn), di ∈ R,

∆d
k+1p(x;h)
hk+1

=
∑

i1+...+in=k+1

ci1,...,ind
i1
1 · · · dinn ,

so that one can always choose the coefficients of the polynomial so that

inf
d∈S1

∆d
k+1p(x;h)
hk+1

≥ −M

for every x and h and hence, with this choice of the coefficients, the function
f(x) + p(x) is locally k-convex at x0.

Theorem 1.1. [5] Let f : Ω→ R be a continuous k-convex function, and let
x ∈ Ω. If f admits a k-th Peano differential at x, then f is k times Fréchet
differentiable at the point x and the k-th Fréchet differential of f at x coincides
with α̃k(x; ·, . . . , ·).

1.2 Standard Mollifiers

The function

φ(x) =

{
C exp( 1

‖x‖2−1 ), if ‖x‖ < 1

0, if ‖x‖ ≥ 1

is C∞(Rn) and we can choose the constant C ∈ R such that
∫

Rn φ(x) dx = 1.

Definition 1.5. Let ε > 0. The functions φε(x) =
φ
(x
ε

)
εn are called standard

mollifiers.
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Definition 1.6. Let f : Ω→ R. We say that f ∈ Ck0 (Ω) if f ∈ Ck(Ω) and

sptf = {x ∈ Ω : f(x) 6= 0} ⊂ Ω.

Theorem 1.2. [1] The functions φε are C∞(Rn) and satisfy:

i)
∫

Rn φε(x) dx = 1

ii) sptφε
⊂ B(0, ε).

For a bounded function f : Ω → R, and ε > 0, we define functions fε :
Rn → R by the convolution fε(x) =

∫
Ω
φε(y−x)f(y)dy.Observe that fε(x) = 0

if x /∈ Ω +B(0, ε) and that fε ∈ C∞(Rn).

Theorem 1.3. [1] Suppose that f ∈ L1
loc(Ω). Then fε(x)→ f(x) a.e. x ∈ Ω,

when ε→ 0. If f ∈ C(Ω), then the convergence is uniform on compact subsets
of Ω.

Theorem 1.4. [1] Let K be a compact subset of Ω. Then ∃ε0 > 0 such that
∀ε ≤ ε0 and ∀x ∈ K, the function y → φε(y − x) is C∞0 (Ω).

2 A Characterization of Ck,1 Functions

Definition 2.1. A function f : Ω → R is locally Lipschitz at x0 when there
exist a constant K and a neighborhood U of x0 such that

|f(x)− f(y)| ≤ K ‖x− y‖ ,∀x, y ∈ U.

Definition 2.2. A function f : Ω→ R is said to be of class Ck,1 at x0 when
its k-th order partial derivatives exist in a neighborhood of x0 and are locally
Lipschitz at x0.

Theorem 2.1. Assume that the function f : Ω → R is bounded in a neigh-
borhood of the point x0 ∈ Ω. Then f is of class Ck,1 at x0 if and only if there

exist neighborhoods U ⊂ Rn of x0 and V ⊂ R of 0 such that
∆d
k+1f(x;h)
hk+1

is

bounded by a constant M > 0 on U ×V \{0} uniformly with respect to d ∈ S1;

that is,

∣∣∣∣∣∆d
k+1f(x;h)
hk+1

∣∣∣∣∣ ≤M ∀x ∈ U, ∀h ∈ V \{0}, ∀d ∈ S1.

Proof. i) Sufficiency. From Lemmas 1.2 and 1.3, the uniform boundedness of
∆d
k+1f(x;h)
hk+1

on U×V \{0} implies the existence of neighborhoods U1 of x0 and
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V1 of 0 and a constant M1 > 0 such that for j = 1, . . . , k,

∣∣∣∣∣∆̃d
jf(x;h)
hj

∣∣∣∣∣ ≤ M1,

∀x ∈ U1, ∀h ∈ V1\{0} and ∀d ∈ S1. Observe that

∣∣∣∣∣∆̃d
jf(x;h)
h

∣∣∣∣∣ ≤ M1,

∀x ∈ U1, ∀h ∈ V1\{0} and ∀d ∈ S1 means that f is locally Lipschitz at the
point x0 and hence continuous in a neighborhood of x0.

