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ON DINGHAS-TYPE DERIVATIVES AND
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Abstract

In this paper higher-order convexity properties of real functions are
characterized in terms of a Dinghas-type derivative. The main tool used
is a mean value inequality for Dinghas-type derivatives.

1 Introduction

A real-valued function f : I → R defined on an interval I ⊆ R is called
Jensen-convex (c.f. [14]) if it satisfies the functional inequality

f
(x+ y

2

)
≤ f(x) + f(y)

2
for x, y ∈ I. (1)

Obviously, any convex function is Jensen-convex; however there are nonconvex
but Jensen-convex functions. (For a Hamel basis construction of nonconvex
but Jensen-convex functions, we refer to [8] and [9, Chapter V].) It is easy to
see that f : I → R is Jensen-convex if and only if

∆2
hf(x) ≥ 0 for x ∈ I, h ≥ 0 such that x+ 2h ∈ I,
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where the difference operator ∆n
h is defined by the following recursion:

∆1
hf(x) = f(x+ h)− f(x) for x ∈ I, h ∈ R such that x+ h ∈ I

∆n+1
h f(x) = ∆1

h∆n
hf(x) for x ∈ I, h ∈ R such that x+ (n+ 1)h ∈ I.

The notion of higher-order Jensen-convexity is due to T. Popoviciu (see [12],
[13]): A function f : I → R is called Jensen-convex of order (n− 1) (where n
is a positive integer), if

∆n
hf(x) ≥ 0 for x ∈ I, h ≥ 0 such that x+ nh ∈ I. (2)

For properties of functions satisfying the above inequality, see e.g. [13], [2],
[1], [9, Chapter XV], [14, VIII.83], and the references therein. Generaliza-
tions of Jensen-convexity of order (n− 1) to higher-dimensional domains were
investigated by R. Ger [6], [7].

Clearly, first-order Jensen-convexity is equivalent to Jensen-convexity. The
substitution y = x+ nh in (2) and a simple calculation yields that f satisfies
(2) if and only if

n∑
k=0

(−1)n−k
(
n

k

)
f

(
(n− k)x+ ky

n

)
≥ 0 for x, y ∈ I, x ≤ y. (3)

In the particular case n = 2, (3) reduces to (1).
Multiplying the left hand side of (3) by a suitable normalizing factor and

taking the lim inf as x and y tend to a fixed point ξ ∈ I from the left and
right, respectively, we can define the so-called nth-order lower Dinghas interval
derivative of f at ξ by

Dnf(ξ) = lim inf
(x,y)→(ξ,ξ)
x≤ξ≤y

( n

y − x

)n n∑
k=0

(−1)n−k
(
n

k

)
f

(
(n− k)x+ ky

n

)
. (4)

If the limit exists, then we speak about Dinghas’ interval derivative. This
notion was introduced by A. Dinghas [4] as a generalization of the classical
derivative. One can obtain that in the n-times differentiable setting, it coin-
cides with the nth derivative of f at ξ. Concerning connections among this
interval derivative, other generalized derivatives and the derivative in the clas-
sical sense, we refer to the dissertations G. Friedel [5] and P. Volkmann [16].

By putting y = x + nh, the derivative Dnf(ξ) can be expressed in the
following way

Dnf(ξ) = lim inf
(x,h)→(ξ,0)
x≤ξ≤x+nh

∆n
hf(x)
hn

.
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It is well-known that a function f : I → R which is continuous on I and
n-times differentiable in the interior of I is Jensen-convex of order (n − 1)
on I if and only if its nth derivative is nonnegative in the interior of I. The
analogous problem formulated by C. E. Weil during the 16th Summer School
on Real Functions Theory (Liptovský Ján, Slovakia, 2000), is that whether
(n− 1)st-order Jensen-convexity can be characterized by the nonnegativity of
the corresponding lower Dinghas interval derivative. The necessity of Dnf ≥ 0
is obvious. The proof of the sufficiency will be based on a Goursat-type method
due to A. Dinghas [4] and also used by A. Simon and P. Volkmann [15] in the
characterization of polynomial functions with the Dinghas derivative.

