A. Boccuto and D. Candeloro, Dipartimento di Matematica e Informatica, 1, Via Vanvitelli, 06123 Perugia, Italy. e-mail: boccuto@dipmat.unipg.it and candelor@dipmat.unipg.it

DIEUDONNÉ-TYPE THEOREMS FOR SET FUNCTIONS WITH VALUES IN (l)-GROUPS

Abstract

Some versions of Dieudonné theorems are given for set functions, not necessarily positive, taking values in Dedekind complete (l)-groups, relatively to the "(D)-convergence".

1 Introduction.

In a previous paper ([4]), we gave some versions of Vitali - Hahn - Saks and Nikodým theorems for set functions with values in suitable Dedekind complete (l)-groups. In this paper, we prove some versions of Dieudonné theorems, for (l)-group-valued finitely additive regular maps. In the literature, there exist several versions of theorems of this kind, for maps taking values in topological groups and/or Banach spaces. Among the authors, we specifically mention Brooks and Chacon ([5], [6]), Candeloro and Letta ([8]).

In the previous paper [2] similar results were proved with respect to order convergence for *positive* means taking values in spaces of the type $L^0(X, \mathcal{B}, \mu)$, where μ is a σ -additive locally finite positive \mathbb{R} -valued measure.

2 Preliminaries.

We begin with the following.

Definitions 2.1. An Abelian group (R, +) is called (l)-group if it is endowed with a compatible ordering \leq , and is a lattice with respect to it.

Key Words: (l)-groups, Vitali-Hahn-Saks theorems, Dieudonné theorems. Mathematical Reviews subject classification: 28B15, 28B05, 28B10, 46G10

Received by the editors February 1, 2001

⁴⁷³

A. BOCCUTO AND D. CANDELORO

An (l)-group R is said to be *Dedekind complete* if every nonempty subset of R, bounded from above, has a supremum in R. A sequence $(r_n)_n$ in R is said to be *order-convergent* (or (o)-convergent) to r if there exists a sequence $(p_n)_n$ in R such that $|r_n - r| \leq p_n, \forall n \in \mathbb{N}$ and $p_n \downarrow 0$ (see also [11]), and we will write $(o) \lim_n r_n = r$. A bounded double sequence $(a_{i,l})_{i,l}$ in R is called (D)-sequence or regulator if for all $i \in \mathbb{N}$ we have $a_{i,l} \downarrow 0$ as $l \to +\infty$. An (l)-group R is said to be weakly σ -distributive if for every (D)-sequence

 $(a_{i,l})_{i,l}$ we have $\bigwedge_{\varphi \in \mathbb{N}^{\mathbb{N}}} \left(\bigvee_{i=1}^{\infty} a_{i,\varphi(i)} \right) = 0$. From now on we assume that R is a

weakly σ -distributive Dedekind complete (l)-group. We say that $b \in R, b \geq 0$, dominates a sequence $(r_n)_n$ of elements of R if $\exists n_0 \in \mathbb{N}$ such that $|r_n| \leq b$ for $n \geq n_0$. Moreover, given a regulator $(a_{i,l})_{i,l}$, we call a bound of $(a_{i,l})_{i,l}$ any element b of the type $b = \bigvee_{i=1}^{\infty} a_{i,\varphi(i)}$, with $\varphi \in \mathbb{N}^{\mathbb{N}}$. A sequence $(r_n)_n$ in R is said to be (D)-convergent to $r \in R$ (and we write $(D) \lim_n r_n = r)$ if there exists a regulator $(a_{i,l})_{i,l}$ every bound of which dominates the sequence $(r_n - r)_n$. We note that, since R is weakly σ -distributive, the (D)limit is unique, and (o)- and (D)-convergence coincide (see [9]). If E is any nonempty set, we say that a sequence $(f_n)_n$ of elements of R^E (RD)-converges to $f \in R^E$ if there exists a regulator every bound of which dominates every sequence of the type $(f_n(x) - f(x))_n$, with $x \in E$. Analogously, we say that $(f_n)_n$ (UD)converges to f if there exists a regulator every bound of which dominates the

sequence $\left(\bigvee_{x \in E} |f_n(x) - f(x)|\right)_n$. Lemma 2.2 presents a relationship between

simple *D*-convergence and (RD)-convergence, at least when *E* is countable. A sequence $(r_n)_n$ of elements of *R* is said to be (D)-*Cauchy* if the sequence of functions $(f_n : \mathbb{N} \to R)_n$, defined by setting $f_n(p) = r_n - r_{n+p}, p \in \mathbb{N}$, (UD)-converges to 0.