If we choose a neighborhood U2 of x0 such that U2 ⊂ U1, we can find
a compact set K such that U2 ⊂ K ⊂ U1. By Theorem 1.4, there exists a
number ε0 > 0 such that the function y → φε(y − x) is of class C∞0 (U1),
∀x ∈ U2, ∀ε ≤ ε0. Hence, ∀x ∈ U2, ∀d ∈ S1 and ∀ε ≤ ε0, by Lemma 1.4 and
the Lebesgue convergence theorem, for 1 ≤ j ≤ k we have

f (j)
ε (x; d) = (−1)j

∫
Rn

φ(j)
ε (y − x; d)f(y) dy

= (−1)j
∫
U1

φ(j)
ε (y − x; d)f(y) dy

= (−1)jλj
∫
U1

lim
h→0

∆̃d
jφε(y − x;h)

hj
f(y) dy

= (−1)jλj
∫
U1

lim
h→0

∑j
i=1 aiφε(y − x+ 2i−1hd) + a0φε(y − x)

hj
f(y) dy

= (−1)jλj lim
h→0

∫
U1

∑j
i=1 aiφε(y − x+ 2i−1hd) + a0φε(y − x)

hj
f(y) dy.

Now, putting z = y + 2i−1hd, we obtain∫
U1

aiφε(y − x+ 2i−1hd)
hj

f(y) dy =
∫
U1+2i−1hd

aif(z − 2i−1hd)φε(z − x)
hj

dz.

Thus

(−1)jλj
∫
U1

∑j
i=1 aiφε(y − x+ 2i−1hd) + a0φε(y − x)

hj
f(y) dy

=(−1)jλj
j∑
i=1

∫
U1+2i−1hd

aif(z − 2i−1hd)φε(z − x)
hj

dz

+ (−1)jλj
∫
U1

a0f(z)φε(z − x)
hj

dz.

Since K is a compact subset of U1, there exists a number h0 > 0 such that ∀h
with |h| ≤ h0 we have K ⊂ U1 + 2i−1hd, i = 1, . . . , k. By Theorem 1.4 we
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get that ∀ε < ε0 the previous equation equals

(−1)jλj
j∑
i=1

∫
U1

aif(z − 2i−1hd)φε(z − x)
hj

dz

+ (−1)jλj
∫
U1

a0f(z)φε(z − x)
hj

dz

=(−1)jλj
∫
U1

∆̃d
jf(z,−h)
hj

φε(z − x) dz = λj

∫
U1

∆̃d
jf(z,−h)
(−h)j

φε(z − x) dz.

Hence we get

f (j)
ε (x; d) = λj lim

h→0

∫
U1

∆̃d
jf(z, h)
hj

φε(z − x) dz.

Since

∣∣∣∣∣∆̃d
jf(x;h)
hj

∣∣∣∣∣ ≤ M1, ∀x ∈ U1, ∀h ∈ V1\{0}, ∀d ∈ S1, by Theorem

1.2 we get
∣∣∣f (j)
ε (x; d)

∣∣∣ ≤ M1 ∀ε ≤ ε0, ∀x ∈ U2 and ∀d ∈ S1. In this way we

established that for every j = 1, . . . , k, f (j)
ε (·; d) is bounded (uniformly with

respect to ε ≤ ε0 and d ∈ S1) on U2. Similarly one can prove that f (k+1)
ε (·; d)

is bounded (uniformly with respect to ε ≤ ε0 and d ∈ S1) on U2. Hence,
for any x ∈ U2 and d ∈ S1, there is a sequence εn converging to 0 such that
∀j = 1 . . . k, the sequence f (j)

εn (x; d), converges to a limit which we denote by
αj(x; d). Note that the functions αj(x; d), j = 1, . . . , k, are bounded on U2,
uniformly with respect to d ∈ S1, by the constant M1.

