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DIEUDONNE-TYPE THEOREMS FOR SET
FUNCTIONS WITH VALUES IN (/)-GROUPS

Abstract

Some versions of Dieudonné theorems are given for set functions,
not necessarily positive, taking values in Dedekind complete (I)-groups,
relatively to the “(D)-convergence”.

1 Introduction.

In a previous paper ([4]), we gave some versions of Vitali - Hahn - Saks and
Nikodym theorems for set functions with values in suitable Dedekind complete
(I)-groups. In this paper, we prove some versions of Dieudonné theorems, for
(I)-group-valued finitely additive regular maps. In the literature, there exist
several versions of theorems of this kind, for maps taking values in topological
groups and/or Banach spaces. Among the authors, we specifically mention
Brooks and Chacon ([5], [6]), Candeloro and Letta ( [8]).

In the previous paper [2] similar results were proved with respect to order
convergence for positive means taking values in spaces of the type L°(X, B, 1),
where p is a o -additive locally finite positive R-valued measure.

2 Preliminaries.

We begin with the following.

Definitions 2.1. An Abelian group (R, +) is called (I)-group if it is endowed
with a compatible ordering <, and is a lattice with respect to it.
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An (I)-group R is said to be Dedekind complete if every nonempty subset of
R, bounded from above, has a supremum in R. A sequence (r,), in R is
said to be order-convergent (or (0)-convergent ) to r if there exists a sequence
(pn)n in R such that |r, — 7| < p,, Vn € N and p, | 0 (see also [11] ), and
we will write (0)lim,, 7, = r. A bounded double sequence (a;;);; in R is
called (D)-sequence or regulator if for all ¢ € N we have a;; | 0 as | — +o0.
An (I)-group R is said to be weakly o-distributive if for every (D)-sequence

o0
(@i,1)i, we have /\ (\/ ai7¢(i)> = 0. From now on we assume that R is a
peNt \i=1
weakly o-distributive Dedekind complete (I)-group. We say that b € R, b > 0,
dominates a sequence (ry,), of elements of R if Ing € N such that |r,| < b
for n > ng. Moreover, given a regulator (a;;)i;, we call a bound of (ai;)i,
any element b of the type b = \/;~| a; ,(;), With ¢ € NY. A sequence (ry),
in R is said to be (D)-convergent to r € R (and we write (D) lim,, r, = r) if
there exists a regulator (a;;);; every bound of which dominates the sequence
(rn — 7)n. We note that, since R is weakly o-distributive, the (D)limit is
unique, and (0)- and (D)-convergence coincide (see [9]). If E is any nonempty
set, we say that a sequence (f,,), of elements of R¥ (RD)-converges to f € RF
if there exists a regulator every bound of which dominates every sequence of
the type (fn(x) — f(x))n, with z € E. Analogously, we say that (f,), (UD)-
converges to f if there exists a regulator every bound of which dominates the

sequence ( \/ | fn(z) — f(:c)|> . Lemma 2.2 presents a relationship between
reE n

simple D-convergence and (RD)-convergence, at least when E is countable.

A sequence (ry,), of elements of R is said to be (D)-Cauchy if the sequence

of functions (f, : N — R),, defined by setting f,(p) = rn — rnyp, p € N,

(UD)-converges to 0.

We now recall the following result (see [14], pp. 42-43), which will be useful
in the sequel.

