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THE MEDIAN OF A CONTINUOUS
FUNCTION

Abstract
Let © be a domain in R™ with finite Lebesgue measure and f €
C (Q)NL" () areal-valued function on . Tt is shown that there exists a
unique number M € R at which the function I (y) = [, |f (z) — y[ dA™ (z)
is minimized, where A" is the Lebesgue measure on R™. We can define
this number as the median of f over 2 with respect to \".

1 Introduction.

Given a random variable X and a probability measure P on a sample space
Q, one can define the mean of X as F[X] = [,z dP (x) and a median of
X as a real number M such that P(X < M) > % and P(X > M) > %
For any real-valued measurable function f : @ C R® — R, where Q2 is a
measurable set with finite Lebesgue measure, one can also define its mean as
f= fQ f(x) M, where A" is the Lebesgue measure on R™. We could define

A (@)
a median of f as a real number M such that A" (ffl(—oo,M} N Q) > AT(Q)
and A" (f71[M,00) N Q) > @ Notice that a median so defined may not

be unique. For example, consider f : [-2,2] — R defined by

0 —2<zx<-1
flx)y=¢ 1 -l<z<l1
0 1<x<2

We see that
0 m <0
g(m)=A(f""(—oo,m]N[-2,2])=¢ 2 0<m<1.
4 m>1
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Consequently, every m € (0, 1) is a median, as whenever m € (0,1), we have
A([=2,2])
2

Let medq (f) denote the set of all medians of f over Q. If f € L' (), it
is known that m € med q (f) if and only if

17 @) = ml ax" @) = wmin [ 17 @) =3 ¥" (@)

(cf. [2], [3]). If Q is an open, connected subset of R” with finite Lebesgue
measure and f is continuous on 2, we will show that there exists a unique

number M such that I (M) < I (y) for all y # M.

A(f 7 (=o0,m] (1[=2,2)) = A (£ [m,00) N1 [-2,2]) = 2

2 Well-Posedness.

Henceforth, we will assume that €2 is an open, connected subset of R™ with
finite Lebesgue measure. Suppose f € C (Q) N L' (2). We seek to minimize

I(y) = [o|f (x) —y| dA™ (2) over R.
One can easily see that I (y) is continuous in y.

Theorem 2.1. If f € L'(Q), then I (y) as defined above is a continuous
function in y.

PROOF. Let y; — y. We may assume without loss of generality that |y;| <
ly|+1. Since we know that there exists a sufficiently large number N such that
for all i > N, |y;| < |y| + 1 after discarding finitely many terms (if necessary),
we will have the desired property. Next observe that

(1) 1f (@) —wil < [f (@) +[y| + 1.

Furthermore, by virtue of the fact that f € L' () and that A" (Q) < oo, we
deduce that

) Lz @i+ w+nax @ = <o,
where C'is a fixed constant. Moreover, for (almost) every z € Q, |f () — y;| —

|f (z) —y| as i — oo. It follows from the Dominated Convergence Theorem
(DCT) that

Yi—yY Yi—y

fim, 7 () = Jim [ 1f (0) =l 4" @)
= [ Jim 1 (@) =] X" ) (DCT)

:/ 1f (@) =yl d\" (2) =1 (y),
Q
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yielding the continuity for I (y). O

To minimize I (y), we can restrict y to a compact subset in R.

Lemma 2.2. If f € L' (), then there exists a positive number B > 0 such
that minyeg I (y) = minge—p I (y)-

PRroOOF. It suffices to show that there exist positive numbers By and By such
that for all y > By, I(y) > I(By), and for all y < —Ba, I(y) > I(—DBs),
because then we can choose B to be max {Bj, Bz}. The argument for the
existence of Bj is identical to the one for that of By. Since f € L (2), there
exists By sufficiently large and positive so that

(3) /\”{er:f<Bl}2%)\"(Q).