Let U3 be a neighborhood of x0 such that U3 ⊂ U2. If h is in a suitable
neighborhood of 0, then x + hd ∈ U2, whenever x ∈ U3 and d ∈ S1. The
functions fεn(x) are of class C∞, and hence, for any x ∈ U3, d ∈ S1 and h in
a neighborhood of 0, we have

fεn
(x+ hd) = fεn

(x) + hf ′εn
(x; d) + · · ·+ hk

k!
f (k)
εn

(x; d) +
hk+1

(k + 1)!
f (k+1)
εn

(ξn; d),

where ξn ∈ (x, x+hd). By Theorem 1.3, taking the limit as n→ +∞ it follows
that f (k+1)

εn (ξn; d) converges to a limit which we denote by β(x;h; d) and

f(x+ hd) = f(x) + hα1(x; d) + · · ·+ hk

k!
αk(x; d) +

hk+1

(k + 1)!
β(x;h; d).

We observe that β(x;h; d) is bounded for each x ∈ U3, h in a neighborhood

of x0 and d ∈ S1; so that, putting r(x;h; d) =
hk+1

(k + 1)!
β(x;h; d), we have
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that limh→0
r(x;h; d)

hk
= lim

x′→x,h→0

r(x′;h; d)
hk

= 0, uniformly with respect to

d ∈ S1 (or equivalently with respect to d ∈ B(0, δ), whenever δ > 0; see also
Remark 1.1). It is easy to see that for each j = 1, . . . , k we have αj(x, su) =
sjαj(x, u) for every s ∈ R and u ∈ Rn. Now we prove that, for each x ∈ U3

there exist j-linear functions α̃j(x; ·, . . . , ·) : Rn×j → R, j = 1, . . . , k, such
that α̃j(x;u, . . . , u) = αj(x;u), ∀u ∈ Rn; so that f admits a uniform Peano
differential at x. We begin proving that α1(x;u) is linear with respect to u ∈
Rn. We have only to prove the additive property. In fact from the boundedness
of f ′εn

(x; d) =< ∇fεn
(x), d >, for x ∈ U3 and d ∈ S1 (uniformly with respect

to ε ≤ ε0), it follows that there exists a constant K for which ‖∇f(x)‖ ≤ K in
U3. Hence, without loss of generality we can think that ∇fεn(x)→ a; so that
α1(x, u) = limn→+∞ < ∇fεn(x), u >=< a, u > whenever u ∈ Rn and hence is
linear. Inductively suppose that there exist multilinear functions α̃2(x;u1, u2),
. . . , α̃k−1(x;u1, u2, . . . , uk−1) such that α̃j(x;u, . . . , u) = αj(x;u), ∀u ∈ Rn,
j = 1 . . . k − 1. Let x ∈ U3, v, w ∈ Rn, h and s in suitable neighborhoods of
0 ∈ R; so that x+ sw ∈ U3 and x+ sw + hd ∈ U3. We consider the following
estimation of f(x + sw + shv) in two ways, by expansion about x and by
expansion about x+ sw, obtaining

f(x+ sw + shv) = f(x) +
k∑
j=1

1
j!
αj(x; sw + shv) + r1(x; s;w + hv)

= f(x+ sw) +
k∑
j=1

1
j!
αj(x+ sw; shv) + r2(x+ sw; s;hv),

where, by Remark 1.1, we have

lim
s→0

r1(x; s;w + hv)
sk

= lim
s→0

r2(x+ sw; s;hv)
sk

= 0,

uniformly with respect to v, w ∈ B(0, δ), whenever δ > 0 and h in a neighbor-
hood of 0 (let us say h with |h| < c). Hence

αk(x; sw + shv) =k!
[
f(x+ sw) +

k∑
j=1

1
j!
αj(x+ sw; shv)− f(x)

−
k−1∑
j=1

1
j!
αj(x; sw + shv) + r2(x+ sw; s;hv)

− r1(x; s;w + hv)
]
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=k!
[
f(x+ sw) +

k∑
j=1

1
j!
αj(x+ sw; shv)− f(x)

−
k−1∑
j=1

1
j!
α̃j(x; sw + shv, . . . , sw + shv) + r2(x+ sw; s;hv)

− r1(x; s;w + hv)].

Then

αk(x;w + hv) =
k!
sk

[f(x+ sw) +
k∑
j=1

1
j!
αj(x+ sw; shv)− f(x)

−
k−1∑
j=1

1
j!
α̃j(x; sw + shv, . . . , sw + shv)

+ r2(x+ sw; s;hv)− r1(x; s;w + hv)
]
.