Lemma 2.2. Let R be a Dedekind complete (1)-group (not necessarily weakly

o-distributive), and let (aﬁ))i,l, n € N, be a sequence of requlators in R. Then
for every uw € R, u > 0 there exists a (D)-sequence (a;;):; in R such that

on[35 (Ve )] < Voo veret

n=1 =1 i=1

We now introduce the following definitions.
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Definitions 2.3. Let  be any infinite set, A C P(2) be an algebra, R be a
Dedekind complete weakly o-distributive (I)-group. We say that m : A — R
is bounded if 3w € R, w > 0: |m(A4)] <w, VA € A. The maps m; : A — R,
j € N, are equibounded if there exists an element u € R, u > 0, such that

Im;(A)| <u VjeN,VAe A

Given a finitely additive bounded measure (or, simply, mean ) m : A — R,
define the semivariation of m, v4(m) : A — R, or simply v(m) : A — R, by
setting
va(m)(4) = sup [m(B)|, VA€ A,
BEA,BCA

and, if ) # £ C A, define vg(m) : A — R, by setting
ve(m)(A)= sup |m(B)], VA€ A.

Be&,BCA
A mean m : A — R is said to be o-additive (or, briefly, measure ) if there
exists a (D)-sequence (u;;);; such that, V¢ € NN and for every decreasing

sequence (Hy)s in A, Hg | 0, there exists 5 such that v4(m)(Hs) < \/ Us (i) -
=1
If a sequence of measures m; : A — R, j € N, is given, uniform Uz-additivity
is defined as above, but with 5 independent of j (See also [4]).
A finitely additive measure m : A — R is said to be (s)-bounded in ) # £ C
A, or simply £ — (s)-bounded, if there exists a (D)-sequence (w;;);, such that,
V¢ € NY and for every disjoint sequence (Hy)s in £ there exists 3: Vs > 3,

ve(m)(Hy) < \/ wi g0
=1

If £ is as above, we say that the maps m; : A — R, j € N, are E-uniformly
(s)-bounded if the above condition holds, but with 5§ independent of j (see
also [4]). When & = A we simply speak of (s)-boundedness or uniform
(s)-boundedness.

A typical consequence of (s)-boundedness of a mean m is that the limit
m(A,) exists for monotone sequences (A,), in A (see [4]). As to uniformly
(s)-bounded measures, we shall report here a slight modification of Proposition
3.4 of [4], which will be used later.

Proposition 2.4. Assume that (m;); is a sequence of R-valued uniformly (s)-
bounded finitely additive measures on A, and let (e; ;)i be a regulator related
to this property. In correspondence with every decreasing sequence (Ay)y in
A, for allmn € N let us define &, : N — R by &,(j) = v(m;)(Ay), j € N. Then
there exists € € RY such that (&), (UD)-converges to &, and the regulator
(€4,1)i,1 works for this property.
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Given a sequence of means (1) enu{o}, m; : A — R, and a nonempty
subfamily £ C A, we say that the m;’s (D)-converge to mo pointwise with
respect to the same regulator, or briefly (RD)lim; mj; = mg in 0 # € C A,
if the sequence of functions (m; : £ — R); (RD)-converges to mgy. We note
that this condition is equivalent to the classical pointwise convergence of the
involved set functions in the case of metrizable groups.

Now let 2, R and A be as above. From now on, we assume that 7, G C A
are two fixed lattices, such that the complement (with respect to Q) of every
element of F belongs to G. In the sequel we will not say it explicitly. If Q is
a topological normal space [resp. locally compact Hausdorfl space], examples
of A, F and G, satisfying the above properties, are the following: .4 = {Borel
subsets of Q}, F = {closed sets }[resp.{compact sets} |, G = { open sets }.

Definitions 2.5. A mean m : A — R is said to be regular if there exists a
(D)-sequence (7;;1);; in R such that for each A € A and W € F there exists
sequences (F),)n, (F))n in F, (Gp)n, (G),)n in G, such that

F,CF,41 CACGr41 CG, Vn, (1)

WcCF,,,CG,CEF, Vn, (2)

and the sequences (va(m)(Gy, \ Fy,)),, and (va(m)(G;, \ W)),, (D)-converge
to 0 with respect to (7i1)i-

The means m; : A — R, j € N, are said to be uniformly regular if there
exists a (D)-sequence (y;,);, in R such that VA € Aand VW € F there exist
sequences (F,)n, (Gn)n, (E})n, (G),)n satisfying (1) and (2), and such that the
sequences (¥ )n, (wn)n of elements of RY, defined by setting

wn (f) = va(m;)(GL\ W), n,jeEN,

(UD)-converge to 0 with respect to (7;1)ii-

The following proposition shows that, if (m; : A — R); is a sequence
of equibounded regular means, even if they are not uniformly regular, the
sequences (Vi1)its (Fn)n 5 (Gn)n s (F))n, (Gh)n above can be taken indepen-
dently of j , satisfying the definition of regularity.

