Attila Gilányi*and Zsolt Páles, Institute of Mathematics and Informatics, University of Debrecen, H-4010 Debrecen, Pf. 12, Hungary. e-mail: gilanyi@math.klte.hu and pales@math.klte.hu

ON DINGHAS-TYPE DERIVATIVES AND CONVEX FUNCTIONS OF HIGHER ORDER[†]

Abstract

In this paper higher-order convexity properties of real functions are characterized in terms of a Dinghas-type derivative. The main tool used is a mean value inequality for Dinghas-type derivatives.

1 Introduction

A real-valued function $f : I \to \mathbb{R}$ defined on an interval $I \subseteq \mathbb{R}$ is called *Jensen-convex* (c.f. [14]) if it satisfies the functional inequality

$$f\left(\frac{x+y}{2}\right) \le \frac{f(x)+f(y)}{2} \text{ for } x, y \in I.$$
(1)

Obviously, any convex function is Jensen-convex; however there are nonconvex but Jensen-convex functions. (For a Hamel basis construction of nonconvex but Jensen-convex functions, we refer to [8] and [9, Chapter V].) It is easy to see that $f: I \to \mathbb{R}$ is Jensen-convex if and only if

 $\Delta_h^2 f(x) \ge 0$ for $x \in I$, $h \ge 0$ such that $x + 2h \in I$,

Key Words: Jensen-convexity of higher order, Wright-convexity of higher order, t-Jensen-convexity, t-Wright-convexity, localizable convexity properties, generalized derivative Mathematical Reviews subject classification: Primary 26A51, 26B25

Received by the editors April 9, 2001

^{*}The research of the first author has also been supported in part by the Bolyai János Research Scholarship.

 $^{^\}dagger \rm This$ research has been supported by the Hungarian Scientific Research Fund (OTKA) Grants T-030082 and F038326, and by the Office for Higher Education Programs Grant FKFP-0215/2001.

where the difference operator Δ_h^n is defined by the following recursion:

$$\Delta_h^1 f(x) = f(x+h) - f(x) \text{ for } x \in I, \ h \in \mathbb{R} \text{ such that } x+h \in I$$

$$\Delta_h^{n+1} f(x) = \Delta_h^1 \Delta_h^n f(x) \qquad \text{for } x \in I, \ h \in \mathbb{R} \text{ such that } x+(n+1)h \in I.$$

The notion of higher-order Jensen-convexity is due to T. Popoviciu (see [12], [13]): A function $f: I \to \mathbb{R}$ is called *Jensen-convex of order* (n-1) (where n is a positive integer), if

$$\Delta_h^n f(x) \ge 0 \text{ for } x \in I, \ h \ge 0 \text{ such that } x + nh \in I.$$
(2)

For properties of functions satisfying the above inequality, see e.g. [13], [2], [1], [9, Chapter XV], [14, VIII.83], and the references therein. Generalizations of Jensen-convexity of order (n-1) to higher-dimensional domains were investigated by R. Ger [6], [7].

Clearly, first-order Jensen-convexity is equivalent to Jensen-convexity. The substitution y = x + nh in (2) and a simple calculation yields that f satisfies (2) if and only if

$$\sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} f\left(\frac{(n-k)x + ky}{n}\right) \ge 0 \text{ for } x, y \in I, \ x \le y.$$
(3)

In the particular case n = 2, (3) reduces to (1).

Multiplying the left hand side of (3) by a suitable normalizing factor and taking the liminf as x and y tend to a fixed point $\xi \in I$ from the left and right, respectively, we can define the so-called n^{th} -order lower Dinghas interval derivative of f at ξ by

$$\underline{D}^n f(\xi) = \liminf_{\substack{(x,y)\to(\xi,\xi)\\x\le\xi\le y}} \left(\frac{n}{y-x}\right)^n \sum_{k=0}^n (-1)^{n-k} \binom{n}{k} f\left(\frac{(n-k)x+ky}{n}\right).$$
(4)

If the limit exists, then we speak about Dinghas' interval derivative. This notion was introduced by A. Dinghas [4] as a generalization of the classical derivative. One can obtain that in the *n*-times differentiable setting, it coincides with the n^{th} derivative of f at ξ . Concerning connections among this interval derivative, other generalized derivatives and the derivative in the classical sense, we refer to the dissertations G. Friedel [5] and P. Volkmann [16].