We now recall the following result (see [14], pp. 42-43), which will be useful in the sequel.

Lemma 2.2. Let R be a Dedekind complete (l)-group (not necessarily weakly σ -distributive), and let $(a_{i,l}^{(n)})_{i,l}$, $n \in \mathbb{N}$, be a sequence of regulators in R. Then for every $u \in R$, $u \ge 0$ there exists a (D)-sequence $(a_{i,l})_{i,l}$ in R such that

$$u \wedge \left[\sum_{n=1}^{\infty} \left(\bigvee_{i=1}^{\infty} a_{i,\varphi(i+n)}^{(n)}\right)\right] \leq \bigvee_{i=1}^{\infty} a_{i,\varphi(i)} \quad \forall \varphi \in \mathbb{N}^{\mathbb{N}}.$$

We now introduce the following definitions.

Definitions 2.3. Let Ω be any infinite set, $\mathcal{A} \subset \mathcal{P}(\Omega)$ be an algebra, R be a Dedekind complete weakly σ -distributive (l)-group. We say that $m : \mathcal{A} \to R$ is bounded if $\exists w \in R, w \geq 0$: $|m(\mathcal{A})| \leq w, \forall \mathcal{A} \in \mathcal{A}$. The maps $m_j : \mathcal{A} \to R$, $j \in \mathbb{N}$, are equibounded if there exists an element $u \in R, u \geq 0$, such that

$$|m_j(A)| \le u \quad \forall j \in \mathbb{N}, \, \forall A \in \mathcal{A}$$

Given a finitely additive bounded measure (or, simply, mean) $m : \mathcal{A} \to R$, define the semivariation of $m, v_{\mathcal{A}}(m) : \mathcal{A} \to R$, or simply $v(m) : \mathcal{A} \to R$, by setting

$$v_{\mathcal{A}}(m)(A) = \sup_{B \in \mathcal{A}, B \subset A} |m(B)|, \ \forall A \in \mathcal{A},$$

and, if $\emptyset \neq \mathcal{E} \subset \mathcal{A}$, define $v_{\mathcal{E}}(m) : \mathcal{A} \to R$, by setting

$$v_{\mathcal{E}}(m)(A) = \sup_{B \in \mathcal{E}, B \subset A} |m(B)|, \ \forall A \in \mathcal{A}.$$

A mean $m : \mathcal{A} \to R$ is said to be σ -additive (or, briefly, measure) if there exists a (D)-sequence $(u_{i,l})_{i,l}$ such that, $\forall \varphi \in \mathbb{N}^{\mathbb{N}}$ and for every decreasing sequence $(H_s)_s$ in $\mathcal{A}, H_s \downarrow \emptyset$, there exists \overline{s} such that $v_{\mathcal{A}}(m)(H_{\overline{s}}) \leq \bigvee_{i=1}^{\infty} u_{i,\varphi(i)}$. If a sequence of measures $m_j : \mathcal{A} \to R, j \in \mathbb{N}$, is given, uniform σ -additivity

If a sequence of measures $m_j : \mathcal{A} \to \mathcal{R}, j \in \mathbb{N}$, is given, uniform σ -additivity is defined as above, but with \overline{s} independent of j (See also [4]).

A finitely additive measure $m : \mathcal{A} \to R$ is said to be (s)-bounded in $\emptyset \neq \mathcal{E} \subset \mathcal{A}$, or simply $\mathcal{E} - (s)$ -bounded, if there exists a (D)-sequence $(w_{i,l})_{i,l}$ such that, $\forall \varphi \in \mathbb{N}^{\mathbb{N}}$ and for every disjoint sequence $(H_s)_s$ in \mathcal{E} there exists $\overline{s} : \forall s \geq \overline{s}$, $v_{\mathcal{E}}(m)(H_s) \leq \bigvee^{\infty} w_{i,\varphi(i)}$.

If \mathcal{E} is as above, we say that the maps $m_j : \mathcal{A} \to R, j \in \mathbb{N}$, are \mathcal{E} -uniformly (s)-bounded if the above condition holds, but with \overline{s} independent of j (see also [4]). When $\mathcal{E} = \mathcal{A}$ we simply speak of (s)-boundedness or uniform

(s)-boundedness.

