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POROSITY OF THE EXTENDABLE
CONNECTIVITY FUNCTION SPACE

Abstract

Let I = [0, 1], and let Ext(I) or Ext denote the subspace of all
extendable connectivity functions f : I → R with the metric of uniform
convergence on IR. We show that Ext is porous in the almost continuous
function space AC by showing that the space AC ∩ PR of all almost
continuous functions with perfect roads is porous in AC. We also show
that for n > 1, the subspace Ext(Rn) of all extendable connectivity
functions f : Rn → R is a boundary set in the Darboux function space
D(Rn).

1 Introduction and Definitions

Whether fourteen Darboux-like real function spaces are porous or boundary
sets in one another was examined in [8] and [9] to determine whether they are
“thin”. What the situation is for the following commutative diagram (∗), in
which −→ means proper inclusion, was left as an open problem in [9].

Ext AC

AC ∩ PR

-

Q
Q
Qs �

��(∗)

Here we show Ext is porous in AC by first showing AC∩PR is porous in AC.
Its proof depends on a recent result of Piotr Szuca [10].

Darboux-like function spaces are of interest for various reasons. Eleven of
the fourteen, e.g., Ext and D [2], have the same intersection with the space
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B1 of all Baire class 1 functions from R into R. Consequently, any derivative
g′ : R → R must belong to Ext. A member f : R → R of the Darboux-like
space Conn, consisting of all functions from R into R with connected graphs,
must have a fixed point whenever the graph of f does not lie entirely above
or entirely below the diagonal of R× R.

Definitions. Let E denote I, R, or Rn. We abbreviate the classes to which
the defined function f : E → R belongs:

1. D(E) – f : E → R is a Darboux function if f(J) is connected for each
connected set J ⊂ E.

2. Conn(E) – f is a connectivity function if the graph of f � J is a connected
subset of J × R for each connected subset J of E.

3. AC(E) – f is almost continuous if each open subset of E×R containing
the graph of f also contains the graph of a continuous function g : E→R.

4. Ext(E) – f is extendable if there is a connectivity function F : E×I → R
such that F (x, 0) = f(x) for every x ∈ E.

5. PR – f : I → R has a perfect road if for each x ∈ I there exists a perfect
subset P of I having x as a two-sided limit point (one-sided limit point
if x is an endpoint) such that f � P is continuous at x.

When E = I, we write, for example, Ext instead of Ext(E). Each function
space has on it the metric d of uniform convergence defined by

d(f, g) = min
{

1, sup{|f(x)− g(x)| : x ∈ E}
}
.

Suppose E = I and K ⊂ I × R. For every x ∈ I, let

Kx =
{
y ∈ R : (x, y) ∈ K

}
.

For a ∈ R and A ⊂ R, |a−A| denotes the distance between a and A. A closed
set K ⊂ I × R is a blocking set if g ∩ K 6= ∅ for every continuous function
g : I → R but h∩K = ∅ for some function h : I → R. A function f : I → R is
almost continuous if and only if f ∩K 6= ∅ for every blocking set K. On the
other hand, if h : I → R is not almost continuous, then there exists a minimal
blocking set K in I ×R that misses the graph of h, and the x-projection of K
is a non-degenerate connected set and K is a perfect set [7], [6], [5].

In a metric space (X, d), B(x, r) denotes the open ball with center x and
radius r > 0. Let M ⊂ X, x ∈ X, and r > 0, and let γ(x, r,M) be the
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supremum of the set of all s > 0 for which there exists z ∈ X such that
B(z, s) ⊂ B(x, r) \M . Then M is porous at x in X if

p(x,M) = lim sup
r→0+

γ(x, r,M)
r

> 0 .

M is porous in X if M is porous at every x ∈ M . M is a boundary set in X
if X \M = X. A set M which is porous in X must be a boundary set in X.
Besides showing Ext is porous in AC, we show that for n > 1, Ext(Rn) is a
boundary set in D(Rn). It would be nice to know whether Ext(Rn) is porous
in D(Rn) for n > 1.