By putting y = x + nh, the derivative $\underline{D}^n f(\xi)$ can be expressed in the following way

$$\underline{D}^n f(\xi) = \liminf_{\substack{(x,h) \to (\xi,0) \\ x \le \xi \le x + nh}} \frac{\Delta_h^n f(x)}{h^n}.$$

486

It is well-known that a function $f: I \to \mathbb{R}$ which is continuous on I and n-times differentiable in the interior of I is Jensen-convex of order (n-1) on I if and only if its n^{th} derivative is nonnegative in the interior of I. The analogous problem formulated by C. E. Weil during the 16th Summer School on Real Functions Theory (Liptovský Ján, Slovakia, 2000), is that whether $(n-1)^{\text{st}}$ -order Jensen-convexity can be characterized by the nonnegativity of the corresponding lower Dinghas interval derivative. The necessity of $\underline{D}^n f \geq 0$ is obvious. The proof of the sufficiency will be based on a Goursat-type method due to A. Dinghas [4] and also used by A. Simon and P. Volkmann [15] in the characterization of polynomial functions with the Dinghas derivative.

In this paper, we introduce a more general convexity notion called Tconvexity. The main results of the paper show that this general convexity can
be characterized in terms of the corresponding lower Dinghas-type interval
derivative. As a consequence, we obtain a local characterization of higherorder Jensen-convexity, t-Wright-convexity, etc. Finally, we formulate two
open problems concerning t-Jensen-convexity.

2 *T*-Convex Functions

Let $T = (t_1, \ldots, t_n)$ where t_1, \ldots, t_n are fixed positive numbers. If $f : I \to \mathbb{R}$, then define the operator $\mathbf{\Delta}_h^T$ by

$$\Delta_h^T f(x) := \Delta_{t_1 h} \cdots \Delta_{t_n h} f(x) \text{ for } x \in I, h \in \mathbb{R} \text{ such that } x + (t_1 + \cdots + t_n) h \in I.$$

We say that $f: I \to \mathbb{R}$ is T-(Wright-)convex if $\Delta_h^T f(x) \ge 0$ for $x \in I$, $h \ge 0$ such that $x + (t_1 + \cdots + t_n)h \in I$. Clearly, T-convexity and cT-convexity are equivalent for c > 0. In the case $t_1 = \cdots = t_n = 1$ the notion of T-convexity is obviously the same as Jensen-convexity of order (n-1). Another interesting particular case is the (t, 1-t)-convexity, where 0 < t < 1 is fixed. By definition, f is (t, 1-t)-convex if

$$f(x+th) + f(x+(1-t)h) \le f(x) + f(x+h)$$

for $x \in I$, $h \ge 0$ such that $x+h \in I$.

which is equivalent to

$$f((1-t)x + ty) + f(tx + (1-t)y) \le f(x) + f(y) \text{ for } x, y \in I.$$

Functions satisfying the above inequality are called t-Wright-convex (see [17] for the origin of this notion). Thus T-convexity can be considered as a generalization of t-Wright-convexity to the higher-order setting. For the connection

between *t*-Wright-convexity and Jensen-convexity, Gy. Maksa, K. Nikodem, and Zs. Páles obtained results in [11].

The lower T-Dinghas interval derivative of $f: I \to \mathbb{R}$ is defined by

$$\underline{\mathbf{D}}^{T}f(\xi) := \liminf_{\substack{(x,h) \to (\xi,0) \\ x \le \xi \le x + (t_1 + \dots + t_n)h}} \frac{\mathbf{\Delta}_{h}^{T}f(x)}{(t_1h)\cdots(t_nh)} \text{ for } \xi \in I.$$
(5)

In the *n*-times differentiable setting, one can see that $\underline{\mathbf{D}}^T f(\xi) = f^{(n)}(\xi)$; that is, $\underline{\mathbf{D}}^T$ can be considered as a generalized derivative.

The operator Δ_h^n admits the following well-known decomposition in terms of the operator $\Delta_{h/2}^n$ of half step size.

$$\Delta_{h}^{n} f(x) = \sum_{k=0}^{n} \binom{n}{k} \Delta_{h/2}^{n} f(x + (k/2)h).$$

A similar decomposition is valid for $\mathbf{\Delta}_h^T$ by the following result.