Since α̃j(x, ·, . . . , ·) is multilinear for j ≤ k − 1 and αj(x+ sw; ·) is homo-
geneous of degree j for j ≤ k, the terms on the right, except for r2 − r1, form

a polynomial in h of degree at most k. Since lims→0
r2 − r1

sk
= 0 and the limit

is uniform for |h| < c and w, v fixed vectors in any ball of center 0 and radius
δ, it follows that αk(x;w+hv) is a uniform limit of polynomials in h of degree
less than or equal k if |h| < c. Hence αk(x;w + hv) is itself a polynomial
in h of degree less than or equal k if |h| < c. Now let e1, e2, . . . , en be the
vectors of the canonical basis of Rn. Putting h1e1 + · · ·+hnen = w+hv where
w = h1e1+· · ·+hm−1em−1+hm+1em+· · ·+hnen, hm = h and em = v, for every
m = 1, . . . , n the function defined by γ(h1, . . . , hn) = αk(x;h1e1 + · · ·+ hnen)
is a polynomial of degree less than or equal k in hm if |hm| < c. Hence
γ(h1, . . . hn) is a polynomial in h1, h2, . . . , hn of degree less than or equal nk.
Since γ is homogeneous of degree k; that is, γ(sh, . . . , sh) = skγ(h, . . . , h),
∀s ∈ R, every non zero term in the expression of γ has degree exactly k. It
follows that

γ(h1, . . . , hn) =
∑

i1+...+in=k

ai1,i2,...,inh
i1
1 . . . hinn .

Now let h1 = (h1,1, . . . , hn,1), . . . , hk = (h1,k, . . . , hn,k). Consider the term
h
ij
j , j = 1, . . . , n, and in the previous sum substitute it with the product

Pj
l=1 il∏

r=(Pj−1
l=1 il)+1

hj,r,
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where we set
∑0
l=1 il = 0. In this way we construct a multilinear function

γ̃(h1, . . . , hk) on Rn×k and γ̃(h, . . . , h) = γ(h1, . . . , hn), where h = (h1, . . . , hn).
Putting α̃k(x; ·, . . . , ·) = γ̃(x; ·, . . . , ·), it follows that f admits a uniform k-th
Peano differential at each point x ∈ U3. By Remark 1.3, without loss of gen-
erality (by eventually adding a polynomial of degree k + 1) we can always
assume that f is k-convex. Hence, by Theorem 1.1 it follows that f is k times
differentiable for each x ∈ U3 and the k-th differential of f at x coincides with
α̃k(x; ·, . . . , ·).

Furthermore since the functions f (k+1)
ε (x; d) are bounded on U3 (uniformly

with respect to ε ≤ ε0 and d ∈ S1), the functions f (k)
εn (x; d) satisfy the uniform

Lipschitz condition∣∣∣f (k)
εn

(y; d)− f (k)
εn

(x; d)
∣∣∣ ≤ B‖y − x‖,∀x, y ∈ U3, ∀d ∈ S1.

Eventually extracting subsequences we can assume that f (k)
εn (x; d) and f (k)

εn (y; d)
converge to f (k)(x; d) and to f (k)(y; d). So, taking the limit for n → +∞ we
obtain that f (k)(x; d) is Lipschitzian on U3 whenever d ∈ S1.

ii) Necessity. Assume that f is of class Ck,1 at x0. Set

∆1[f ; s1; d1](x) = f(x+ s1d1)− f(x),

and recursively define

∆k+1[f ; s1, . . . , sk+1; d1, . . . , dk+1](x) =

∆k[f ; s1, . . . , sk; d1, . . . , dk](x+ sk+1dk+1)−∆k[f ; s1, . . . , sk; d1, . . . , dk](x),

where x is is a neighborhood of x0, di ∈ S1 and si ∈ R, si “small enough”,
i = 1, . . . , k + 1. Observe that, for any d ∈ S1

∆1[f ; s1; d1]′(x; d) = f ′(x+ s1d1; d)− f ′(x; d) = ∆1[f ′(·; d); s1; d1](x)

and in general

∆k[f ; s1, . . . , sk; d1, . . . , dk]′(x; d) = ∆k[f ′(·; d); s1, . . . , sk; d1, . . . , dk](x).

