ON DINGHAS-TYPE DERIVATIVES AND CONVEX FUNCTIONS OF HIGHER ORDER ${ }^{\dagger}$

Abstract

In this paper higher-order convexity properties of real functions are characterized in terms of a Dinghas-type derivative. The main tool used is a mean value inequality for Dinghas-type derivatives.

1 Introduction

A real-valued function $f: I \rightarrow \mathbb{R}$ defined on an interval $I \subseteq \mathbb{R}$ is called Jensen-convex (c.f. [14]) if it satisfies the functional inequality

$$
\begin{equation*}
f\left(\frac{x+y}{2}\right) \leq \frac{f(x)+f(y)}{2} \text { for } x, y \in I \tag{1}
\end{equation*}
$$

Obviously, any convex function is Jensen-convex; however there are nonconvex but Jensen-convex functions. (For a Hamel basis construction of nonconvex but Jensen-convex functions, we refer to [8] and [9, Chapter V].) It is easy to see that $f: I \rightarrow \mathbb{R}$ is Jensen-convex if and only if

$$
\Delta_{h}^{2} f(x) \geq 0 \text { for } x \in I, h \geq 0 \text { such that } x+2 h \in I
$$

[^0]where the difference operator Δ_{h}^{n} is defined by the following recursion:
\[

$$
\begin{aligned}
\Delta_{h}^{1} f(x) & =f(x+h)-f(x) \text { for } x \in I, h \in \mathbb{R} \text { such that } x+h \in I \\
\Delta_{h}^{n+1} f(x) & =\Delta_{h}^{1} \Delta_{h}^{n} f(x) \quad \text { for } x \in I, h \in \mathbb{R} \text { such that } x+(n+1) h \in I .
\end{aligned}
$$
\]

The notion of higher-order Jensen-convexity is due to T. Popoviciu (see [12], [13]): A function $f: I \rightarrow \mathbb{R}$ is called Jensen-convex of order $(n-1)$ (where n is a positive integer), if

$$
\begin{equation*}
\Delta_{h}^{n} f(x) \geq 0 \text { for } x \in I, h \geq 0 \text { such that } x+n h \in I . \tag{2}
\end{equation*}
$$

For properties of functions satisfying the above inequality, see e.g. [13], [2], [1], [9, Chapter XV], [14, VIII.83], and the references therein. Generalizations of Jensen-convexity of order $(n-1)$ to higher-dimensional domains were investigated by R. Ger [6], [7].

Clearly, first-order Jensen-convexity is equivalent to Jensen-convexity. The substitution $y=x+n h$ in (2) and a simple calculation yields that f satisfies (2) if and only if

$$
\begin{equation*}
\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k} f\left(\frac{(n-k) x+k y}{n}\right) \geq 0 \text { for } x, y \in I, x \leq y . \tag{3}
\end{equation*}
$$

In the particular case $n=2$, (3) reduces to (1).
Multiplying the left hand side of (3) by a suitable normalizing factor and taking the liminf as x and y tend to a fixed point $\xi \in I$ from the left and right, respectively, we can define the so-called $n^{\text {th }}$-order lower Dinghas interval derivative of f at ξ by

$$
\begin{equation*}
\underline{D}^{n} f(\xi)=\liminf _{\substack{(x, y) \rightarrow(\xi, \xi) \\ x \leq \xi \leq y}}\left(\frac{n}{y-x}\right)^{n} \sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k} f\left(\frac{(n-k) x+k y}{n}\right) . \tag{4}
\end{equation*}
$$

If the limit exists, then we speak about Dinghas' interval derivative. This notion was introduced by A. Dinghas [4] as a generalization of the classical derivative. One can obtain that in the n-times differentiable setting, it coincides with the $n^{\text {th }}$ derivative of f at ξ. Concerning connections among this interval derivative, other generalized derivatives and the derivative in the classical sense, we refer to the dissertations G. Friedel [5] and P. Volkmann [16].

