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DIEUDONNÉ-TYPE THEOREMS FOR SET
FUNCTIONS WITH VALUES IN (l)-GROUPS

Abstract

Some versions of Dieudonné theorems are given for set functions,
not necessarily positive, taking values in Dedekind complete (l)-groups,
relatively to the “(D)-convergence”.

1 Introduction.

In a previous paper ([4]), we gave some versions of Vitali - Hahn - Saks and
Nikodým theorems for set functions with values in suitable Dedekind complete
(l)-groups. In this paper, we prove some versions of Dieudonné theorems, for
(l)-group-valued finitely additive regular maps. In the literature, there exist
several versions of theorems of this kind, for maps taking values in topological
groups and/or Banach spaces. Among the authors, we specifically mention
Brooks and Chacon ([5], [6]), Candeloro and Letta ( [8]).

In the previous paper [2] similar results were proved with respect to order
convergence for positive means taking values in spaces of the type L0(X,B, µ),
where µ is a σ -additive locally finite positive R̃-valued measure.

2 Preliminaries.

We begin with the following.

Definitions 2.1. An Abelian group (R,+) is called (l)-group if it is endowed
with a compatible ordering ≤, and is a lattice with respect to it.
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An (l)-group R is said to be Dedekind complete if every nonempty subset of
R, bounded from above, has a supremum in R. A sequence (rn)n in R is
said to be order-convergent (or (o)-convergent ) to r if there exists a sequence
(pn)n in R such that |rn − r| ≤ pn, ∀n ∈ N and pn ↓ 0 (see also [11] ), and
we will write (o) limn rn = r. A bounded double sequence (ai,l)i,l in R is
called (D)-sequence or regulator if for all i ∈ N we have ai,l ↓ 0 as l → +∞.
An (l)-group R is said to be weakly σ-distributive if for every (D)-sequence

(ai,l)i,l we have
∧

ϕ∈NN

( ∞∨
i=1

ai,ϕ(i)

)
= 0. From now on we assume that R is a

weakly σ-distributive Dedekind complete (l)-group. We say that b ∈ R, b ≥ 0,
dominates a sequence (rn)n of elements of R if ∃n0 ∈ N such that |rn| ≤ b
for n ≥ n0. Moreover, given a regulator (ai,l)i,l, we call a bound of (ai,l)i,l

any element b of the type b =
∨∞

i=1 ai,ϕ(i), with ϕ ∈ NN. A sequence (rn)n

in R is said to be (D)-convergent to r ∈ R (and we write (D) limn rn = r) if
there exists a regulator (ai,l)i,l every bound of which dominates the sequence
(rn − r)n. We note that, since R is weakly σ-distributive, the (D)limit is
unique, and (o)- and (D)-convergence coincide (see [9]). If E is any nonempty
set, we say that a sequence (fn)n of elements of RE (RD)-converges to f ∈ RE

if there exists a regulator every bound of which dominates every sequence of
the type (fn(x)− f(x))n, with x ∈ E. Analogously, we say that (fn)n (UD)-
converges to f if there exists a regulator every bound of which dominates the

sequence

(∨
x∈E

|fn(x)− f(x)|

)
n

. Lemma 2.2 presents a relationship between

simple D-convergence and (RD)-convergence, at least when E is countable.
A sequence (rn)n of elements of R is said to be (D)-Cauchy if the sequence
of functions (fn : N → R)n, defined by setting fn(p) = rn − rn+p, p ∈ N,
(UD)-converges to 0.

We now recall the following result (see [14], pp. 42-43), which will be useful
in the sequel.

Lemma 2.2. Let R be a Dedekind complete (l)-group (not necessarily weakly
σ-distributive), and let (a(n)

i,l )i,l, n ∈ N, be a sequence of regulators in R. Then
for every u ∈ R, u ≥ 0 there exists a (D)-sequence (ai,l)i,l in R such that

u ∧

[ ∞∑
n=1

( ∞∨
i=1

a
(n)
i,ϕ(i+n)

)]
≤
∞∨

i=1

ai,ϕ(i) ∀ϕ ∈ NN.

We now introduce the following definitions.
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Definitions 2.3. Let Ω be any infinite set, A ⊂ P(Ω) be an algebra, R be a
Dedekind complete weakly σ-distributive (l)-group. We say that m : A → R
is bounded if ∃w ∈ R, w ≥ 0: |m(A)| ≤ w, ∀A ∈ A. The maps mj : A → R,
j ∈ N, are equibounded if there exists an element u ∈ R, u ≥ 0, such that

|mj(A)| ≤ u ∀ j ∈ N, ∀A ∈ A.