A typical consequence of (s)-boundedness of a mean m is that the limit $m(A_n)$ exists for monotone sequences $(A_n)_n$ in \mathcal{A} (see [4]). As to uniformly (s)-bounded measures, we shall report here a slight modification of Proposition 3.4 of [4], which will be used later.

Proposition 2.4. Assume that $(m_j)_j$ is a sequence of *R*-valued uniformly (s)bounded finitely additive measures on \mathcal{A} , and let $(e_{i,l})_{i,l}$ be a regulator related to this property. In correspondence with every decreasing sequence $(A_n)_n$ in \mathcal{A} , for all $n \in \mathbb{N}$ let us define $\xi_n : \mathbb{N} \to R$ by $\xi_n(j) = v(m_j)(A_n), j \in \mathbb{N}$. Then there exists $\xi \in \mathbb{R}^{\mathbb{N}}$ such that $(\xi_n)_n$ (UD)-converges to ξ , and the regulator $(e_{i,l})_{i,l}$ works for this property. Given a sequence of means $(m_j)_{j \in \mathbb{N} \cup \{0\}}$, $m_j : \mathcal{A} \to R$, and a nonempty subfamily $\mathcal{E} \subset \mathcal{A}$, we say that the m_j 's (D)-converge to m_0 pointwise with respect to the same regulator, or briefly $(RD) \lim_j m_j = m_0$ in $\emptyset \neq \mathcal{E} \subset \mathcal{A}$, if the sequence of functions $(m_j : \mathcal{E} \to R)_j$ (RD)-converges to m_0 . We note that this condition is equivalent to the classical pointwise convergence of the involved set functions in the case of metrizable groups.

Now let Ω , R and \mathcal{A} be as above. From now on, we assume that $\mathcal{F}, \mathcal{G} \subset \mathcal{A}$ are two fixed lattices, such that the complement (with respect to Ω) of every element of \mathcal{F} belongs to \mathcal{G} . In the sequel we will not say it explicitly. If Ω is a topological normal space [resp. locally compact Hausdorff space], examples of \mathcal{A}, \mathcal{F} and \mathcal{G} , satisfying the above properties, are the following: $\mathcal{A} = \{\text{Borel subsets of } \Omega\}, \mathcal{F} = \{\text{closed sets }\} [\text{resp.}\{\text{compact sets}\}], \mathcal{G} = \{\text{ open sets }\}.$

Definitions 2.5. A mean $m : \mathcal{A} \to R$ is said to be *regular* if there exists a (D)-sequence $(\gamma_{i,l})_{i,l}$ in R such that for each $A \in \mathcal{A}$ and $W \in \mathcal{F}$ there exists sequences $(F_n)_n, (F'_n)_n$ in $\mathcal{F}, (G_n)_n, (G'_n)_n$ in \mathcal{G} , such that

$$F_n \subset F_{n+1} \subset A \subset G_{n+1} \subset G_n \quad \forall n, \tag{1}$$

$$W \subset F'_{n+1} \subset G'_n \subset F'_n \quad \forall n, \tag{2}$$

and the sequences $(v_{\mathcal{A}}(m)(G_n \setminus F_n))_n$ and $(v_{\mathcal{A}}(m)(G'_n \setminus W))_n$ (D)-converge to 0 with respect to $(\gamma_{i,l})_{i,l}$.

The means $m_j : \mathcal{A} \to R, j \in \mathbb{N}$, are said to be *uniformly regular* if there exists a (D)-sequence $(\gamma_{i,l})_{i,l}$ in R such that $\forall A \in \mathcal{A}$ and $\forall W \in \mathcal{F}$ there exist sequences $(F_n)_n, (G_n)_n, (F'_n)_n, (G'_n)_n$ satisfying (1) and (2), and such that the sequences $(\psi_n)_n, (\omega_n)_n$ of elements of $R^{\mathbb{N}}$, defined by setting

$$\psi_n(j) = v_{\mathcal{A}}(m_j)(G_n \setminus F_n),$$

$$\omega_n(j) = v_{\mathcal{A}}(m_j)(G'_n \setminus W), \quad n, j \in \mathbb{N},$$
(3)

(UD)-converge to 0 with respect to $(\gamma_{i,l})_{i,l}$.