Lemma. Let $T = (t_1, \ldots, t_n)$ where $t_1, \ldots, t_n > 0$. Then there exist positive integers c_0, c_1, \ldots, c_m with $c_0 + c_1 + \cdots + c_m = 2^n$ and

$$0 = s_0 < s_1 < \dots < s_m = \frac{t_1 + \dots + t_n}{2} \tag{6}$$

such that, for all functions $f: I \to \mathbb{R}$,

$$\boldsymbol{\Delta}_{h}^{T}f(x) = \sum_{i=0}^{m} c_{i}\boldsymbol{\Delta}_{h/2}^{T}f(x+s_{i}h)$$
for $x \in I, \ h \ge 0$ with $x + (t_{1} + \dots + t_{n})h \in I.$
(7)

PROOF. Introduce the translation operator τ_h for functions $f: I \to \mathbb{R}$ by

 $\tau_h f(x) := f(x+h)$ for $x \in I$, $h \in \mathbb{R}$ such that $h + x \in I$.

Then, obviously, $\Delta_h = \tau_h - \tau_0 = (\tau_{h/2} - \tau_0)(\tau_{h/2} + \tau_0) = \Delta_{h/2}(\tau_{h/2} + \tau_0)$. Therefore,

$$\begin{split} \mathbf{\Delta}_{h}^{T} &= \Delta_{t_{1}h} \cdots \Delta_{t_{n}h} \\ &= \left[\Delta_{t_{1}h/2}(\tau_{t_{1}h/2} + \tau_{0}) \right] \cdots \left[\Delta_{t_{n}h/2}(\tau_{t_{n}h/2} + \tau_{0}) \right] \\ &= \Delta_{t_{1}h/2} \cdots \Delta_{t_{n}h/2} \left[(\tau_{t_{1}h/2} + \tau_{0}) \cdots (\tau_{t_{n}h/2} + \tau_{0}) \right] \\ &= \mathbf{\Delta}_{h/2}^{T} \left[(\tau_{t_{1}h/2} + \tau_{0}) \cdots (\tau_{t_{n}h/2} + \tau_{0}) \right]. \end{split}$$

488

Now, it is easy to see that there exist positive integers c_0, c_1, \ldots, c_m with $c_0 + c_1 + \cdots + c_m = 2^n$ and s_0, s_1, \ldots, s_m such that (6) and

$$(\tau_{t_1h/2} + \tau_0) \cdots (\tau_{t_nh/2} + \tau_0) = \sum_{i=0}^m c_i \tau_{s_ih}$$

hold. Thus $\mathbf{\Delta}_{h}^{T} = \mathbf{\Delta}_{h/2}^{T} \left[\sum_{i=0}^{m} c_{i} \tau_{s_{i}h} \right] = \sum_{i=0}^{m} c_{i} \mathbf{\Delta}_{h/2}^{T} \tau_{s_{i}h}$, which yields (7) immediately.

3 Main Results

Our first main result offers a mean value theorem for the operator $\mathbf{\Delta}_{h}^{T}$ in terms of the corresponding Dinghas-type derivative.

Theorem. (Mean Value Inequality) Let $I \subseteq \mathbb{R}$ be an interval, $f: I \to \mathbb{R}$, $T = (t_1, \ldots, t_n)$ where $t_1, \ldots, t_n > 0$, and let $x \in I$, h > 0 with $x + (t_1 + \cdots + t_n)h \in I$. Then there exists a point $\xi \in [x, x + (t_1 + \cdots + t_n)h]$ such that

$$\boldsymbol{\Delta}_{h}^{T}f(x) \geq (t_{1}h)\cdots(t_{n}h)\underline{\mathbf{D}}^{T}f(\xi).$$
(8)

PROOF. Let $x \in I$, and $h \geq 0$ such that $x + (t_1 + \cdots + t_n)h \in I$. Let $A := \Delta_h^T f(x), x_0 := x$ and $y_0 := x + (t_1 + \cdots + t_n)h$. Using induction, we are going to construct sequences (x_k) and (y_k) such that, for all $k \geq 0$,

$$x_k \le x_{k+1}, \ y_{k+1} \le y_k,$$
 (9)

$$y_k - x_k = \frac{t_1 + \dots + t_n}{2^k} h,$$
(10)

and

$$\mathbf{\Delta}_{h/2^k}^T f(x_k) \le \frac{A}{2^{kn}}.$$
(11)

Clearly, x_0 and y_0 satisfy (10) and (11). Assume that we have constructed $x_0 \leq x_1 \leq \cdots \leq x_k$ and $y_0 \geq y_1 \geq \cdots \geq y_k$ such that (10) and (11) hold.

