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POROSITY OF THE EXTENDABLE
CONNECTIVITY FUNCTION SPACE

Abstract

Let I = [0,1], and let Ext(I) or Ext denote the subspace of all
extendable connectivity functions f : I — R with the metric of uniform
convergence on I*. We show that Ext is porous in the almost continuous
function space AC' by showing that the space AC' N PR of all almost
continuous functions with perfect roads is porous in AC. We also show
that for n > 1, the subspace Ezt(R™) of all extendable connectivity
functions f : R™ — R is a boundary set in the Darboux function space
D(R™).

1 Introduction and Definitions

Whether fourteen Darboux-like real function spaces are porous or boundary
sets in one another was examined in [8] and [9] to determine whether they are
“thin”. What the situation is for the following commutative diagram (x), in
which — means proper inclusion, was left as an open problem in [9].

Ext AC

N W /

ACNPR

Here we show Ext is porous in AC by first showing AC'N PR is porous in AC.
Its proof depends on a recent result of Piotr Szuca [10].

Darboux-like function spaces are of interest for various reasons. Eleven of
the fourteen, e.g., Fxt and D [2], have the same intersection with the space
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By of all Baire class 1 functions from R into R. Consequently, any derivative
¢ : R — R must belong to Ext. A member f: R — R of the Darboux-like
space Conn, consisting of all functions from R into R with connected graphs,
must have a fixed point whenever the graph of f does not lie entirely above
or entirely below the diagonal of R x R.

Definitions. Let E denote I, R, or R”. We abbreviate the classes to which
the defined function f: E — R belongs:

1. D(E) - f: E — Ris a Darboux function if f(J) is connected for each
connected set J C F.

2. Conn(E) - f is a connectivity function if the graph of f | J is a connected
subset of J x R for each connected subset J of F.

3. AC(F) — f is almost continuous if each open subset of E x R containing
the graph of f also contains the graph of a continuous function g : £ —R.

4. Ext(E) - f is extendable if there is a connectivity function F' : ExT — R
such that F'(z,0) = f(z) for every x € E.

5. PR— f: I — R has a perfect road if for each x € I there exists a perfect
subset P of I having = as a two-sided limit point (one-sided limit point
if 2 is an endpoint) such that f [ P is continuous at .

When E = I, we write, for example, Ext instead of Ext(FE). Each function
space has on it the metric d of uniform convergence defined by

d(f,9) = min{1,sup{|f(z) — g(z)| : =€ E}}.
Suppose E =1 and K C I x R. For every z € I, let
Kz:{yeR : (x,y)GK}.

For a € R and A C R, |a— A| denotes the distance between a and A. A closed
set K C I x R is a blocking set if g N K # @ for every continuous function
g: I — Rbut hN K = for some function h : I — R. A function f: I — R is
almost continuous if and only if f N K # () for every blocking set K. On the
other hand, if h : I — R is not almost continuous, then there exists a minimal
blocking set K in I x R that misses the graph of h, and the z-projection of K
is a non-degenerate connected set and K is a perfect set [7], [6], [5].

In a metric space (X,d), B(x,r) denotes the open ball with center z and
radius 7 > 0. Let M C X, z € X, and r > 0, and let vy(z,r, M) be the
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supremum of the set of all s > 0 for which there exists z € X such that
B(z,8) C B(xz,r)\ M. Then M is porous at x in X if

M
p(x, M) = limsup (., M) >

r—0+ r

0.

M is porous in X if M is porous at every x € M. M is a boundary set in X
if X\ M = X. A set M which is porous in X must be a boundary set in X.
Besides showing Ext is porous in AC, we show that for n > 1, Ext(R"™) is a
boundary set in D(R™). It would be nice to know whether Ext(R™) is porous
in D(R™) for n > 1.

2 A Porous Set

Definition 6. f: I — R is in class « if for every blocking set K and ¢ > 0,
either

(1) the set {z € I : |f(z) — K,| < €} has cardinality c or

(2) there exists = € I such that [f(z) — €, f(z) + €] C K,.
We need the following recent result of Szuca:

Proposition 1 (Szuca [10]). AC C a.

Theorem 1. AC' N PR is porous in AC.

Proof. Suppose f € ACN PR and 0 < r < 1. Note that AC N PR is closed
in AC because PR is closed in R’ [1]. According to Proposition 1, for each
blocking set K of I x R and each r > 0, either

(1) {z €I : |f(z) — K| <r/2} has cardinality c or
(2) there exists « € I such that [f(at) -5, flx)+ 5| C K.