Proposition 2.6. Let R be as above, A be any algebra, and (m; : A — R);
be a sequence of equibounded regular means. Then there exists a regulator
(pit)ig such that, for every A € A and every W € F , there exist sequences
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(Eo)n, (Fl)n in F, (Gu)n, (GL)n in G, satisfying (1) and (2) and such that
the sequence of functions (¥n)n, (wn)n defined in (3) (RD)-converge to 0 with
respect to (p; )i

PROOF. Set

w=sup [sup [y ()| (1)

By hypothesis, for every A € A and j € N, there exist a regulator (’Yi(i))i»l and
two sequences (Gg))n, (F,(Lj))n such that £\ e F, ¢ eg Vj,n €N, and

FPcFY cAcaY), ca¥ vijneN, ()

and Vo € NY¥ and j € N there exists ng € N, ng(¢, ), such that Vn > ng
we have v4(m;)(GY) \ FY)) < Viey '71'(];(1')' Moreover, by Lemma 2.2, there
exists a regulator (p;;);; such that

(o) o0 Joe)
() N
un Z (V ’yi,Jga(i—&-j)) < \/ Di o (4) Ve N (6)
=1

j=1 \i=1

where u is as in (4).

For every n € N, set G, = Nj<p GEZ) and F,, = UanF,Sj). Then G,, € G,
F, e F,and A C G, A D F, ¥Yn € N. Furthermore it is easy to check
that Gny1 C G and Foyq O F, Vn. Since Gy, \ F, ¢ G\ FY) Vjn € N,
V¢ € NY¥ and Vj there exists ng € N, ng(¢p, j), such that

va(m) (G \ Fo) < \/ pipy Y1 > no.
=1

Moreover, by hypothesis and Lemma 2.2, the regulator (p;;);,; in (6) is such
that for all W € F and j € N there exist two sequences (G;(]))n, (F,’L(J))n
such that F,’L(J) eF, G;L(J) €GVjneN, and

wck,Yca, " crY vineN,

and V¢ € NV Vj € N, there exists ng € N, ng(¢p, j), such that

va(m)(GP\NW) < \/ pipy Yn=no.
i=1
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It is readily seen that F), = Nj<,F}, ) , Gl = ﬂanG;(j), n € N, satisfy the
conclusion of the proposition. O

We now introduce the concept of absolute continuity in our setting.

Definition 2.7. Let m be any R-valued finitely additive measure on A .
Given any other finitely additive measure v : A — IRZ, we say that m is
absolutely continuous with respect to v (and write m < v) if there exists
a (D)-sequence (a;;)i; such that, whenever (Hy)x is a sequence from A ,
satisfying limy, v(Hy) = 0, for every ¢ € NV an integer k can be found, such
that [m(Hy)| < Viey @i pe), for all k > k.

In case v is fixed, and (m;); is a sequence of finitely additive measures on A,
uniform absolute continuity of the m;’s with respect to v can be defined in a
similar way, but clearly the integer k£ must be independent of j.