In this paper, we introduce a more general convexity notion called T -
convexity. The main results of the paper show that this general convexity can
be characterized in terms of the corresponding lower Dinghas-type interval
derivative. As a consequence, we obtain a local characterization of higher-
order Jensen-convexity, t-Wright-convexity, etc. Finally, we formulate two
open problems concerning t-Jensen-convexity.

2 T -Convex Functions

Let T = (t1, . . . , tn) where t1, . . . , tn are fixed positive numbers. If f : I → R,
then define the operator ∆∆∆T

h by

∆∆∆T
h f(x) := ∆t1h · · ·∆tnhf(x) for x ∈ I, h ∈ R such that x+(t1+· · ·+tn)h ∈ I.

We say that f : I → R is T -(Wright-)convex if ∆∆∆T
h f(x) ≥ 0 for x ∈ I, h ≥ 0

such that x+ (t1 + · · ·+ tn)h ∈ I. Clearly, T -convexity and cT -convexity are
equivalent for c > 0. In the case t1 = · · · = tn = 1 the notion of T -convexity is
obviously the same as Jensen-convexity of order (n− 1). Another interesting
particular case is the (t, 1−t)-convexity, where 0 < t < 1 is fixed. By definition,
f is (t, 1− t)-convex if

f(x+ th) + f(x+ (1− t)h) ≤ f(x) + f(x+ h)
for x ∈ I, h ≥ 0 such that x+ h ∈ I.

which is equivalent to

f((1− t)x+ ty) + f(tx+ (1− t)y) ≤ f(x) + f(y) for x, y ∈ I.

Functions satisfying the above inequality are called t-Wright-convex (see [17]
for the origin of this notion). Thus T -convexity can be considered as a gener-
alization of t-Wright-convexity to the higher-order setting. For the connection
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between t-Wright-convexity and Jensen-convexity, Gy. Maksa, K. Nikodem,
and Zs. Páles obtained results in [11].

The lower T -Dinghas interval derivative of f : I → R is defined by

DT f(ξ) := lim inf
(x,h)→(ξ,0)

x≤ξ≤x+(t1+···+tn)h

∆∆∆T
h f(x)

(t1h) · · · (tnh)
for ξ ∈ I. (5)

In the n-times differentiable setting, one can see that DT f(ξ) = f (n)(ξ); that
is, DT can be considered as a generalized derivative.

The operator ∆n
h admits the following well-known decomposition in terms

of the operator ∆n
h/2 of half step size.

∆n
hf(x) =

n∑
k=0

(
n

k

)
∆n
h/2f(x+ (k/2)h).

A similar decomposition is valid for ∆∆∆T
h by the following result.

Lemma. Let T = (t1, . . . , tn) where t1, . . . , tn > 0. Then there exist positive
integers c0, c1, . . . , cm with c0 + c1 + · · ·+ cm = 2n and

0 = s0 < s1 < · · · < sm =
t1 + · · ·+ tn

2
(6)

such that, for all functions f : I → R,

∆∆∆T
h f(x) =

m∑
i=0

ci∆∆∆T
h/2f(x+ sih)

for x ∈ I, h ≥ 0 with x+ (t1 + · · ·+ tn)h ∈ I.
(7)

Proof. Introduce the translation operator τh for functions f : I → R by

τhf(x) := f(x+ h) for x ∈ I, h ∈ R such that h+ x ∈ I.