Applying the Lemma of the previous section and (11), we have the existence of positive integers c_0, c_1, \ldots, c_m with $c_0 + c_1 + \cdots + c_m = 2^n$ and s_0, s_1, \ldots, s_m satisfying (6) such that (7) is valid. Then

$$\sum_{i=0}^{m} c_i \Delta_{h/2^{k+1}}^T f\left(x_k + s_i \frac{h}{2^k}\right) = \Delta_{h/2^k}^T f(x_k) \le \frac{A}{2^{kn}}.$$

The sum of the coefficients on the left hand side being 2^n , there exists an integer $0 \le j \le m$ such that

$$2^{n} \mathbf{\Delta}_{h/2^{k+1}}^{T} f\left(x_{k} + s_{j} \frac{h}{2^{k}}\right) \le \frac{A}{2^{kn}}.$$
(12)

Writing $x_{k+1} := x_k + s_j \frac{h}{2^k}$ and $y_{k+1} := x_k + s_j \frac{h}{2^k} + \frac{t_1 + \dots + t_n}{2^{k+1}}h$, we can see that (12) reduces to (11) with k + 1 instead of k, (10) for k + 1 follows from the above definition of x_{k+1} and y_{k+1} . The inequality $x_k \leq x_{k+1}$ is obvious by $s_j \geq 0$. On the other hand, (7) and (10) yield that

$$y_{k+1} \le x_k + s_m \frac{h}{2^k} + \frac{t_1 + \dots + t_n}{2^{k+1}} h$$

= $x_k + \frac{t_1 + \dots + t_n}{2} \cdot \frac{h}{2^k} + \frac{t_1 + \dots + t_n}{2^{k+1}} h$
= $x_k + \frac{t_1 + \dots + t_n}{2^k} h = y_k.$

Therefore, we also have $y_{k+1} \leq y_k$ and we have proved the existence of the sequences (x_k) and (y_k) satisfying (9), (10), and (11).

Denote by ξ the (unique) element of the intersection $\bigcap_{k=0}^{\infty} [x_k, y_k]$ and let $h_k := \frac{y_k - x_k}{t_1 + \dots + t_n} = \frac{h}{2^k}$. Then $x_k \le \xi \le y_k = x_k + (t_1 + \dots + t_n)h_k$ and (11) can be rewritten as $\frac{\Delta_{h_k}^T f(x_k)}{h_k^n} \le \frac{A}{h^n}$. Therefore, we have

$$\underline{\mathbf{D}}^{T}f(\xi) = \liminf_{\substack{(x,h)\to(\xi,0)\\x\leq\xi\leq x+(t_{1}+\cdots+t_{n})h}} \frac{\mathbf{\Delta}_{h}^{T}f(x)}{(t_{1}h)\cdots(t_{n}h)}$$
$$\leq \liminf_{k\to\infty} \frac{\mathbf{\Delta}_{h_{k}}^{T}f(x_{k})}{(t_{1}h_{k})\cdots(t_{n}h_{k})} \leq \frac{A}{(t_{1}h)\cdots(t_{n}h)}$$

Thus the proof of (8) is complete.

If one replaces f by -f, then a mean value inequality for the upper Dinghas-type derivative can be deduced which is defined via (5) with "lim sup" instead of "lim inf".

If the theorem is applied to the special case $t_1 = \cdots = t_n = 1$, then we get a mean value theorem for the Δ_h^n operator in terms of the lower Dinghas interval derivative \underline{D}^n defined in (4).

As an immediate consequence of the above theorem, we get the following characterization of T-convexity.

Corollary 1. Let $T = (t_1, \ldots, t_n)$ with $t_1, \ldots, t_n > 0$. A function $f : I \to \mathbb{R}$ is *T*-convex on *I* if and only if $\underline{\mathbf{D}}^T f(\xi) \ge 0$ for $\xi \in I$.

PROOF. If f is T-convex, then, clearly $\underline{\mathbf{D}}^T f \geq 0$. Conversely, if $\underline{\mathbf{D}}^T f$ is nonnegative on I, then, by our Theorem, $\mathbf{\Delta}_h^T f(x) \geq 0$ for all $x \in I$ and $h \geq 0$ with $x + (t_1 + \cdots + t_n)h \in I$.

In the special case $t_1 = \cdots = t_n = 1$, the above corollary yields that f is Jensen-convex of order (n-1) if and only if the lower Dinghas interval derivative $\underline{D}^n f$ is nonnegative on I. Thus the problem of C. E. Weil is answered in the affirmative. A similar result can be derived for t-Wright-convexity when we apply our Theorem to the (t, 1 - t)-convexity setting.

Another obvious but interesting consequence of Corollary 1 is that the T-convexity property is *localizable* in the following sense.