Given a finitely additive bounded measure (or, simply, mean ) m : A → R,
define the semivariation of m, vA(m) : A → R, or simply v(m) : A → R, by
setting

vA(m)(A) = sup
B∈A,B⊂A

|m(B)|, ∀A ∈ A,

and, if ∅ 6= E ⊂ A, define vE(m) : A → R, by setting

vE(m)(A) = sup
B∈E,B⊂A

|m(B)|, ∀A ∈ A.

A mean m : A → R is said to be σ-additive (or, briefly, measure ) if there
exists a (D)-sequence (ui,l)i,l such that, ∀ϕ ∈ NN and for every decreasing

sequence (Hs)s in A, Hs ↓ ∅, there exists s such that vA(m)(Hs) ≤
∞∨

i=1

ui,ϕ(i).

If a sequence of measures mj : A → R, j ∈ N, is given, uniform σ-additivity
is defined as above, but with s independent of j (See also [4]).

A finitely additive measure m : A → R is said to be (s)-bounded in ∅ 6= E ⊂
A, or simply E − (s)-bounded, if there exists a (D)-sequence (wi,l)i,l such that,
∀ϕ ∈ NN and for every disjoint sequence (Hs)s in E there exists s: ∀ s ≥ s,

vE(m)(Hs) ≤
∞∨

i=1

wi,ϕ(i).

If E is as above, we say that the maps mj : A → R, j ∈ N, are E-uniformly
(s)-bounded if the above condition holds, but with s independent of j (see
also [4]). When E = A we simply speak of (s)-boundedness or uniform
(s)-boundedness.

A typical consequence of (s)-boundedness of a mean m is that the limit
m(An) exists for monotone sequences (An)n in A (see [4]). As to uniformly
(s)-bounded measures, we shall report here a slight modification of Proposition
3.4 of [4], which will be used later.

Proposition 2.4. Assume that (mj)j is a sequence of R-valued uniformly (s)-
bounded finitely additive measures on A, and let (ei,l)i,l be a regulator related
to this property. In correspondence with every decreasing sequence (An)n in
A , for all n ∈ N let us define ξn : N→ R by ξn(j) = v(mj)(An), j ∈ N. Then
there exists ξ ∈ RN such that (ξn)n (UD)-converges to ξ, and the regulator
(ei,l)i,l works for this property.
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Given a sequence of means (mj)j∈N∪{0}, mj : A → R, and a nonempty
subfamily E ⊂ A, we say that the mj ’s (D)-converge to m0 pointwise with
respect to the same regulator, or briefly (RD) limj mj = m0 in ∅ 6= E ⊂ A,
if the sequence of functions (mj : E → R)j (RD)-converges to m0. We note
that this condition is equivalent to the classical pointwise convergence of the
involved set functions in the case of metrizable groups.

Now let Ω, R and A be as above. From now on, we assume that F , G ⊂ A
are two fixed lattices, such that the complement (with respect to Ω) of every
element of F belongs to G. In the sequel we will not say it explicitly. If Ω is
a topological normal space [resp. locally compact Hausdorff space], examples
of A, F and G, satisfying the above properties, are the following: A = {Borel
subsets of Ω}, F = {closed sets }[resp.{compact sets} ], G = { open sets }.

Definitions 2.5. A mean m : A → R is said to be regular if there exists a
(D)-sequence (γi,l)i,l in R such that for each A ∈ A and W ∈ F there exists
sequences (Fn)n, (F ′n)n in F , (Gn)n, (G′n)n in G, such that

Fn ⊂ Fn+1 ⊂ A ⊂ Gn+1 ⊂ Gn ∀n, (1)

W ⊂ F ′n+1 ⊂ G′n ⊂ F ′n ∀n, (2)

and the sequences (vA(m)(Gn \ Fn))n and (vA(m)(G′n \W ))n (D)-converge
to 0 with respect to (γi,l)i,l.

The means mj : A → R, j ∈ N, are said to be uniformly regular if there
exists a (D)-sequence (γi,l)i,l in R such that ∀A ∈ A and ∀W ∈ F there exist
sequences (Fn)n, (Gn)n, (F ′n)n, (G′n)n satisfying (1) and (2), and such that the
sequences (ψn)n, (ωn)n of elements of RN, defined by setting

ψn(j) = vA(mj)(Gn \ Fn), (3)
ωn(j) = vA(mj)(G′n \W ), n, j ∈ N,

(UD)-converge to 0 with respect to (γi,l)i,l.