The following proposition shows that, if $(m_j : \mathcal{A} \to R)_j$ is a sequence of equibounded regular means, even if they are not uniformly regular, the sequences $(\gamma_{i,l})_{i,l}$, $(F_n)_n$, $(G_n)_n$, $(F'_n)_n$, $(G'_n)_n$ above can be taken independently of j, satisfying the definition of regularity.

Proposition 2.6. Let R be as above, \mathcal{A} be any algebra, and $(m_j : \mathcal{A} \to R)_j$ be a sequence of equibounded regular means. Then there exists a regulator $(p_{i,l})_{i,l}$ such that, for every $A \in \mathcal{A}$ and every $W \in \mathcal{F}$, there exist sequences

 $(F_n)_n$, $(F'_n)_n$ in \mathcal{F} , $(G_n)_n$, $(G'_n)_n$ in \mathcal{G} , satisfying (1) and (2) and such that the sequence of functions $(\psi_n)_n$, $(\omega_n)_n$ defined in (3) (RD)-converge to 0 with respect to $(p_{i,l})_{i,l}$.

PROOF. Set

$$u \equiv \sup_{j} \left[\sup_{A \in \mathcal{A}} |m_j(A)| \right].$$
(4)

By hypothesis, for every $\mathcal{A} \in \mathcal{A}$ and $j \in \mathbb{N}$, there exist a regulator $(\gamma_{i,l}^{(j)})_{i,l}$ and two sequences $(G_n^{(j)})_n, (F_n^{(j)})_n$ such that $F_n^{(j)} \in \mathcal{F}, G_n^{(j)} \in \mathcal{G} \, \forall j, n \in \mathbb{N}$, and

$$F_n^{(j)} \subset F_{n+1}^{(j)} \subset A \subset G_{n+1}^{(j)} \subset G_n^{(j)} \quad \forall j, n \in \mathbb{N},$$
(5)

and $\forall \varphi \in \mathbb{N}^{\mathbb{N}}$ and $j \in \mathbb{N}$ there exists $n_0 \in \mathbb{N}$, $n_0(\varphi, j)$, such that $\forall n \geq n_0$ we have $v_{\mathcal{A}}(m_j)(G_n^{(j)} \setminus F_n^{(j)}) \leq \bigvee_{i=1}^{\infty} \gamma_{i,\varphi(i)}^{(j)}$. Moreover, by Lemma 2.2, there exists a regulator $(p_{i,l})_{i,l}$ such that

$$u \wedge \left[\sum_{j=1}^{\infty} \left(\bigvee_{i=1}^{\infty} \gamma_{i,\varphi(i+j)}^{(j)}\right)\right] \leq \bigvee_{i=1}^{\infty} p_{i,\varphi(i)} \qquad \forall \varphi \in \mathbb{N}^{\mathbb{N}},\tag{6}$$

where u is as in (4).

For every $n \in \mathbb{N}$, set $G_n \equiv \bigcap_{j \leq n} G_n^{(j)}$ and $F_n \equiv \bigcup_{j \leq n} F_n^{(j)}$. Then $G_n \in \mathcal{G}$, $F_n \in \mathcal{F}$, and $A \subset G_n$, $A \supset F_n \forall n \in \mathbb{N}$. Furthermore it is easy to check that $G_{n+1} \subset G_n$ and $F_{n+1} \supset F_n \forall n$. Since $G_n \setminus F_n \subset G_n^{(j)} \setminus F_n^{(j)} \forall j, n \in \mathbb{N}$, $\forall \varphi \in \mathbb{N}^{\mathbb{N}}$ and $\forall j$ there exists $n_0 \in \mathbb{N}$, $n_0(\varphi, j)$, such that

$$v_{\mathcal{A}}(m_j)(G_n \setminus F_n) \le \bigvee_{i=1}^{\infty} p_{i,\varphi(i)} \quad \forall n \ge n_0.$$

Moreover, by hypothesis and Lemma 2.2, the regulator $(p_{i,l})_{i,l}$ in (6) is such that for all $W \in \mathcal{F}$ and $j \in \mathbb{N}$ there exist two sequences $(G'_n{}^{(j)})_n, (F'_n{}^{(j)})_n$ such that $F'_n{}^{(j)} \in \mathcal{F}$, $G'_n{}^{(j)} \in \mathcal{G} \ \forall j, n \in \mathbb{N}$, and

$$W \subset F'_{n+1}{}^{(j)} \subset G'_n{}^{(j)} \subset F'_n{}^{(j)} \quad \forall j, n \in \mathbb{N},$$

and $\forall \varphi \in \mathbb{N}^{\mathbb{N}}, \forall j \in \mathbb{N}$, there exists $n_0 \in \mathbb{N}, n_0(\varphi, j)$, such that

$$v_{\mathcal{A}}(m_j)(G_n^{(j)} \setminus W) \le \bigvee_{i=1}^{\infty} p_{i,\varphi(i)} \quad \forall n \ge n_0.$$