By putting $y=x+n h$, the derivative $\underline{D}^{n} f(\xi)$ can be expressed in the following way

$$
\underline{D}^{n} f(\xi)=\liminf _{\substack{(x, h)(\xi, 0) \\ x \leq \xi \leq x+n h}} \frac{\Delta_{h}^{n} f(x)}{h^{n}} .
$$

It is well-known that a function $f: I \rightarrow \mathbb{R}$ which is continuous on I and n-times differentiable in the interior of I is Jensen-convex of order $(n-1)$ on I if and only if its $n^{\text {th }}$ derivative is nonnegative in the interior of I. The analogous problem formulated by C. E. Weil during the $16^{\text {th }}$ Summer School on Real Functions Theory (Liptovský Ján, Slovakia, 2000), is that whether $(n-1)^{\text {st }}$-order Jensen-convexity can be characterized by the nonnegativity of the corresponding lower Dinghas interval derivative. The necessity of $\underline{D}^{n} f \geq 0$ is obvious. The proof of the sufficiency will be based on a Goursat-type method due to A. Dinghas [4] and also used by A. Simon and P. Volkmann [15] in the characterization of polynomial functions with the Dinghas derivative.

In this paper, we introduce a more general convexity notion called T convexity. The main results of the paper show that this general convexity can be characterized in terms of the corresponding lower Dinghas-type interval derivative. As a consequence, we obtain a local characterization of higherorder Jensen-convexity, t-Wright-convexity, etc. Finally, we formulate two open problems concerning t-Jensen-convexity.

2 T-Convex Functions

Let $T=\left(t_{1}, \ldots, t_{n}\right)$ where t_{1}, \ldots, t_{n} are fixed positive numbers. If $f: I \rightarrow \mathbb{R}$, then define the operator Δ_{h}^{T} by
$\Delta_{h}^{T} f(x):=\Delta_{t_{1} h} \cdots \Delta_{t_{n} h} f(x)$ for $x \in I, h \in \mathbb{R}$ such that $x+\left(t_{1}+\cdots+t_{n}\right) h \in I$.
We say that $f: I \rightarrow \mathbb{R}$ is T-(Wright-)convex if $\Delta_{h}^{T} f(x) \geq 0$ for $x \in I, h \geq 0$ such that $x+\left(t_{1}+\cdots+t_{n}\right) h \in I$. Clearly, T-convexity and $c T$-convexity are equivalent for $c>0$. In the case $t_{1}=\cdots=t_{n}=1$ the notion of T-convexity is obviously the same as Jensen-convexity of order $(n-1)$. Another interesting particular case is the $(t, 1-t)$-convexity, where $0<t<1$ is fixed. By definition, f is $(t, 1-t)$-convex if

$$
\begin{aligned}
& f(x+t h)+f(x+(1-t) h) \leq f(x)+f(x+h) \\
& \text { for } x \in I, h \geq 0 \text { such that } x+h \in I
\end{aligned}
$$

which is equivalent to

$$
f((1-t) x+t y)+f(t x+(1-t) y) \leq f(x)+f(y) \text { for } x, y \in I
$$

Functions satisfying the above inequality are called t-Wright-convex (see [17] for the origin of this notion). Thus T-convexity can be considered as a generalization of t-Wright-convexity to the higher-order setting. For the connection
between t-Wright-convexity and Jensen-convexity, Gy. Maksa, K. Nikodem, and Zs. Páles obtained results in [11].

The lower T-Dinghas interval derivative of $f: I \rightarrow \mathbb{R}$ is defined by

$$
\begin{equation*}
\underline{\mathbf{D}}^{T} f(\xi):=\liminf _{\substack{(x, h) \rightarrow(\xi, 0) \\ x \leq \xi \leq x+\left(t_{1}+\cdots+t_{n}\right) h}} \frac{\Delta_{h}^{T} f(x)}{\left(t_{1} h\right) \cdots\left(t_{n} h\right)} \text { for } \xi \in I \tag{5}
\end{equation*}
$$

In the n-times differentiable setting, one can see that $\underline{\mathbf{D}}^{T} f(\xi)=f^{(n)}(\xi)$; that is, $\underline{\mathbf{D}}^{T}$ can be considered as a generalized derivative.