The following proposition shows that, if (mj : A → R)j is a sequence
of equibounded regular means, even if they are not uniformly regular, the
sequences (γi,l)i,l, (Fn)n , (Gn)n , (F ′n)n, (G′n)n above can be taken indepen-
dently of j , satisfying the definition of regularity.

Proposition 2.6. Let R be as above, A be any algebra, and (mj : A → R)j

be a sequence of equibounded regular means. Then there exists a regulator
(pi,l)i,l such that, for every A ∈ A and every W ∈ F , there exist sequences
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(Fn)n, (F ′n)n in F , (Gn)n, (G′n)n in G, satisfying (1) and (2) and such that
the sequence of functions (ψn)n, (ωn)n defined in (3) (RD)-converge to 0 with
respect to (pi,l)i,l.

Proof. Set

u ≡ sup
j

[
sup
A∈A

|mj(A)|
]
. (4)

By hypothesis, for every A ∈ A and j ∈ N, there exist a regulator (γ(j)
i,l )i,l and

two sequences (G(j)
n )n, (F (j)

n )n such that F (j)
n ∈ F , G(j)

n ∈ G ∀ j, n ∈ N, and

F (j)
n ⊂ F (j)

n+1 ⊂ A ⊂ G
(j)
n+1 ⊂ G(j)

n ∀ j, n ∈ N, (5)

and ∀ϕ ∈ NN and j ∈ N there exists n0 ∈ N, n0(ϕ, j), such that ∀n ≥ n0

we have vA(mj)(G(j)
n \ F (j)

n ) ≤
∨∞

i=1 γ
(j)
i,ϕ(i). Moreover, by Lemma 2.2, there

exists a regulator (pi,l)i,l such that

u ∧

 ∞∑
j=1

( ∞∨
i=1

γ
(j)
i,ϕ(i+j)

) ≤ ∞∨
i=1

pi,ϕ(i) ∀ϕ ∈ NN, (6)

where u is as in (4).
For every n ∈ N, set Gn ≡ ∩j≤nG

(j)
n and Fn ≡ ∪j≤nF

(j)
n . Then Gn ∈ G,

Fn ∈ F , and A ⊂ Gn, A ⊃ Fn ∀n ∈ N. Furthermore it is easy to check
that Gn+1 ⊂ Gn and Fn+1 ⊃ Fn ∀n. Since Gn \ Fn ⊂ G

(j)
n \ F (j)

n ∀ j, n ∈ N,
∀ϕ ∈ NN and ∀ j there exists n0 ∈ N, n0(ϕ, j), such that

vA(mj)(Gn \ Fn) ≤
∞∨

i=1

pi,ϕ(i) ∀n ≥ n0.

Moreover, by hypothesis and Lemma 2.2, the regulator (pi,l)i,l in (6) is such
that for all W ∈ F and j ∈ N there exist two sequences (G′n

(j))n, (F ′n
(j))n

such that F ′n
(j) ∈ F , G′n

(j) ∈ G ∀ j, n ∈ N, and

W ⊂ F ′n+1
(j) ⊂ G′n

(j) ⊂ F ′n
(j) ∀ j, n ∈ N,

and ∀ϕ ∈ NN, ∀ j ∈ N, there exists n0 ∈ N, n0(ϕ, j), such that

vA(mj)(G(j)
n \W ) ≤

∞∨
i=1

pi,ϕ(i) ∀n ≥ n0.
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It is readily seen that F ′n ≡ ∩j≤nF
′
n

(j), G′n ≡ ∩j≤nG
′
n

(j), n ∈ N, satisfy the
conclusion of the proposition.

We now introduce the concept of absolute continuity in our setting.

Definition 2.7. Let m be any R-valued finitely additive measure on A .
Given any other finitely additive measure ν : A → IR+

0 , we say that m is
absolutely continuous with respect to ν (and write m � ν) if there exists
a (D)-sequence (ai,l)i,l such that, whenever (Hk)k is a sequence from A ,
satisfying limk ν(Hk) = 0, for every ϕ ∈ NN an integer k can be found, such
that |m(Hk)| ≤

∨∞
i=1 ai,ϕ(i), for all k ≥ k.

In case ν is fixed, and (mj)j is a sequence of finitely additive measures on A,
uniform absolute continuity of the mj ’s with respect to ν can be defined in a
similar way, but clearly the integer k must be independent of j.