3 The Dieudonné Theorem.

We shall prove a version of Dieudonné ’s Theorem (see also [5], [7]).We begin
with the following:

Lemma 3.1. Let R, 2, A, F, G be as in Proposition 2.6, and suppose that
m : A — R is any reqular bounded finitely additive measure. Then, for each
A€ A, and every V € G, one has:

va(m)(A) = vr(m)(A), (7)
va(m)(V) = vg(m)(V). (8)
ProOOF. The relation (7) is a direct consequence of regularity, and weak o-
distributivity. So, fix V' € G. Let (v;;)iq be the (D) -sequence related to

regularity, let B be any element from A, B C V, and fix ¢ € NY. Thanks to
regularity of m, there exists a set G € G, G D B, such that

v(m)(G\ B) < \/%w

Hence |m(B)| < [m(G)| + V=1 Vi p(i)- Without loss of generality, we may
assume G C V.Thus |m(B)| < vg(m)(V) + ;21 ¥i,4(:)- As B is arbitrary, we
get

’UA(’I?’L)(V) < Ug + \/ Vi, o(i)-
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Finally, as R is weakly o-distributive, we deduce
va(m)(V) < wvg(m)(V)
and then, obviously, the two elements coincide, and so (8) is proved. O

We now prove the following lemma.

Lemma 3.2. Under the same hypotheses and notation as above, let (m; :
A — R); be a sequence of equibounded, reqular and G-uniformly (s)-bounded
means (with respect to a (D)-sequence (b;1);1). Then the m;’s are A-uniformly
(s)-bounded, and uniformly regular.

PRrOOF. Let (K, ), be any disjoint sequence in A . First of all, we note that the
hypotheses of Proposition 2.6 are fulfilled. Let (p;;);; be the same regulator
as in that Proposition, define u as in (4), and let (d;;);; be a (D)-sequence
such that:

< \/ dipi@y Y€ NN,

=1

uA [i <<7 meh))

h=1 \i=1

Finally, let e;; = 2(b;; + d; 1), 4,1 € N. We will prove that
(D) lim{suplv.a(m;)(Kn)]} = 0
j

with respect to the regulator (e;;); ;. If we deny this, then there exists ¢ € NN
such that Vk € N, In, > k, 35, € N, A, € A with 4, C K,,, and

m (Al £\ eip0i)- 9)

i=1

Moreover, thanks to (7), we can assume Ay € F Vk.

Fix k € N, and put b = \/;2; b; o) and e = /72| e; ;). We note that,
by virtue of the regularity of the set functions m;, j € N, there exist G € G,
F,. € F such that A, C Gy, C F}, and

[va(mi) V...V oa(m; )|(Fr \ Ax) < \/ Dio(i+k)-

Now, we set

k
Gy =G1,G3 =G\ Fi,...,Giiy = Gy \ (U Fh>
h=1
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These sets are pairwise disjoint elements of G. Hence there exists kg € N such
that sup; v(m;)(Gy) < bfor all k > ko. Now, as Ax11\ Gy, C U:Zl(Fh\Ah)
holds for all k, we get

i (Ag)| < fmy (A 0 G|+ [my, (A \ G))|

k o0
Z <\/ pi,so(iJrh))] <e, Vk > kg.
h=1

i=1

<b+uA

This is contrary to (9). So, the set functions m; are A-uniformly (s)-bounded.
We now turn to uniform regularity. The regulator (p;;);; above is such
that, for every A € A, two sequences can be found, (F},), and (G,), in F and
G respectively, satisfying the conditions of the definition of regularity. As the
sequence (G, \ F,)n is decreasing, by 2.6, 2.4 and weak o-distributivity of R
the sequence (sup;[va(m;)(Gn \ Fn)])n (D)-converges to 0. Similarly, for each
W e F, we can find (F)), and (G)), in F and G respectively, satisfying the
conditions of the definition of regularity, and we get that the sequence

(Sl;p[vA(mj)(G% \W)Dn

(D)-converges to 0. This concludes the proof of the lemma. O

Theorem 3.3. (Dieudonné) Let Q, R, G, F be as above, and assume that
A C P(Q) is a o-algebra, and G is stable under countable disjoint unions.
Suppose that (m; : A — R); is a sequence of equibounded regular o-additive
measures such that mo = (RD)lim; m; in G exists. Then we have:

i) The measures mj, j € N, are A-uniformly (s)-bounded and uniformly reg-
ular.

ii) The limit mo = (RD)lim; m; in A exists in R.
ili) The m;’s are uniformly o-additive.
iv) mg is reqular and o-additive.