Then, obviously, ∆h = τh − τ0 = (τh/2 − τ0)(τh/2 + τ0) = ∆h/2(τh/2 + τ0).
Therefore,

∆∆∆T
h = ∆t1h · · ·∆tnh

=
[
∆t1h/2(τt1h/2 + τ0)

]
· · ·
[
∆tnh/2(τtnh/2 + τ0)

]
= ∆t1h/2 · · ·∆tnh/2

[
(τt1h/2 + τ0) · · · (τtnh/2 + τ0)

]
= ∆∆∆T

h/2

[
(τt1h/2 + τ0) · · · (τtnh/2 + τ0)

]
.
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Now, it is easy to see that there exist positive integers c0, c1, . . . , cm with
c0 + c1 + · · ·+ cm = 2n and s0, s1, . . . , sm such that (6) and

(τt1h/2 + τ0) · · · (τtnh/2 + τ0) =
m∑
i=0

ciτsih

hold. Thus ∆∆∆T
h = ∆∆∆T

h/2

[∑m
i=0 ciτsih

]
=
∑m
i=0 ci∆∆∆

T
h/2τsih, which yields (7)

immediately.

3 Main Results

Our first main result offers a mean value theorem for the operator ∆∆∆T
h in terms

of the corresponding Dinghas-type derivative.

Theorem. (Mean Value Inequality) Let I ⊆ R be an interval, f : I → R,
T = (t1, . . . , tn) where t1, . . . , tn > 0, and let x ∈ I, h > 0 with x+ (t1 + · · ·+
tn)h ∈ I. Then there exists a point ξ ∈ [x, x+ (t1 + · · ·+ tn)h] such that

∆∆∆T
h f(x) ≥ (t1h) · · · (tnh)DT f(ξ). (8)

Proof. Let x ∈ I, and h ≥ 0 such that x + (t1 + · · · + tn)h ∈ I. Let
A := ∆∆∆T

h f(x), x0 := x and y0 := x+ (t1 + · · ·+ tn)h. Using induction, we are
going to construct sequences (xk) and (yk) such that, for all k ≥ 0,

xk ≤ xk+1, yk+1 ≤ yk, (9)

yk − xk =
t1 + · · ·+ tn

2k
h, (10)

and

∆∆∆T
h/2kf(xk) ≤ A

2kn
. (11)

Clearly, x0 and y0 satisfy (10) and (11). Assume that we have constructed
x0 ≤ x1 ≤ · · · ≤ xk and y0 ≥ y1 ≥ · · · ≥ yk such that (10) and (11) hold.

Applying the Lemma of the previous section and (11), we have the existence
of positive integers c0, c1, . . . , cm with c0 +c1 + · · ·+cm = 2n and s0, s1, . . . , sm
satisfying (6) such that (7) is valid. Then

m∑
i=0

ci∆∆∆T
h/2k+1f

(
xk + si

h

2k
)

= ∆∆∆T
h/2kf(xk) ≤ A

2kn
.
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The sum of the coefficients on the left hand side being 2n, there exists an
integer 0 ≤ j ≤ m such that

2n∆∆∆T
h/2k+1f

(
xk + sj

h

2k
)
≤ A

2kn
. (12)

Writing xk+1 := xk+sj
h

2k
and yk+1 := xk+sj

h

2k
+
t1 + · · ·+ tn

2k+1
h, we can see

that (12) reduces to (11) with k + 1 instead of k, (10) for k + 1 follows from
the above definition of xk+1 and yk+1. The inequality xk ≤ xk+1 is obvious
by sj ≥ 0. On the other hand, (7) and (10) yield that

yk+1 ≤ xk + sm
h

2k
+
t1 + · · ·+ tn

2k+1
h

= xk +
t1 + · · ·+ tn

2
· h

2k
+
t1 + · · ·+ tn

2k+1
h

= xk +
t1 + · · ·+ tn

2k
h = yk.

Therefore, we also have yk+1 ≤ yk and we have proved the existence of the
sequences (xk) and (yk) satisfying (9), (10), and (11).