3 The Dieudonné Theorem.

We shall prove a version of Dieudonné ’s Theorem (see also [5], [7]).We begin
with the following:

Lemma 3.1. Let R, Ω, A, F , G be as in Proposition 2.6, and suppose that
m : A → R is any regular bounded finitely additive measure. Then, for each
A ∈ A, and every V ∈ G, one has:

vA(m)(A) = vF (m)(A), (7)
vA(m)(V ) = vG(m)(V ). (8)

Proof. The relation (7) is a direct consequence of regularity, and weak σ-
distributivity. So, fix V ∈ G. Let (γi,l)i,l be the (D) -sequence related to
regularity, let B be any element from A, B ⊂ V , and fix ϕ ∈ NN. Thanks to
regularity of m, there exists a set G ∈ G, G ⊃ B, such that

v(m)(G \B) ≤
∞∨

i=1

γi,ϕ(i).

Hence |m(B)| ≤ |m(G)| +
∨∞

i=1 γi,ϕ(i). Without loss of generality, we may
assume G ⊂ V .Thus |m(B)| ≤ vG(m)(V ) +

∨∞
i=1 γi,ϕ(i). As B is arbitrary, we

get

vA(m)(V ) ≤ vG(m)(V ) +
∞∨

i=1

γi,ϕ(i).
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Finally, as R is weakly σ-distributive, we deduce

vA(m)(V ) ≤ vG(m)(V )

and then, obviously, the two elements coincide, and so (8) is proved.

We now prove the following lemma.

Lemma 3.2. Under the same hypotheses and notation as above, let (mj :
A → R)j be a sequence of equibounded, regular and G-uniformly (s)-bounded
means (with respect to a (D)-sequence (bi,l)i,l). Then the mj’s are A-uniformly
(s)-bounded, and uniformly regular.

Proof. Let (Kn)n be any disjoint sequence inA . First of all, we note that the
hypotheses of Proposition 2.6 are fulfilled. Let (pi,l)i,l be the same regulator
as in that Proposition, define u as in (4), and let (di,l)i,l be a (D)-sequence
such that:

u ∧

[ ∞∑
h=1

( ∞∨
i=1

pi,ϕ(i+h)

)]
≤
∞∨

i=1

di,ϕ(i) ∀ϕ ∈ NN.

Finally, let ei,l = 2(bi,l + di,l), i, l ∈ N. We will prove that

(D) lim
n
{sup

j
[vA(mj)(Kn)]} = 0

with respect to the regulator (ei,l)i,l. If we deny this, then there exists ϕ ∈ NN

such that ∀ k ∈ N, ∃nk ≥ k, ∃ jk ∈ N, ∃Ak ∈ A with Ak ⊂ Knk
and

|mjk
(Ak)| 6≤

∞∨
i=1

ei,ϕ(i). (9)

Moreover, thanks to (7), we can assume Ak ∈ F ∀ k.
Fix k ∈ N, and put b =

∨∞
i=1 bi,ϕ(i) and e =

∨∞
i=1 ei,ϕ(i). We note that,

by virtue of the regularity of the set functions mj , j ∈ N, there exist Gk ∈ G,
Fk ∈ F such that Ak ⊂ Gk ⊂ Fk, and

[vA(m1) ∨ . . . ∨ vA(mjk
)](Fk \Ak) ≤

∞∨
i=1

pi,ϕ(i+k).

Now, we set

G∗1 = G1, G
∗
2 = G2 \ F1, . . . , G

∗
k+1 = Gk+1 \

(
k⋃

h=1

Fh

)
, . . . .
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These sets are pairwise disjoint elements of G. Hence there exists k0 ∈ N such
that supj v(mj)(G∗k) ≤ b for all k ≥ k0. Now, as Ak+1 \G∗k+1 ⊂

⋃k
h=1(Fh \Ah)

holds for all k, we get

|mjk
(Ak)| ≤ |mjk

(Ak ∩G∗k)|+ |mjk
(Ak \G∗k)|

≤ b+ u ∧

[
k∑

h=1

( ∞∨
i=1

pi,ϕ(i+h)

)]
≤ e, ∀ k ≥ k0.

This is contrary to (9). So, the set functions mj are A-uniformly (s)-bounded.
We now turn to uniform regularity. The regulator (pi,l)i,l above is such

that, for every A ∈ A, two sequences can be found, (Fn)n and (Gn)n in F and
G respectively, satisfying the conditions of the definition of regularity. As the
sequence (Gn \ Fn)n is decreasing, by 2.6, 2.4 and weak σ-distributivity of R
the sequence (supj [vA(mj)(Gn \Fn)])n (D)-converges to 0. Similarly, for each
W ∈ F , we can find (F ′n)n and (G′n)n in F and G respectively, satisfying the
conditions of the definition of regularity, and we get that the sequence

(sup
j

[vA(mj)(G′n \W )])n

(D)-converges to 0. This concludes the proof of the lemma.