Corollary 2. A function $f : I \to \mathbb{R}$ is *T*-convex on *I* if and only if, for each point $\xi \in I$, there exists a neighborhood *U* of ξ such that *f* is *T*-convex on $I \cap U$.

Thus, Jensen-convexity of order (n-1), and also t-Wright-convexity are localizable properties of functions. There are convexity properties, however, that may not have this localization property. A function $f: I \to \mathbb{R}$ is called t-Jensen-convex on I (where 0 < t < 1 is fixed), if

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y)$$
 for $x, y \in I$.

Clearly, t-Jensen-convexity implies t-Wright-convexity, but the converse is not true in general (see [11]). We can formulate two open problems concerning t-Jensen-convexity.

Problem 1. Let 0 < t < 1 be fixed. Is *t*-Jensen-convexity equivalent to the property

$$\underline{\delta}_t^2 f(\xi) = \liminf_{\substack{(x,y) \to (\xi,\xi) \\ x \le \xi \le y}} \frac{tf(x) + (1-t)f(y) - f(tx + (1-t)y)}{(y-x)^2} \ge 0 \text{ for } \xi \in I$$

for all functions $f: I \to \mathbb{R}$?

Of course, for t = 1/2, the answer is affirmative, because the (1/2)-Jensen and the (1/2)-Wright convexities are equivalent.

Problem 2. Let 0 < t < 1 be fixed. Is the *t*-Jensen-convexity property localizable?

If the first problem has a positive answer, then the second problem can also be answered positively, but the converse may not be true. If t is rational, then the (local) t-Jensen-convexity is equivalent to the (local) Jensen-convexity by the results of N. Kuhn [10] and Z. Daróczy and Zs. Páles [3]. Thus, for rational t, the t-Jensen-convexity property is localizable. However, for irrational t, Jensen-convexity does not imply t-Jensen-convexity. Therefore, in this case, Problem 2 cannot be solved or disproved in such an easy way.

References

- R. P. Boas and D. V. Widder, Functions with positive differences, Duke Math. J. 7 (1940), 496–503.
- [2] P. S. Bullen, A criterion for n-convexity, Pacific J. Math. 36 (1971), no. 1, 81–98.
- [3] Z. Daróczy and Zs. Páles, Convexity with given infinite weight sequences, Stochastica 11 (1987), no. 1, 5–12.
- [4] A. Dinghas, Zur Theorie der gewöhnlichen Differentialgleichungen, Ann. Acad. Sci. Fennicae, Ser. A I 375 (1966).
- [5] G. Friedel, Zur Theorie der Intervallableitung reller Funktionen, Diss., Freie Univ. Berlin, 1968.
- [6] R. Ger, Convex functions of higher orders in Euclidean spaces, Ann. Polon. Math. 25 (1972), 293–302.
- [7] R. Ger, n-convex functions in linear spaces, Aequationes Math. 10 (1974), 172–176.
- [8] G. Hamel, Eine Basis aller Zahlen und die unstetigen Lösungen der Funktionalgleichung f(x+y) = f(x) + f(y), Math. Ann. **60** (1905), 459–462.
- M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Państwowe Wydawnictwo Naukowe — Uniwersytet Śląski, Warszawa-Kraków-Katowice, 1985.
- [10] N. Kuhn, A note on t-convex functions, General Inequalities, 4 (Oberwolfach, 1983) (W. Walter, ed.), International Series of Numerical Mathematics, 71, Birkhäuser, Basel–Boston–Stuttgart, 1984, 269–276.
- Gy. Maksa, K. Nikodem, and Zs. Páles, *Results on t-Wright convexity*, C. R. Math. Rep. Acad. Sci. Canada 13 (1991), no. 6, 274–278.

- [12] T. Popoviciu, Sur quelques propriétés des fonctions d'une ou de deux variables réelles, Mathematica (Cluj) 8 (1934), 1–85.
- [13] T. Popoviciu, Les fonctions convexes, Herman, Paris, 1945.
- [14] A. W. Roberts and D. E. Varberg, *Convex Functions*, Academic Press, New York–London, 1973.
- [15] A. Simon and P. Volkmann, Eine Charakterisierung von polynomialen Funktionen mittels der Dinghasschen Intervall-Derivierten, Results Math. 26 (1994), 382–384.
- [16] P. Volkmann, Die Äquivalenz zweier Ableitungsbegriffe, Diss., Freie Univ. Berlin, 1971.
- [17] E. M. Wright, An inequality for convex functions, Amer. Math. Monthly 61 (1954), 620–622.

Attila Gilányi and Zsolt Páles