Now, we have, using the mean value theorem and by the definition of ∆k+1

∆k+1[f ; s1, . . . , sk+1; d1, . . . , dk+1](x)
s1 · · · sk+1

=
∆k[f ; s1, . . . , sk; d1, . . . , dk]′(x+ θk+1sk+1dk+1; dk+1)

s1 · · · sk
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=
∆k[f ′(·; dk+1); s1, . . . , sk; d1, . . . , dk](x+ θk+1sk+1dk+1)

s1 · · · sk
,

where θk+1 ∈ (0, 1). Now we prove by induction that ∀k ≥ 2

∆k[f ; s1, . . . , sk; d1, . . . , dk](x)
s1 · · · sk

=
∆1[f (k−1)(·; d2, . . . dk); s1; d1](x+ θ2d2 + · · ·+ θkskdk)

s1
,

where θ2, . . . , θk ∈ (0, 1). In fact, the previous equality holds for k = 2, as

∆2[f ; s1, s2; d1, d2](x)
s1s2

=
f(x+ s1d1 + s2d2)− f(x+ s1d1)− f(x+ s2d2) + f(x)

s1s2

and setting g(τ) = f(x+ s1d1 + τd2)− f(x+ τd2), we have

∆2[f ; s1, s2; d1; d2]
s1s2

=
g(s2)− g(0)

s1s2
=
g′(θ2s2)
s1

=
f ′(x+ s1d1 + θ2s2d2; d2)− f ′(x+ θ2s2d2; d2)

s1

=
∆1[f ′(·; d2); s1, d1](x+ θ2s2d2)

s1
,

where θ2 ∈ (0, 1). Now we assume that the stated equality holds for ∆k−1 and
we prove that it holds also for ∆k. In fact

∆k[f ; s1, . . . , sk; d1, . . . , dk](x)
s1 · · · sk

=

{
∆k−1[f ; s1, . . . , sk−1; d1, . . . , dk−1](x+skdk)−
∆k−1[f ; s1, . . . , sk−1; d1, . . . , dk−1](x)

}/
(s1 · · · sk)

=
∆k−1[f ; s1, . . . , sk−1; d1, . . . , dk−1]′(x+ θkskdk; dk)

s1 · · · sk−1

=
∆k−1[f ′(·, dk); s1, . . . , sk−1; d1, . . . , dk−1](x+ θkskdk)

s1 · · · sk−1

=
∆1[f (k−1)(·; d2, . . . , dk−1); s1; d1](x+ θ2s2d2 + · · ·+ θkskdk)

s1
,
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where θ2, . . . , θk ∈ (0, 1). Hence

∆k+1[f ; s1, . . . , sk+1; d1, . . . , dk+1](x)
s1 · · · sk+1

=
∆1[f (k)(·; d2, . . . , dk); s1; d1](x+ θ2s2d2 + · · ·+ θk+1sk+1dk+1)

s1
,

where θ2, . . . , θk+1 ∈ (0, 1). Since f is of class Ck,1 at x0, there is a constant
M , a neighborhood U of x0 and a number δ > 0 such that∣∣∣∣∆k+1[f ; s1, . . . , sk+1; d1, . . . , dk+1](x)

s1 · · · sk+1

∣∣∣∣ ≤M,

∀x ∈ U , |si| < δ, si 6= 0, di ∈ S1, i = 1, . . . , k + 1. Now the conclusion follows
easily observing that if s1 = s2 = · · · = sk+1 = h and d1 = · · · = dk+1 = d,
then ∆k+1[f ; s1, . . . , sk+1; d1, . . . , dk+1](x) = ∆d

k+1f(x;h).

Corollary 2.1. Assume that the function f is bounded on a neighborhood of
x0. Then f is of class Ck,1 at x0 if and only if there exist neighborhoods U

of x0 and V of 0 such that
δdk+1f(x;h)

hk+1
is bounded on U × V \{0}, uniformly

with respect to d ∈ S1.

Proof. The proof is straightforward recalling that

∆d
k+1f(x;h) = δdk+1f(x+

k + 1
2

h;h).