The operator Δ_{h}^{n} admits the following well-known decomposition in terms of the operator $\Delta_{h / 2}^{n}$ of half step size.

$$
\Delta_{h}^{n} f(x)=\sum_{k=0}^{n}\binom{n}{k} \Delta_{h / 2}^{n} f(x+(k / 2) h)
$$

A similar decomposition is valid for $\boldsymbol{\Delta}_{h}^{T}$ by the following result.
Lemma. Let $T=\left(t_{1}, \ldots, t_{n}\right)$ where $t_{1}, \ldots, t_{n}>0$. Then there exist positive integers $c_{0}, c_{1}, \ldots, c_{m}$ with $c_{0}+c_{1}+\cdots+c_{m}=2^{n}$ and

$$
\begin{equation*}
0=s_{0}<s_{1}<\cdots<s_{m}=\frac{t_{1}+\cdots+t_{n}}{2} \tag{6}
\end{equation*}
$$

such that, for all functions $f: I \rightarrow \mathbb{R}$,

$$
\begin{equation*}
\Delta_{h}^{T} f(x)=\sum_{i=0}^{m} c_{i} \Delta_{h / 2}^{T} f\left(x+s_{i} h\right) \tag{7}
\end{equation*}
$$

$$
\text { for } x \in I, h \geq 0 \text { with } x+\left(t_{1}+\cdots+t_{n}\right) h \in I
$$

Proof. Introduce the translation operator τ_{h} for functions $f: I \rightarrow \mathbb{R}$ by

$$
\tau_{h} f(x):=f(x+h) \text { for } x \in I, h \in \mathbb{R} \text { such that } h+x \in I
$$

Then, obviously, $\Delta_{h}=\tau_{h}-\tau_{0}=\left(\tau_{h / 2}-\tau_{0}\right)\left(\tau_{h / 2}+\tau_{0}\right)=\Delta_{h / 2}\left(\tau_{h / 2}+\tau_{0}\right)$. Therefore,

$$
\begin{aligned}
\boldsymbol{\Delta}_{h}^{T} & =\Delta_{t_{1} h} \cdots \Delta_{t_{n} h} \\
& =\left[\Delta_{t_{1} h / 2}\left(\tau_{t_{1} h / 2}+\tau_{0}\right)\right] \cdots\left[\Delta_{t_{n} h / 2}\left(\tau_{t_{n} h / 2}+\tau_{0}\right)\right] \\
& =\Delta_{t_{1} h / 2} \cdots \Delta_{t_{n} h / 2}\left[\left(\tau_{t_{1} h / 2}+\tau_{0}\right) \cdots\left(\tau_{t_{n} h / 2}+\tau_{0}\right)\right] \\
& =\Delta_{h / 2}^{T}\left[\left(\tau_{t_{1} h / 2}+\tau_{0}\right) \cdots\left(\tau_{t_{n} h / 2}+\tau_{0}\right)\right] .
\end{aligned}
$$

Now, it is easy to see that there exist positive integers $c_{0}, c_{1}, \ldots, c_{m}$ with $c_{0}+c_{1}+\cdots+c_{m}=2^{n}$ and $s_{0}, s_{1}, \ldots, s_{m}$ such that (6) and

$$
\left(\tau_{t_{1} h / 2}+\tau_{0}\right) \cdots\left(\tau_{t_{n} h / 2}+\tau_{0}\right)=\sum_{i=0}^{m} c_{i} \tau_{s_{i} h}
$$

hold. Thus $\boldsymbol{\Delta}_{h}^{T}=\boldsymbol{\Delta}_{h / 2}^{T}\left[\sum_{i=0}^{m} c_{i} \tau_{s_{i} h}\right]=\sum_{i=0}^{m} c_{i} \boldsymbol{\Delta}_{h / 2}^{T} \tau_{s_{i} h}$, which yields (7) immediately.

3 Main Results

Our first main result offers a mean value theorem for the operator Δ_{h}^{T} in terms of the corresponding Dinghas-type derivative.