It is readily seen that $F'_n \equiv \bigcap_{j \leq n} F'_n{}^{(j)}, G'_n \equiv \bigcap_{j \leq n} G'_n{}^{(j)}, n \in \mathbb{N}$, satisfy the conclusion of the proposition.

We now introduce the concept of absolute continuity in our setting.

Definition 2.7. Let *m* be any *R*-valued finitely additive measure on \mathcal{A} . Given any other finitely additive measure $\nu : \mathcal{A} \to \mathbb{R}_0^+$, we say that *m* is *absolutely continuous* with respect to ν (and write $m \ll \nu$) if there exists a (*D*)-sequence $(a_{i,l})_{i,l}$ such that, whenever $(H_k)_k$ is a sequence from \mathcal{A} , satisfying $\lim_k \nu(H_k) = 0$, for every $\varphi \in \mathbb{N}^{\mathbb{N}}$ an integer \overline{k} can be found, such that $|m(H_k)| \leq \bigvee_{i=1}^{\infty} a_{i,\varphi(i)}$, for all $k \geq \overline{k}$.

In case ν is fixed, and $(m_j)_j$ is a sequence of finitely additive measures on \mathcal{A} , uniform absolute continuity of the m_j 's with respect to ν can be defined in a similar way, but clearly the integer \overline{k} must be independent of j.

3 The Dieudonné Theorem.

We shall prove a version of Dieudonné 's Theorem (see also [5], [7]). We begin with the following:

Lemma 3.1. Let R, Ω , \mathcal{A} , \mathcal{F} , \mathcal{G} be as in Proposition 2.6, and suppose that $m : \mathcal{A} \to R$ is any regular bounded finitely additive measure. Then, for each $A \in \mathcal{A}$, and every $V \in \mathcal{G}$, one has:

$$v_{\mathcal{A}}(m)(A) = v_{\mathcal{F}}(m)(A),\tag{7}$$

$$v_{\mathcal{A}}(m)(V) = v_{\mathcal{G}}(m)(V).$$
(8)

PROOF. The relation (7) is a direct consequence of regularity, and weak σ distributivity. So, fix $V \in \mathcal{G}$. Let $(\gamma_{i,l})_{i,l}$ be the (D)-sequence related to regularity, let B be any element from $\mathcal{A}, B \subset V$, and fix $\varphi \in \mathbb{N}^{\mathbb{N}}$. Thanks to regularity of m, there exists a set $G \in \mathcal{G}, G \supset B$, such that

$$v(m)(G \setminus B) \le \bigvee_{i=1}^{\infty} \gamma_{i,\varphi(i)}.$$

Hence $|m(B)| \leq |m(G)| + \bigvee_{i=1}^{\infty} \gamma_{i,\varphi(i)}$. Without loss of generality, we may assume $G \subset V$. Thus $|m(B)| \leq v_{\mathcal{G}}(m)(V) + \bigvee_{i=1}^{\infty} \gamma_{i,\varphi(i)}$. As B is arbitrary, we get

$$v_{\mathcal{A}}(m)(V) \le v_{\mathcal{G}}(m)(V) + \bigvee_{i=1}^{\infty} \gamma_{i,\varphi(i)}.$$

Finally, as R is weakly σ -distributive, we deduce

$$v_{\mathcal{A}}(m)(V) \le v_{\mathcal{G}}(m)(V)$$

and then, obviously, the two elements coincide, and so (8) is proved.

We now prove the following lemma.

Lemma 3.2. Under the same hypotheses and notation as above, let $(m_j : \mathcal{A} \to R)_j$ be a sequence of equibounded, regular and \mathcal{G} -uniformly (s)-bounded means (with respect to a (D)-sequence $(b_{i,l})_{i,l}$). Then the m_j 's are \mathcal{A} -uniformly (s)-bounded, and uniformly regular.