Theorem 2.2. Assume that f is continuous and Dk+1f(x; d) exists on a
neighborhood of the point x0, ∀d ∈ S1. Then f is of class Ck,1 at x0 if and
only if there exists a neighborhood U of x0 and a function g ∈ L1(U) such
that:

i) ∃M ≥ 0 such that |Dk+1f(x; d)| ≤M , ∀x ∈ U , ∀d ∈ S1,

ii)

∣∣∣∣∣∆d
k+1f(x;h)
hk+1

∣∣∣∣∣ ≤ g(x), for |h| “small enough” (h 6= 0), d ∈ S1 and a.e.

x ∈ U .

Proof. i) Sufficiency. Arguing in a fashion similar to that of the previous
theorem and using Lebesgue’s theorem, for ε “sufficiently small”, for every x
in a neighborhood of x0 and d ∈ S1 we obtain

f (k+1)
ε (x; d) = lim

h→0

∫
Ω

∆d
k+1f(z;h)
hk+1

φε(z − x) dz
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=
∫

Ω

lim
h→0

∆d
k+1f(z;h)
hk+1

φε(z − x) dz =
∫

Ω

Dk+1f(z; d)φε(z − x) dz.

For each d ∈ S1 fk+1
ε (x, d) is bounded on U (uniformly with respect to ε).

Using the integral representation of divided differences (see for instance [16],
ch. 6, th. 2), we have

∆k+1fε(x;h)
hk+1

=
∫ 1

0

dt1

∫ t1

0

dt . . .

∫ tk

0

f (k+1)
ε (x+ tk+1hd+ · · ·+ t1hd; d) dtk+1.

For x and h in suitable neighborhoods of x0 and 0 respectively, the left member
in the previous inequality is bounded by a constant M (uniformly with respect
to ε). Sending ε to 0 by Theorem 1.3, we get the existence of neighborhoods

U of x0 and V of 0 ∈ R such that ∀d ∈ S1,
∆d
k+1f(x;h)
hk+1

is bounded on

U × V \{0}. The conclusion now follows from Theorem 2.1.
ii) Necessity. The proof is similar to that of the necessary condition in

Theorem 2.1.

Remark 2.1. Theorems 2.1 and 2.2 extend the elementary condition which re-
lates the Lipschitz condition on f (k)(x; d) and the boundedness of f (k+1)(x; d).
We generalize this relation without requiring any differentiability hypothesis
and linking the existence and the Lipschitz behavior of f (k)(x; d) to the bound-

edness of
∆d
k+1f(x;h)
hk+1

or of the upper and lower Riemann derivatives.

Remark 2.2. Conditions similar to those of Theorem 2.2, expressed in terms
of Dk+1f(x; d) can be proved in an analogous way.

3 Taylor’s Formula for Ck,1 Functions

In this section we give a Taylor’s formula for Ck,1 functions expressed by
means of Riemann derivatives. The proof of the following lemma is included
in that of Theorem 2.1

Lemma 3.1. If f is of class Ck,1 at x0, then for every d ∈ S1 there exist
sequences εn converging to 0 and ξn ∈ (x0, x0 + hd) such that f (k+1)

εn (ξn; d)
converges to a limit β(x0;h; d) and

f(x0 + hd) =f(x0) + hf ′(x0; d) +
h2

2
f ′′(x0; d) + · · ·

+
hk

k!
f (k)(x0; d) +

hk+1

(k + 1)!
β(x0;h; d).
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Theorem 3.1. Let f be of class Ck,1 at x0. If the function x→ Dk+1(x; d) is
upper semicontinuous in a neighborhood of x0, then there exists ξ ∈ [x0, x0+td]
such that

f(x0 + hd) ≤ f(x0) + hf ′(x0; d) +
h2

2
f ′′(x0; d) + · · ·+ hk+1

(k + 1)!
Dk+1f(ξ; d).

If the function x → Dk+1(x; d) is lower semicontinuous in a neighborhood of
x0, then there exists ξ ∈ [x0, x0 + td] such that

f(x0 + hd) ≥ f(x0) + hf ′(x0; d) +
h2

2
f ′′(x0; d) + · · ·+ hk+1

(k + 1)!
Dk+1f(ξ; d).