Denote by ξ the (unique) element of the intersection
⋂∞
k=0[xk, yk] and let

hk :=
yk − xk

t1 + · · ·+ tn
= h

2k . Then xk ≤ ξ ≤ yk = xk + (t1 + · · ·+ tn)hk and (11)

can be rewritten as
∆∆∆T

hk
f(xk)

hn
k

≤ A
hn . Therefore, we have

DT f(ξ) = lim inf
(x,h)→(ξ,0)

x≤ξ≤x+(t1+···+tn)h

∆∆∆T
h f(x)

(t1h) · · · (tnh)

≤ lim inf
k→∞

∆∆∆T
hk
f(xk)

(t1hk) · · · (tnhk)
≤ A

(t1h) · · · (tnh)
.

Thus the proof of (8) is complete.

If one replaces f by −f , then a mean value inequality for the upper
Dinghas-type derivative can be deduced which is defined via (5) with “lim sup”
instead of “lim inf”.

If the theorem is applied to the special case t1 = · · · = tn = 1, then we
get a mean value theorem for the ∆n

h operator in terms of the lower Dinghas
interval derivative Dn defined in (4).

As an immediate consequence of the above theorem, we get the following
characterization of T -convexity.
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Corollary 1. Let T = (t1, . . . , tn) with t1, . . . , tn > 0. A function f : I → R
is T -convex on I if and only if DT f(ξ) ≥ 0 for ξ ∈ I.

Proof. If f is T -convex, then, clearly DT f ≥ 0. Conversely, if DT f is
nonnegative on I, then, by our Theorem, ∆∆∆T

h f(x) ≥ 0 for all x ∈ I and h ≥ 0
with x+ (t1 + · · ·+ tn)h ∈ I.

In the special case t1 = · · · = tn = 1, the above corollary yields that f is
Jensen-convex of order (n−1) if and only if the lower Dinghas interval deriva-
tive Dnf is nonnegative on I. Thus the problem of C. E. Weil is answered in
the affirmative. A similar result can be derived for t-Wright-convexity when
we apply our Theorem to the (t, 1− t)-convexity setting.

Another obvious but interesting consequence of Corollary 1 is that the
T -convexity property is localizable in the following sense.

Corollary 2. A function f : I → R is T -convex on I if and only if, for each
point ξ ∈ I, there exists a neighborhood U of ξ such that f is T -convex on
I ∩ U .

Thus, Jensen-convexity of order (n − 1), and also t-Wright-convexity are
localizable properties of functions. There are convexity properties, however,
that may not have this localization property. A function f : I → R is called
t-Jensen-convex on I (where 0 < t < 1 is fixed), if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) for x, y ∈ I.

Clearly, t-Jensen-convexity implies t-Wright-convexity, but the converse is not
true in general (see [11]). We can formulate two open problems concerning
t-Jensen-convexity.

Problem 1. Let 0 < t < 1 be fixed. Is t-Jensen-convexity equivalent to the
property

δ2
tf(ξ) = lim inf

(x,y)→(ξ,ξ)
x≤ξ≤y

tf(x) + (1− t)f(y)− f(tx+ (1− t)y)
(y − x)2

≥ 0 for ξ ∈ I

for all functions f : I → R?

Of course, for t = 1/2, the answer is affirmative, because the (1/2)-Jensen
and the (1/2)-Wright convexities are equivalent.

Problem 2. Let 0 < t < 1 be fixed. Is the t-Jensen-convexity property
localizable?
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If the first problem has a positive answer, then the second problem can also
be answered positively, but the converse may not be true. If t is rational, then
the (local) t-Jensen-convexity is equivalent to the (local) Jensen-convexity by
the results of N. Kuhn [10] and Z. Daróczy and Zs. Páles [3]. Thus, for rational
t, the t-Jensen-convexity property is localizable. However, for irrational t,
Jensen-convexity does not imply t-Jensen-convexity. Therefore, in this case,
Problem 2 cannot be solved or disproved in such an easy way.
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