PROOF. Let $(K_n)_n$ be any disjoint sequence in \mathcal{A} . First of all, we note that the hypotheses of Proposition 2.6 are fulfilled. Let $(p_{i,l})_{i,l}$ be the same regulator as in that Proposition, define u as in (4), and let $(d_{i,l})_{i,l}$ be a (D)-sequence such that:

$$u \wedge \left[\sum_{h=1}^{\infty} \left(\bigvee_{i=1}^{\infty} p_{i,\varphi(i+h)}\right)\right] \leq \bigvee_{i=1}^{\infty} d_{i,\varphi(i)} \quad \forall \varphi \in \mathbb{N}^{\mathbb{N}}.$$

Finally, let $e_{i,l} = 2(b_{i,l} + d_{i,l}), i, l \in \mathbb{N}$. We will prove that

$$(D)\lim_{n} \{\sup_{j} [v_{\mathcal{A}}(m_j)(K_n)]\} = 0$$

with respect to the regulator $(e_{i,l})_{i,l}$. If we deny this, then there exists $\varphi \in \mathbb{N}^{\mathbb{N}}$ such that $\forall k \in \mathbb{N}, \exists n_k \geq k, \exists j_k \in \mathbb{N}, \exists A_k \in \mathcal{A} \text{ with } A_k \subset K_{n_k} \text{ and}$

$$|m_{j_k}(A_k)| \not\leq \bigvee_{i=1}^{\infty} e_{i,\varphi(i)}.$$
(9)

Moreover, thanks to (7), we can assume $A_k \in \mathcal{F} \ \forall k$.

Fix $k \in \mathbb{N}$, and put $b = \bigvee_{i=1}^{\infty} b_{i,\varphi(i)}$ and $e = \bigvee_{i=1}^{\infty} e_{i,\varphi(i)}$. We note that, by virtue of the regularity of the set functions $m_j, j \in \mathbb{N}$, there exist $G_k \in \mathcal{G}$, $F_k \in \mathcal{F}$ such that $A_k \subset G_k \subset F_k$, and

$$[v_{\mathcal{A}}(m_1) \vee \ldots \vee v_{\mathcal{A}}(m_{j_k})](F_k \setminus A_k) \leq \bigvee_{i=1}^{\infty} p_{i,\varphi(i+k)}$$

Now, we set

$$G_1^* = G_1, G_2^* = G_2 \setminus F_1, \dots, G_{k+1}^* = G_{k+1} \setminus \left(\bigcup_{h=1}^k F_h\right), \dots$$

These sets are pairwise disjoint elements of \mathcal{G} . Hence there exists $k_0 \in \mathbb{N}$ such that $\sup_j v(m_j)(G_k^*) \leq b$ for all $k \geq k_0$. Now, as $A_{k+1} \setminus G_{k+1}^* \subset \bigcup_{h=1}^k (F_h \setminus A_h)$ holds for all k, we get

$$\begin{split} m_{j_k}(A_k) &| \le |m_{j_k}(A_k \cap G_k^*)| + |m_{j_k}(A_k \setminus G_k^*)| \\ &\le b + u \land \left[\sum_{h=1}^k \left(\bigvee_{i=1}^\infty p_{i,\varphi(i+h)}\right)\right] \le e, \ \forall k \ge k_0. \end{split}$$

This is contrary to (9). So, the set functions m_j are \mathcal{A} -uniformly (s)-bounded.

We now turn to uniform regularity. The regulator $(p_{i,l})_{i,l}$ above is such that, for every $A \in \mathcal{A}$, two sequences can be found, $(F_n)_n$ and $(G_n)_n$ in \mathcal{F} and \mathcal{G} respectively, satisfying the conditions of the definition of regularity. As the sequence $(G_n \setminus F_n)_n$ is decreasing, by 2.6, 2.4 and weak σ -distributivity of Rthe sequence $(\sup_j [v_{\mathcal{A}}(m_j)(G_n \setminus F_n)])_n$ (D)-converges to 0. Similarly, for each $W \in \mathcal{F}$, we can find $(F'_n)_n$ and $(G'_n)_n$ in \mathcal{F} and \mathcal{G} respectively, satisfying the conditions of the definition of regularity, and we get that the sequence

$$(\sup_{i} [v_{\mathcal{A}}(m_j)(G'_n \setminus W)])_n$$

(D)-converges to 0. This concludes the proof of the lemma.