Theorem. (Mean Value Inequality) Let $I \subseteq \mathbb{R}$ be an interval, $f: I \rightarrow \mathbb{R}$, $T=\left(t_{1}, \ldots, t_{n}\right)$ where $t_{1}, \ldots, t_{n}>0$, and let $x \in I, h>0$ with $x+\left(t_{1}+\cdots+\right.$ $\left.t_{n}\right) h \in I$. Then there exists a point $\xi \in\left[x, x+\left(t_{1}+\cdots+t_{n}\right) h\right]$ such that

$$
\begin{equation*}
\boldsymbol{\Delta}_{h}^{T} f(x) \geq\left(t_{1} h\right) \cdots\left(t_{n} h\right) \underline{\mathbf{D}}^{T} f(\xi) \tag{8}
\end{equation*}
$$

Proof. Let $x \in I$, and $h \geq 0$ such that $x+\left(t_{1}+\cdots+t_{n}\right) h \in I$. Let $A:=\Delta_{h}^{T} f(x), x_{0}:=x$ and $y_{0}:=x+\left(t_{1}+\cdots+t_{n}\right) h$. Using induction, we are going to construct sequences $\left(x_{k}\right)$ and $\left(y_{k}\right)$ such that, for all $k \geq 0$,

$$
\begin{gather*}
x_{k} \leq x_{k+1}, \quad y_{k+1} \leq y_{k} \tag{9}\\
y_{k}-x_{k}=\frac{t_{1}+\cdots+t_{n}}{2^{k}} h \tag{10}
\end{gather*}
$$

and

$$
\begin{equation*}
\Delta_{h / 2^{k}}^{T} f\left(x_{k}\right) \leq \frac{A}{2^{k n}} \tag{11}
\end{equation*}
$$

Clearly, x_{0} and y_{0} satisfy (10) and (11). Assume that we have constructed $x_{0} \leq x_{1} \leq \cdots \leq x_{k}$ and $y_{0} \geq y_{1} \geq \cdots \geq y_{k}$ such that (10) and (11) hold.

Applying the Lemma of the previous section and (11), we have the existence of positive integers $c_{0}, c_{1}, \ldots, c_{m}$ with $c_{0}+c_{1}+\cdots+c_{m}=2^{n}$ and $s_{0}, s_{1}, \ldots, s_{m}$ satisfying (6) such that (7) is valid. Then

$$
\sum_{i=0}^{m} c_{i} \Delta_{h / 2^{k+1}}^{T} f\left(x_{k}+s_{i} \frac{h}{2^{k}}\right)=\Delta_{h / 2^{k}}^{T} f\left(x_{k}\right) \leq \frac{A}{2^{k n}}
$$

The sum of the coefficients on the left hand side being 2^{n}, there exists an integer $0 \leq j \leq m$ such that

$$
\begin{equation*}
2^{n} \Delta_{h / 2^{k+1}}^{T} f\left(x_{k}+s_{j} \frac{h}{2^{k}}\right) \leq \frac{A}{2^{k n}} \tag{12}
\end{equation*}
$$

Writing $x_{k+1}:=x_{k}+s_{j} \frac{h}{2^{k}}$ and $y_{k+1}:=x_{k}+s_{j} \frac{h}{2^{k}}+\frac{t_{1}+\cdots+t_{n}}{2^{k+1}} h$, we can see that (12) reduces to (11) with $k+1$ instead of k, (10) for $k+1$ follows from the above definition of x_{k+1} and y_{k+1}. The inequality $x_{k} \leq x_{k+1}$ is obvious by $s_{j} \geq 0$. On the other hand, (7) and (10) yield that

$$
\begin{aligned}
y_{k+1} & \leq x_{k}+s_{m} \frac{h}{2^{k}}+\frac{t_{1}+\cdots+t_{n}}{2^{k+1}} h \\
& =x_{k}+\frac{t_{1}+\cdots+t_{n}}{2} \cdot \frac{h}{2^{k}}+\frac{t_{1}+\cdots+t_{n}}{2^{k+1}} h \\
& =x_{k}+\frac{t_{1}+\cdots+t_{n}}{2^{k}} h=y_{k}
\end{aligned}
$$

Therefore, we also have $y_{k+1} \leq y_{k}$ and we have proved the existence of the sequences $\left(x_{k}\right)$ and (y_{k}) satisfying (9), (10), and (11).