Theorem 3.3. (Dieudonné) Let Ω, R, G, F be as above, and assume that
A ⊂ P(Ω) is a σ-algebra, and G is stable under countable disjoint unions.
Suppose that (mj : A → R)j is a sequence of equibounded regular σ-additive
measures such that m0 = (RD) limj mj in G exists. Then we have:

i) The measures mj, j ∈ N, are A-uniformly (s)-bounded and uniformly reg-
ular.

ii) The limit m0 = (RD) limj mj in A exists in R.

iii) The mj’s are uniformly σ-additive.

iv) m0 is regular and σ-additive.

Proof. i) Thanks to [4], Theorem 5.4, the set functions mj are G-uniformly
(s)-bounded; hence, from Lemma 3.2 we get A-uniform (s)-boundedness and
uniform regularity.

ii) Fix A ∈ A, and let (yi,l)i,l be the regulator related with uniform regu-
larity. For each ϕ ∈ NN there exists G ∈ G such that A ⊂ G and

vA(mj)(G \A) ≤
∞∨

i=1

yi,ϕ(i) ∀ j.
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Corresponding to G, there exists j0 ∈ N such that

|mj(G)−mj+p(G)| ≤
∞∨

i=1

αi,ϕ(i) ∀ j ≥ j0, ∀ p ∈ N,

where (αi,l)i,l is the regulator for (RD)-convergence in G. So we have

|mj(A)−mj+p(A)| ≤ 2
∞∨

i=1

yi,ϕ(i) +
∞∨

i=1

αi,ϕ(i) ∀ j ≥ j0, ∀ p ∈ N. (10)

From (10) it follows that the sequence (mj(A))j is (D)-Cauchy in R. Since
R is a Dedekind complete (l)-group, the sequence (mj(A))j is (D)-convergent
(see also [3], Theorem 2.16; [9]). Thus ii) is proved.

iii) follows from ii) and [4], Corollary 5.5.
iv) follows easily from i), ii), iii) and weak σ -distributivity of R.

Under suitable additional conditions, it’s also possible to state a finitely
additive version of Dieudonné’s theorem.

Theorem 3.4. Let Ω, R, A, G, F be as in Proposition 2.6, and assume that
G is stable under countable disjoint unions. Suppose that (mj : A → R)j is a
sequence of equibounded regular finitely additive measures, absolutely continu-
ous with respect to a real-valued, nonnegative, finitely additive measure ν on
A . Assume that m0 = (RD) limj mj in G exists. Then we have:

i) The means mj, j ∈ N, are A-uniformly (s)-bounded, uniformly regular and
uniformly absolutely continuous with respect to ν.

ii) The limit m0 = (RD) limj mj in A exists in R.

iii) m0 is (s)-bounded, regular and absolutely continuous with respect to ν.

Proof. (i) Let (αi,l)i,l be the regulator related to (RD)-convergence in G and
let (βi,l)i,l be a regulator such that, for every disjoint sequence (Hk)k in A,
for every j ∈ N and every ϕ ∈ NN, there exists k0 ∈ N such that

v(mj)(Hk) ≤
∞∨

i=1

βi,ϕ(i)

as soon as k ≥ k0. (Such a regulator exists, because of absolute continuity and
Lemma 2.2.) Setting ci,l = αi,l ∨ βi,l, i, l ∈ N, we claim that (6ci,l)i,l works as
a regulator for G-uniform (s)-boundedness of the means mj . Indeed, if this is
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not the case, there exist a disjoint sequence (Gk)k in G , a mapping ϕ ∈ NN

and a subsequence (jk)k in N such that

|mjk
(Gk)| 6≤ 6

∞∨
i=1

ci,ϕ(i) (11)

for each k ∈ N. Now, denote by V the union of all Gk
′s, and by B the

σ-algebra in V generated by the sets Gk. Hence the sequence (mj : B →
R)j (RD)-converges to m0. Then, we can apply Corollary 5.7 of [4], and
deduce B-uniform (s)-boundedness of the mj

′s, with respect to the regulator
(6ci,l)i,l, and this clearly is contrary to (11). Thus, the mj

′s are G-uniformly
(s)-bounded, and therefore they are A-uniformly (s)-bounded and uniformly
regular, by 3.2, and uniformly absolutely continuous with respect to ν, by
virtue of [4], Theorem 4.8.

(ii) can be proved as in the previous theorem.
(iii) The properties of (s)-boundedness, regularity and absolute continuity

are easy consequences of the previous ones and of weak σ-distributivity of
R.
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