Theorem 3.3. (Dieudonné) Let Ω , R, \mathcal{G} , \mathcal{F} be as above, and assume that $\mathcal{A} \subset \mathcal{P}(\Omega)$ is a σ -algebra, and \mathcal{G} is stable under countable disjoint unions. Suppose that $(m_j : \mathcal{A} \to R)_j$ is a sequence of equibounded regular σ -additive measures such that $m_0 = (RD) \lim_i m_i$ in \mathcal{G} exists. Then we have:

- i) The measures m_j , $j \in \mathbb{N}$, are \mathcal{A} -uniformly (s)-bounded and uniformly regular.
- ii) The limit $m_0 = (RD) \lim_j m_j$ in \mathcal{A} exists in R.
- iii) The m_i 's are uniformly σ -additive.
- iv) m_0 is regular and σ -additive.

PROOF. i) Thanks to [4], Theorem 5.4, the set functions m_j are \mathcal{G} -uniformly (s)-bounded; hence, from Lemma 3.2 we get \mathcal{A} -uniform (s)-boundedness and uniform regularity.

ii) Fix $A \in \mathcal{A}$, and let $(y_{i,l})_{i,l}$ be the regulator related with uniform regularity. For each $\varphi \in \mathbb{N}^{\mathbb{N}}$ there exists $G \in \mathcal{G}$ such that $A \subset G$ and

$$v_{\mathcal{A}}(m_j)(G \setminus A) \le \bigvee_{i=1}^{\infty} y_{i,\varphi(i)} \quad \forall j.$$

Corresponding to G, there exists $j_0 \in \mathbb{N}$ such that

$$|m_j(G) - m_{j+p}(G)| \le \bigvee_{i=1}^{\infty} \alpha_{i,\varphi(i)} \quad \forall j \ge j_0, \ \forall p \in \mathbb{N},$$

where $(\alpha_{i,l})_{i,l}$ is the regulator for (RD)-convergence in \mathcal{G} . So we have

$$|m_j(A) - m_{j+p}(A)| \le 2\bigvee_{i=1}^{\infty} y_{i,\varphi(i)} + \bigvee_{i=1}^{\infty} \alpha_{i,\varphi(i)} \quad \forall j \ge j_0, \ \forall p \in \mathbb{N}.$$
(10)

From (10) it follows that the sequence $(m_j(A))_j$ is (D)-Cauchy in R. Since R is a Dedekind complete (l)-group, the sequence $(m_j(A))_j$ is (D)-convergent (see also [3], Theorem 2.16; [9]). Thus ii) is proved.

- iii) follows from ii) and [4], Corollary 5.5.
- iv) follows easily from i), ii), iii) and weak σ -distributivity of R.

Under suitable additional conditions, it's also possible to state a finitely additive version of Dieudonné's theorem.

Theorem 3.4. Let Ω , R, \mathcal{A} , \mathcal{G} , \mathcal{F} be as in Proposition 2.6, and assume that \mathcal{G} is stable under countable disjoint unions. Suppose that $(m_j : \mathcal{A} \to R)_j$ is a sequence of equibounded regular finitely additive measures, absolutely continuous with respect to a real-valued, nonnegative, finitely additive measure ν on \mathcal{A} . Assume that $m_0 = (RD) \lim_i m_i$ in \mathcal{G} exists. Then we have:

- i) The means m_j , $j \in \mathbb{N}$, are A-uniformly (s)-bounded, uniformly regular and uniformly absolutely continuous with respect to ν .
- ii) The limit $m_0 = (RD) \lim_j m_j$ in \mathcal{A} exists in R.
- iii) m_0 is (s)-bounded, regular and absolutely continuous with respect to ν .

PROOF. (i) Let $(\alpha_{i,l})_{i,l}$ be the regulator related to (RD)-convergence in \mathcal{G} and let $(\beta_{i,l})_{i,l}$ be a regulator such that, for every disjoint sequence $(H_k)_k$ in \mathcal{A} , for every $j \in \mathbb{N}$ and every $\varphi \in \mathbb{N}^{\mathbb{N}}$, there exists $k_0 \in \mathbb{N}$ such that