Proof. Without loss of generality, the term β(x0;h; d) in the previous lemma
can be expressed as β(x0;h; d) = limn→+∞ f

(k+1)
εn (ξn; d) for some sequences

ξn → ξ ∈ [x0, x0 + hd] and εn → 0. As in the proof of Theorem 2.1, one can
write that1

f (k+1)
εn

(ξn, d) = (−1)k+1

∫
Ω

φ(k+1)
εn

(y − ξn; d)f(y) dy

= (−1)k+1 lim
h→0

∫
B(0,1)

∆d
k+1φεn

(y − ξn;h)
hk+1

f(y) dy

= (−1)k+1 lim
h→0

∫
B(0,1)

∆d
k+1f(ξn + εny;h)

hk+1
φεn

(y) dy

≤ (−1)k+1

∫
B(0,1)

lim sup
h→0

∆d
k+1f(ξn + εny;h)

hk+1
φ(y) dy

=
∫
B(0,1)

Dk+1f(ξn + εny; d)φ(y) dy.

Now using the upper semicontinuity of Dk+1f(·; d) we have

β(x;h; d) ≤
∫
B(0,1)

lim sup
n→+∞

Dk+1f(ξn + εny; d)φ(y) dy

≤
∫
B(0,1)

Dk+1f(ξ; d)φ(y) dy = Dk+1f(ξ; d)

and the proof of the first inequality is complete. The proof of the second
inequality is analogous.

1In the proof of this theorem we will use the following generalized version of Fatou’s
lemma: if fn is a sequence of measurable functions, fn ≥ M and E ⊂ Rn is a subset of
finite measure, then lim supn→+∞

R
E fn ≤

R
E lim supn→+∞ fn
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When Dk+1f(·; d) exists in a neighborhood of x0 and is continuous, the
previous theorem reduces to the classical Taylor’s formula, as one can easily
deduce from the following result.

Theorem 3.2. Let f : Ω→ R be a function of class Ck,1 at x0. If Dk+1f(·; d)
exists and is continuous in a neighborhood of x0, then f (k+1)(x0; d) exists and
Dk+1f(x0; d) = f (k+1)(x0; d).

Proof. From the previous theorem it follows that

f(x0 + hd) = f(x0) + hf ′(x0; d) + · · ·+ hk

k!
f (k)(x0; d) +

hk+1

(k + 1)!
Dk+1f(ξ; d),

where ξ ∈ [x0, x0 + hd]. Considering the expansion of the terms f(x0 + ihd),
i = 1, . . . , k, about x0 and about x0 + hd we obtain

∆d
kf(x0;h) =

k∑
i=0

(−1)k−i
(
k

i

)
[f(x0) + ihf ′(x0; d) + · · ·

+
(ih)k

k!
f (k)(x0; d) +

(ih)k+1

(k + 1)!
Dk+1f(ξi; d)]

=
k∑
i=0

(−1)k−i
(
k

i

)
[f(x0 + hd) + (i− 1)hf ′(x0 + hd; d) + · · ·

+
[(i− 1)h]k

k!
f (k)(x0 + hd; d) +

[(i− 1)h]k+1

(k + 1)!
Dk+1f(ξi; d)]

where ξi ∈ [x0, x0 + ihd] and ξi ∈ [x0 + hd, x0 + ihd]. From [6] we have∑k
i=0(−1)k−i

(
k
i

)
ij = 0 for j = 0, 1, . . . , k − 1, and

∑k
i=0(−1)k−i

(
k
i

)
ik = k!,

after simple calculations from the previous equalities we get

[f (k)(x0 + hd; d)− f (k)(x0; d)]hk =
k∑
i=0

(−1)k−i
(
k

i

)
(ih)k+1

(k + 1)!
Dk+1f(ξi; d)

−
k∑
i=0

(−1)k−i
(
k

i

)
[(i− 1)h]k+1

(k + 1)!
Dk+1f(ξi; d).

Dividing by hk+1 and taking the limit as h → 0 using the continuity of
Dk+1f(·; d) we obtain

f (k+1)(x0; d) = lim
h→0

f (k)(x0 + hd; d)− f (k)(x0; d)
h
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= Dk+1f(x0; d)
k∑
i=0

(−1)k−i
(
k

i

)[
(i)k+1

(k + 1)!
− [(i− 1)]k+1

(k + 1)!

]
= Dk+1f(x0; d).
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