We claim that for all y > By, I (y) > I(B1). Toward this end, we consider
the following two expressions:

(1) I(y)Z/Q\f—y\ A" (z) =
=/(y—f) dA”(m>+/<y—f> dA”(sc)+/(f—y) " ().
{f<B1}nQ {B1<f<y}nQ {f>y}InQ
(5) I(Bl)=/9\f—B1| aA" () =

= Bl— d/\n X —Bl d/\n x —Bl d)\n xX).
/{( f ()+/{(f ) ()+/{(f ) dA" (2)

f<B1}NQ B <f<y}nQ f>y}nQ

Subtracting (5) from (4), we find that

(6) T(y)~I(By) =
=/ (v By) dA"<w>+/<y+Bl—2f> dA"<x>+/ (By —y) dA" ().
{f<B1}NQ {B1<f<y}nQ {f>y}InQ

By (3) and the supposition that y > B;, we have

(7) AT{f>yinQ) <

(8) AM({Br < f<ytn) <

A" (Q).

A" (Q).

N N



272 S. G. NoaH

Applying inequalities (3), (7), and (8) to (6), one obtains

I(y) = 1(B1)

1
> @ @-B)+ [ B -2f) AV (o)
{B1<f<y}nQ

> SN (@) (g = Bi) + " (@) (5 + By~ 20)

= @ - By >0,

by the assumption that y > B;. This proves the claim. To find B3, we can
retrace our steps. In this case, we will consider choosing Bs sufficiently large
and positive so that

A"{xeﬂ:f>—32}2%)\”(9).

Going through the same argument, one arrives at the conclusion we stated at
the outset. O

Therefore, to minimize I (y) over R is the same as to minimize I (y) over
a compact subset [—B,B]. Since I (y) is continuous by Theorem 2.1, the
Extreme Value Theorem implies that there exists m € [—B, B] such that
I(m) <1I(y) for all y € R. Thus, we have shown the following.

Theorem 2.3. If f € C(Q)N L*(Q), then there erists m € R such that
I(m) <I(y) forallyeR.

We may further restrict y to a subset [a,b] C [-B, B] such that f: Q —
[a, ] is surjective, except possibly at a and b.

Next, we show that there exists a unique m € R that minimizes I (y).

Theorem 2.4. If f € C ()N L' (), then there exists a unique m € R such
that I (m) < I (y) for ally #m € R.

PROOF. Suppose there exist two absolute minima denoted by m; and mgy with
my < mg and my,ma € [a,b] defined as above. Thus, I(my) = I(ms). Now,
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we have

7 <m1 +m2) I (ma) +1(m2)

2 2
-,

J—m1  f—mo
2
—;{ |f—m1|d/\”(ac)+/ﬂf—mgd)\"(x)}:

d\" (x)

+ 2
Q

: mod ot g
/{f<m1}ﬂﬂ< 2 i 2 )

d\" (x)

d\" (z)

+/ <f_m1+f_m2) A" (x)
{f2ma}no \ 2 2
+/ f—m n f—ma
{m1<f<ma}NQ 2 2
1
S5l menac@s [ (rm) v )
2 {f<mi}n@ {f>m1}nQ
1
Sl mena@s [ (em) v w) -
{f<ma}nQ {f>ma}NQ
_ / f—m L J—mg
{m1<f<m2}NQ 2 2
7/ f_mld)\”(x)f/ m2 = v (@) <0,
{mi<f<maine 2 {mi<f<ma}ne 2
where the last inequality follows from the continuity of f, the triangle equality
(if we call L5 = A and 152 = B, then |A+ B| < |A| + |B|. However,
equality holds if and only if A and B have the same sign; as A > 0 and
B < 0 in our situation, we arrive at the strict inequality), and the fact that
)\"({ml <f<m2}ﬂQ) > 0.

This contradicts the fact that m; and msy are absolute minima. In sum-
mary, we conclude that there exists a unique m such that I (m) < I (y) for all
y € R\ {m}. O

The above approach gives an elementary proof of the existence of a unique

minimizer to the function I (y) = [, |f —y| d\" (x) for any continuous, abso-
lutely integrable function on an open, bounded, connected subset {2 of R™.
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