Let {K, : « € A} denote the collection of all blocking sets in I x R and
{P, : « € A} denote the collection of all perfect subsets of I, where A is
well ordered with first element 1 and with each « in A preceded by less than
c-many elements of A. We show how to use transfinite induction to obtain a
function g : I — R by redefining f just on a set {z, : « € A} and on a
set {Ya,2a : a € A} of distinct points in such a way that if @ € A, then
(Zay 9(2a)) € Kay Ya, 20 € Pa, |f(x) — g(x)| < 7/2 for @ = z4,Ya, Za, but
19(ya) — 9(za)| = /2.
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If (1) holds for the blocking set K = K7, choose

T
1 € {x e1:|f(z)— (K1)a| < 5}
and pick g(z1) € (K1)a, with |f(z1) — g(z1)| < 5.
But if (2), but not (1), holds for K1, choose z1 € I such that

[f@n) = 5. @) + 5] € (K,

and define g(x1) = f(z1). Choose distinct points y1,2; € P \ {z1} and
define g(y1) and g(z1) so that |f(z) — g(z)| < /2 for & = y1, 2 but so that
|9(y1)—g(21)| = /2. Now suppose g has been defined on the set {z, : o < 3}
and on the set {ya, 2o : @ < B} of distinct points such that g(x,) € (Ko)a,
Your Za € Poy | f(2) — g(x)| < § for © = x4, Ya, 2a, but |g(ya) — g(za)’ > 5. If
(1) holds for the blocking set K = Kg, choose

r
g € {:17 el: |f(x) — (Kﬂ)m| < 5} \ {xa,ya,za < ﬂ}

and pick g(z3) € (Kp)a, obeying |f(zg) — g(zp)| < 5.

But if (2), but not (1), holds for Kg, choose zg € I such that

Flap) = = flag) + 5| € (Kp)a,
2 2

and define

(z5) = f(xﬂ) if (3) g & {ZasYa, zat for all a < B
gire) = g(xzg) if (4) x5 € {Ta, Y, 2o} for some a < (.

If (3) holds, then |f(zg) — g(zs)| = 0 < § and g(zg) = f(xs) € (Kp)a,-
Suppose (4) holds for some a < 3. If x5 = x4, then g(x5) € (Kpg), because

|F(@s)—g(ws)| = | F(za)—g(za)| < &

5 and [f(:cg)*f f(xﬂ)Jrf] C (Kp)ap -

2’ 2
If x5 = either y, or z,, say yq, then

[F(@s) = 9(ws)] = | £va) = 9(ua)| < 5

and so g(x3) € (Kp)e,. The case x5 = z, is handled similarly. Choose distinct
points yg, 23 € Pg \ {Za, Yo, 2o : @ < B} and define g(yg) and g(zg) so that

|f(x) = g()| <g for ©=yg,23 and |g(ys) — g(zs)| > g
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It follows from transfinite induction that g : I — R can be obtained by re-
defining f on {Z4,Ya,2a : @ € A} in the above fashion.

Therefore d(f,g) < r/2, and g € AC \ PR because g N K,, # { for every
a € A and because g is discontinuous on every perfect set P,. Suppose
h € AC and d(h,g) < r/4. Then h ¢ PR because h is also discontinuous on
each perfect set P,. Therefore B(g,7/4) C B(f,r)\ PR. AC N PR is porous

at f in AC since y(f,r,ACNPR) > % and p(f,ACNPR) > 1> 0. O

If A is a subspace of B and B is porous in C, then A is porous in C [9].
According to this, the next result is an immediate consequence of Theorem 1
and the commutative diagram ().

Theorem 2. Ext is porous in AC.

3 A Boundary Set

This result is proved in [4]:

Proposition 2. If f : I" — I, n > 1, is a Darbouzr and onto function and
g: 1 —Y, whereY is a metric space, is any function such that gof : ["" =Y
is a connectivity function, then g is continuous except perhaps at 0 or 1.

We use the following version of it with R™ and f(R"™) replacing I"™ and I
respectively, and its proof is practically the same.

Proposition 3. If f : R® - R, n > 1, is a Darboux non-constant function
and g : f(R") — Y, where Y is a metric space, is any function such that
go f : R"™ — Y is a connectivity function, then g is continuous at every
interior point of the interval f(R™).

For n > 1, Ext(R") = Conn(R™) C D(R™). Ext(R™) C Conn(R™)
and Conn(R™) C D(R™) are evident from the definitions, and Conn(R™) C
Ext(R™) is shown in [3].

Theorem 3. Forn > 1, Ext(R"™) is a boundary set in D(R™).

Proof. Suppose 0 < r <1 and f : R™ — R belongs to Conn(R"). First sup-
pose f is not a constant function. Let i : f(R™) — R be the identity function
on f(R™), and take any Darboux function g : f(R™) — R discontinuous at an
interior point of f(R™) such that d(i, g) < r/2. Then d(f,gof) = d(i,g) < r/2.
According to Proposition 3, go f ¢ Conn(R™). The composition g o f of two
Darboux functions is Darboux, and so go f € D(R™) \ Conn(R™). If f =k,
a constant, then instead of to f, ¢, and g, we apply the previous argument to
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fo(z,y) = k+ % sinz where (z,y) € RxR"™!, to the identity ig : fo(R") — R,
and to any Darboux discontinuous go : fo(R™) — R with d(ig, go) < r/2; note
that

d(f.90 0 fo) < d(f, fo) +d(fo.g0 0 fo) < 5 + 5 =7

2 2
and go o fo € D(R™) \ Conn(R™). This shows Ext(R™) is a boundary set in
D(R™). O
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