$$v(m_j)(H_k) \le \bigvee_{i=1}^{\infty} \beta_{i,\varphi(i)}$$

as soon as $k \ge k_0$. (Such a regulator exists, because of absolute continuity and Lemma 2.2.) Setting $c_{i,l} = \alpha_{i,l} \lor \beta_{i,l}$, $i, l \in \mathbb{N}$, we claim that $(6c_{i,l})_{i,l}$ works as a regulator for \mathcal{G} -uniform (s)-boundedness of the means m_j . Indeed, if this is not the case, there exist a disjoint sequence $(G_k)_k$ in \mathcal{G} , a mapping $\varphi \in \mathbb{N}^{\mathbb{N}}$ and a subsequence $(j_k)_k$ in \mathbb{N} such that

$$|m_{j_k}(G_k)| \not\leq 6 \bigvee_{i=1}^{\infty} c_{i,\varphi(i)} \tag{11}$$

for each $k \in \mathbb{N}$. Now, denote by V the union of all $G_k{}'s$, and by \mathcal{B} the σ -algebra in V generated by the sets G_k . Hence the sequence $(m_j : \mathcal{B} \to R)_j$ (RD)-converges to m_0 . Then, we can apply Corollary 5.7 of [4], and deduce \mathcal{B} -uniform (s)-boundedness of the $m_j{}'s$, with respect to the regulator $(6c_{i,l})_{i,l}$, and this clearly is contrary to (11). Thus, the $m_j{}'s$ are \mathcal{G} -uniformly (s)-bounded, and therefore they are \mathcal{A} -uniformly (s)-bounded and uniformly regular, by 3.2, and uniformly absolutely continuous with respect to ν , by virtue of [4], Theorem 4.8.

(ii) can be proved as in the previous theorem.

(iii) The properties of (s)-boundedness, regularity and absolute continuity are easy consequences of the previous ones and of weak σ -distributivity of R.

References

- A. Boccuto, Vitali-Hahn-Saks and Nikodým theorems for means with values in Riesz spaces, Atti Sem. Mat. Fis. Univ. Modena 44 (1996), 157-173.
- [2] A. Boccuto, Dieudonné-type theorems for means with values in Riesz spaces, Tatra Mountains Math. Publ. 8 (1996), 29-42.
- [3] A. Boccuto, Integration in Riesz spaces with respect to (D)-convergence, Tatra Mountains Math. Publ. **10** (1997), 33-54.
- [4] A. Boccuto, D. Candeloro, Uniform s-boundedness and convergence results for measures with values in complete l-groups, (2001), J. Math. Anal. Appl., 265 (2002), 170–194.
- [5] J. K. Brooks, On a theorem of Dieudonné, Advances in Math. 36 (1980), 165-168.
- J. K. Brooks, R. V. Chacon, Continuity and compactness of measures, Advances in Math. 37 (1980), 16-26.
- [7] D. Candeloro, Sui teoremi di Vitali-Hahn-Saks, Dieudonné e Nikodým, Rend. Circ. Mat. Palermo, Ser. II 8, (1985), 439-445.

- [8] D. Candeloro, G. Letta, Sui teoremi di Vitali Hahn Saks e di Dieudonné, Rend. Accad. Naz. Sci. Detta dei XL 9 (1985), 203-213.
- [9] M. Duchoň, B. Riečan, On the Kurzweil-Stieltjes integral in ordered spaces, Tatra Mountains Math. Publ. 8 (1996), 133-141.
- [10] E. E. Floyd, Boolean algebras with pathological order properties, Pacific J. Math. 5 (1955), 687-689.
- [11] W. A. J. Luxemburg A. C. Zaanen, *Riesz Spaces*, I, (1971), North-Holland Publishing Co.
- [12] E. Pap, Null-Additive Set Functions, (1995), Kluwer Academic Publishers (Dordrecht), Ister Science (Bratislava).
- [13] B. Riečan, On the Kurzweil integral for functions with values in ordered spaces, I,Acta Math. Univ. Comenian. 56 -57(1989), 411-424.
- [14] B. Riečan, T. Neubrunn, Integral, Measure and Ordering (1997), Kluwer Academic Publishers (Dordrecht), Ister Science (Bratislava).
- B. Z. Vulikh, Introduction to the theory of partially ordered spaces, (1967), Wolters - Noordhoff Sci. Publ., Groningen.
- [16] J. D. M. Wright, Stone-algebra-valued measures and integrals, Proc. Lond. Math. Soc. 19 (1969), 107-122.
- [17] J. D. M. Wright, The measure extension problem for vector lattices, Ann. Inst. Fourier, Grenoble 21 (1971), 65-85.

A. BOCCUTO AND D. CANDELORO