2 A Porous Set

Definition 6. f : I → R is in class α if for every blocking set K and ε > 0,
either

(1) the set
{
x ∈ I : |f(x)−Kx| < ε

}
has cardinality c or

(2) there exists x ∈ I such that
[
f(x)− ε, f(x) + ε

]
⊂ Kx.

We need the following recent result of Szuca:

Proposition 1 (Szuca [10]). AC ⊂ α.

Theorem 1. AC ∩ PR is porous in AC.

Proof. Suppose f ∈ AC ∩ PR and 0 < r ≤ 1. Note that AC ∩ PR is closed
in AC because PR is closed in RI [1]. According to Proposition 1, for each
blocking set K of I × R and each r > 0, either

(1)
{
x ∈ I : |f(x)−Kx| < r/2

}
has cardinality c or

(2) there exists x ∈ I such that
[
f(x)− r

2 , f(x) + r
2

]
⊂ Kx.

Let {Kα : α ∈ A} denote the collection of all blocking sets in I × R and
{Pα : α ∈ A} denote the collection of all perfect subsets of I, where A is
well ordered with first element 1 and with each α in A preceded by less than
c-many elements of A. We show how to use transfinite induction to obtain a
function g : I → R by redefining f just on a set {xα : α ∈ A} and on a
set {yα, zα : α ∈ A} of distinct points in such a way that if α ∈ A, then
(xα, g(xα)) ∈ Kα, yα, zα ∈ Pα, |f(x) − g(x)| < r/2 for x = xα, yα, zα, but
|g(yα)− g(zα)| ≥ r/2.
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If (1) holds for the blocking set K = K1, choose

x1 ∈
{
x ∈ I : |f(x)− (K1)x| <

r

2

}
and pick g(x1) ∈ (K1)x1 with

∣∣f(x1)− g(x1)
∣∣ < r

2 .
But if (2), but not (1), holds for K1, choose x1 ∈ I such that[

f(x1)− r

2
, f(x1) +

r

2

]
⊂ (K1)x1

and define g(x1) = f(x1). Choose distinct points y1, z1 ∈ P1 \ {x1} and
define g(y1) and g(z1) so that

∣∣f(x) − g(x)
∣∣ < r/2 for x = y1, z1 but so that∣∣g(y1)−g(z1)

∣∣ ≥ r/2. Now suppose g has been defined on the set {xα : α < β}
and on the set {yα, zα : α < β} of distinct points such that g(xα) ∈ (Kα)xα ,
yα, zα ∈ Pα,

∣∣f(x)− g(x)
∣∣ < r

2 for x = xα, yα, zα, but
∣∣g(yα)− g(zα)

∣∣ ≥ r
2 . If

(1) holds for the blocking set K = Kβ , choose

xβ ∈
{
x ∈ I :

∣∣f(x)− (Kβ)x
∣∣ < r

2

}
\
{
xα, yα, zα : α < β

}
and pick g(xβ) ∈ (Kβ)xβ

obeying
∣∣f(xβ)− g(xβ)

∣∣ < r
2 .

But if (2), but not (1), holds for Kβ , choose xβ ∈ I such that[
f(xβ)− r

2
, f(xβ) +

r

2

]
⊂ (Kβ)xβ

and define

g(xβ) =

{
f(xβ) if (3) xβ /∈ {xα, yα, zα} for all α < β

g(xβ) if (4) xβ ∈ {xα, yα, zα} for some α < β.

If (3) holds, then
∣∣f(xβ) − g(xβ)

∣∣ = 0 < r
2 and g(xβ) = f(xβ) ∈ (Kβ)xβ

.
Suppose (4) holds for some α < β. If xβ = xα, then g(xβ) ∈ (Kβ)xβ

because∣∣f(xβ)−g(xβ)
∣∣ =

∣∣f(xα)−g(xα)
∣∣ < r

2
and

[
f(xβ)− r

2
, f(xβ)+

r

2
]
⊂ (Kβ)xβ

.