Denote by ξ the (unique) element of the intersection $\bigcap_{k=0}^{\infty}\left[x_{k}, y_{k}\right]$ and let $h_{k}:=\frac{y_{k}-x_{k}}{t_{1}+\cdots+t_{n}}=\frac{h}{2^{k}}$. Then $x_{k} \leq \xi \leq y_{k}=x_{k}+\left(t_{1}+\cdots+t_{n}\right) h_{k}$ and (11) can be rewritten as $\frac{\Delta_{h_{k}}^{T} f\left(x_{k}\right)}{h_{k}^{n}} \leq \frac{A}{h^{n}}$. Therefore, we have

$$
\begin{aligned}
\underline{\mathbf{D}}^{T} f(\xi) & =\liminf _{\substack{(x, h) \rightarrow(\xi, 0) \\
x \leq \xi \leq x+\left(t_{1}+\cdots+t_{n}\right) h}} \frac{\Delta_{h}^{T} f(x)}{\left(t_{1} h\right) \cdots\left(t_{n} h\right)} \\
& \leq \liminf _{k \rightarrow \infty} \frac{\Delta_{h_{k}}^{T} f\left(x_{k}\right)}{\left(t_{1} h_{k}\right) \cdots\left(t_{n} h_{k}\right)} \leq \frac{A}{\left(t_{1} h\right) \cdots\left(t_{n} h\right)}
\end{aligned}
$$

Thus the proof of (8) is complete.
If one replaces f by $-f$, then a mean value inequality for the upper Dinghas-type derivative can be deduced which is defined via (5) with "lim sup" instead of "liminf".

If the theorem is applied to the special case $t_{1}=\cdots=t_{n}=1$, then we get a mean value theorem for the Δ_{h}^{n} operator in terms of the lower Dinghas interval derivative \underline{D}^{n} defined in (4).

As an immediate consequence of the above theorem, we get the following characterization of T-convexity.

Corollary 1. Let $T=\left(t_{1}, \ldots, t_{n}\right)$ with $t_{1}, \ldots, t_{n}>0$. A function $f: I \rightarrow \mathbb{R}$ is T-convex on I if and only if $\underline{\mathbf{D}}^{T} f(\xi) \geq 0$ for $\xi \in I$.

Proof. If f is T-convex, then, clearly $\underline{\mathbf{D}}^{T} f \geq 0$. Conversely, if $\underline{\mathbf{D}}^{T} f$ is nonnegative on I, then, by our Theorem, $\boldsymbol{\Delta}_{h}^{T} f(x) \geq 0$ for all $x \in I$ and $h \geq 0$ with $x+\left(t_{1}+\cdots+t_{n}\right) h \in I$.

In the special case $t_{1}=\cdots=t_{n}=1$, the above corollary yields that f is Jensen-convex of order $(n-1)$ if and only if the lower Dinghas interval derivative $\underline{D}^{n} f$ is nonnegative on I. Thus the problem of C. E. Weil is answered in the affirmative. A similar result can be derived for t-Wright-convexity when we apply our Theorem to the $(t, 1-t)$-convexity setting.

Another obvious but interesting consequence of Corollary 1 is that the T-convexity property is localizable in the following sense.

Corollary 2. A function $f: I \rightarrow \mathbb{R}$ is T-convex on I if and only if, for each point $\xi \in I$, there exists a neighborhood U of ξ such that f is T-convex on $I \cap U$.

Thus, Jensen-convexity of order $(n-1)$, and also t-Wright-convexity are localizable properties of functions. There are convexity properties, however, that may not have this localization property. A function $f: I \rightarrow \mathbb{R}$ is called t-Jensen-convex on I (where $0<t<1$ is fixed), if

$$
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y) \text { for } x, y \in I
$$

Clearly, t-Jensen-convexity implies t-Wright-convexity, but the converse is not true in general (see [11]). We can formulate two open problems concerning t-Jensen-convexity.