PROOF. i) Thanks to [4], Theorem 5.4, the set functions m; are G-uniformly
(s)-bounded; hence, from Lemma 3.2 we get A-uniform (s)-boundedness and
uniform regularity.

ii) Fix A € A, and let (y;;);; be the regulator related with uniform regu-
larity. For each ¢ € NV there exists G € G such that A C G and

va(m;)(G\A) <\ tipwy Vi
=1
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Corresponding to G, there exists jo € N such that

[m;(G) —m;1p(G)] < \/ iy YJ>Jo, VpeEN,

i=1

where (o ;)i is the regulator for (RD)-convergence in G. So we have

m(A) = myip(A)] <2\ Yio + V Qigy Yi>do, YpeN.  (10)

i=1 i=1

From (10) it follows that the sequence (m;(A)); is (D)-Cauchy in R. Since
R is a Dedekind complete ({)-group, the sequence (m;(A)); is (D)-convergent
(see also [3], Theorem 2.16; [9]). Thus ii) is proved.

iii) follows from ii) and [4], Corollary 5.5.

iv) follows easily from i), ii), iii) and weak o -distributivity of R. O

Under suitable additional conditions, it’s also possible to state a finitely
additive version of Dieudonné’s theorem.

Theorem 3.4. Let Q, R, A, G, F be as in Proposition 2.6, and assume that
G is stable under countable disjoint unions. Suppose that (m; : A — R); is a
sequence of equibounded regular finitely additive measures, absolutely continu-
ous with respect to a real-valued, nonnegative, finitely additive measure v on
A . Assume that mg = (RD)lim; m; in G exists. Then we have:

i) The means mj, j € N, are A-uniformly (s)-bounded, uniformly reqular and
uniformly absolutely continuous with respect to v.

i) The limit mo = (RD)lim; m; in A exists in R.
iii) myg is (s)-bounded, reqular and absolutely continuous with respect to v.

PROOF. (i) Let (cv,1)i be the regulator related to (RD)-convergence in G and
let (8;1):; be a regulator such that, for every disjoint sequence (Hy)y in A,
for every j € N and every ¢ € NV, there exists kg € N such that

v(m;)(Hi) < \/ B
=1

as soon as k > kg. (Such a regulator exists, because of absolute continuity and
Lemma 2.2.) Setting ¢;; = a;; V B, 1,1 € N, we claim that (6¢;;);; works as
a regulator for G-uniform (s)-boundedness of the means m;. Indeed, if this is
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not the case, there exist a disjoint sequence (G}); in G , a mapping ¢ € NV
and a subsequence (ji)r in N such that

Im;,, (Gr)| £ 6 \/ Ci o (3) (11)

i=1

for each k¥ € N. Now, denote by V the union of all Gi's, and by B the
o-algebra in V' generated by the sets Gj. Hence the sequence (m; : B —
R); (RD)-converges to mg. Then, we can apply Corollary 5.7 of [4], and
deduce B-uniform (s)-boundedness of the m;’s, with respect to the regulator
(6¢i1)i, i, and this clearly is contrary to (11). Thus, the m,’s are G-uniformly
(s)-bounded, and therefore they are A-uniformly (s)-bounded and uniformly
regular, by 3.2, and uniformly absolutely continuous with respect to v, by
virtue of [4], Theorem 4.8.

(ii) can be proved as in the previous theorem.

(iii) The properties of (s)-boundedness, regularity and absolute continuity
are easy consequences of the previous ones and of weak o-distributivity of
R. O
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