If xβ = either yα or zα, say yα, then∣∣f(xβ)− g(xβ)
∣∣ =

∣∣f(yα)− g(yα)
∣∣ < r

2

and so g(xβ) ∈ (Kβ)xβ
. The case xβ = zα is handled similarly. Choose distinct

points yβ , zβ ∈ Pβ \ {xα, yα, zα : α < β} and define g(yβ) and g(zβ) so that∣∣f(x)− g(x)
∣∣ < r

2
for x = yβ , zβ and

∣∣g(yβ)− g(zβ)
∣∣ ≥ r

2
.



Porosity of the Extendable Connectivity Function Space 461

It follows from transfinite induction that g : I → R can be obtained by re-
defining f on {xα, yα, zα : α ∈ A} in the above fashion.

Therefore d(f, g) ≤ r/2, and g ∈ AC \ PR because g ∩Kα 6= ∅ for every
α ∈ A and because g is discontinuous on every perfect set Pα. Suppose
h ∈ AC and d(h, g) < r/4. Then h /∈ PR because h is also discontinuous on
each perfect set Pα. Therefore B

(
g, r/4

)
⊂ B(f, r) \ PR. AC ∩ PR is porous

at f in AC since γ(f, r, AC ∩ PR) ≥ r
4 and p(f,AC ∩ PR) ≥ 1

4 > 0.

If A is a subspace of B and B is porous in C, then A is porous in C [9].
According to this, the next result is an immediate consequence of Theorem 1
and the commutative diagram (∗).

Theorem 2. Ext is porous in AC.

3 A Boundary Set

This result is proved in [4]:

Proposition 2. If f : In → I, n > 1, is a Darboux and onto function and
g : I → Y , where Y is a metric space, is any function such that g ◦f : In → Y
is a connectivity function, then g is continuous except perhaps at 0 or 1.

We use the following version of it with Rn and f(Rn) replacing In and I
respectively, and its proof is practically the same.

Proposition 3. If f : Rn → R, n > 1, is a Darboux non-constant function
and g : f(Rn) → Y , where Y is a metric space, is any function such that
g ◦ f : Rn → Y is a connectivity function, then g is continuous at every
interior point of the interval f(Rn).

For n > 1, Ext(Rn) = Conn(Rn) ⊂ D(Rn). Ext(Rn) ⊂ Conn(Rn)
and Conn(Rn) ⊂ D(Rn) are evident from the definitions, and Conn(Rn) ⊂
Ext(Rn) is shown in [3].

Theorem 3. For n > 1, Ext(Rn) is a boundary set in D(Rn).

Proof. Suppose 0 < r ≤ 1 and f : Rn → R belongs to Conn(Rn). First sup-
pose f is not a constant function. Let i : f(Rn)→ R be the identity function
on f(Rn), and take any Darboux function g : f(Rn)→ R discontinuous at an
interior point of f(Rn) such that d(i, g) < r/2. Then d(f, g◦f) = d(i, g) < r/2.
According to Proposition 3, g ◦ f /∈ Conn(Rn). The composition g ◦ f of two
Darboux functions is Darboux, and so g ◦ f ∈ D(Rn) \ Conn(Rn). If f = k,
a constant, then instead of to f , i, and g, we apply the previous argument to
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f0(x, y) = k+ r
2 sinx where (x, y) ∈ R×Rn−1, to the identity i0 : f0(Rn)→ R,

and to any Darboux discontinuous g0 : f0(Rn)→ R with d(i0, g0) < r/2; note
that

d(f, g0 ◦ f0) ≤ d(f, f0) + d(f0, g0 ◦ f0) <
r

2
+
r

2
= r

and g0 ◦ f0 ∈ D(Rn) \ Conn(Rn) . This shows Ext(Rn) is a boundary set in
D(Rn).
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