Problem 1. Let $0<t<1$ be fixed. Is t-Jensen-convexity equivalent to the property

$$
\underline{\delta}_{t}^{2} f(\xi)=\liminf _{\substack{(x, y) \rightarrow(\xi, \xi) \\ x \leq \xi \leq y}} \frac{t f(x)+(1-t) f(y)-f(t x+(1-t) y)}{(y-x)^{2}} \geq 0 \text { for } \xi \in I
$$

for all functions $f: I \rightarrow \mathbb{R}$?
Of course, for $t=1 / 2$, the answer is affirmative, because the $(1 / 2)$-Jensen and the ($1 / 2$)-Wright convexities are equivalent.

Problem 2. Let $0<t<1$ be fixed. Is the t-Jensen-convexity property localizable?

If the first problem has a positive answer, then the second problem can also be answered positively, but the converse may not be true. If t is rational, then the (local) t-Jensen-convexity is equivalent to the (local) Jensen-convexity by the results of N. Kuhn [10] and Z. Daróczy and Zs. Páles [3]. Thus, for rational t, the t-Jensen-convexity property is localizable. However, for irrational t, Jensen-convexity does not imply t-Jensen-convexity. Therefore, in this case, Problem 2 cannot be solved or disproved in such an easy way.

References

[1] R. P. Boas and D. V. Widder, Functions with positive differences, Duke Math. J. 7 (1940), 496-503.
[2] P. S. Bullen, A criterion for n-convexity, Pacific J. Math. 36 (1971), no. 1, 81-98.
[3] Z. Daróczy and Zs. Páles, Convexity with given infinite weight sequences, Stochastica 11 (1987), no. 1, 5-12.
[4] A. Dinghas, Zur Theorie der gewöhnlichen Differentialgleichungen, Ann. Acad. Sci. Fennicae, Ser. A I 375 (1966).
[5] G. Friedel, Zur Theorie der Intervallableitung reller Funktionen, Diss., Freie Univ. Berlin, 1968.
[6] R. Ger, Convex functions of higher orders in Euclidean spaces, Ann. Polon. Math. 25 (1972), 293-302.
[7] R. Ger, n-convex functions in linear spaces, Aequationes Math. 10 (1974), 172-176.
[8] G. Hamel, Eine Basis aller Zahlen und die unstetigen Lösungen der Funktionalgleichung $f(x+y)=f(x)+f(y)$, Math. Ann. 60 (1905), 459-462.
[9] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Państwowe Wydawnictwo Naukowe - Uniwersytet Ślạski, Warszawa-Kraków-Katowice, 1985.
[10] N. Kuhn, A note on t-convex functions, General Inequalities, 4 (Oberwolfach, 1983) (W. Walter, ed.), International Series of Numerical Mathematics, 71, Birkhäuser, Basel-Boston-Stuttgart, 1984, 269-276.
[11] Gy. Maksa, K. Nikodem, and Zs. Páles, Results on t-Wright convexity, C. R. Math. Rep. Acad. Sci. Canada 13 (1991), no. 6, 274-278.
[12] T. Popoviciu, Sur quelques propriétés des fonctions d'une ou de deux variables réelles, Mathematica (Cluj) 8 (1934), 1-85.
[13] T. Popoviciu, Les fonctions convexes, Herman, Paris, 1945.
[14] A. W. Roberts and D. E. Varberg, Convex Functions, Academic Press, New York-London, 1973.
[15] A. Simon and P. Volkmann, Eine Charakterisierung von polynomialen Funktionen mittels der Dinghasschen Intervall-Derivierten, Results Math. 26 (1994), 382-384.
[16] P. Volkmann, Die Äquivalenz zweier Ableitungsbegriffe, Diss., Freie Univ. Berlin, 1971.
[17] E. M. Wright, An inequality for convex functions, Amer. Math. Monthly 61 (1954), 620-622.

[^0]: Key Words: Jensen-convexity of higher order, Wright-convexity of higher order, t -Jensen-convexity, t-Wright-convexity, localizable convexity properties, generalized derivative Mathematical Reviews subject classification: Primary 26A51, 26B25
 Received by the editors April 9, 2001
 *The research of the first author has also been supported in part by the Bolyai János Research Scholarship.
 ${ }^{\dagger}$ This research has been supported by the Hungarian Scientific Research Fund (OTKA) Grants T-030082 and F038326, and by the Office for Higher Education Programs Grant FKFP-0215/2001.

