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Abstract

Let S ⊂ R2 be the attractor of the iterated function system {f1, f2, f3, f4},
where fi(x) = λix + bi, i = 1, 2, 3, 4, x = (x1, x2) ∈ R2, 0 < λi ≤

1

2+
√

2
,b1 = (0, 0), b2 = (1 − λ2, 0), b3 = (1 − λ3, 1 − λ3), and b4 =

(0, 1− λ4). This paper determines the exact centered covering measure
of S under some conditions relating to the contraction parameters.

1 Introduction.

Computing and estimating the dimensions and measures of the fractal sets
are one of the important problems in fractal geometry. Generally speaking,
computing the Hausdorff and packing dimensions, especially the Hausdorff and
packing measures, are very difficult. For a self-similar set satisfying the open
set condition, we know that its Hausdorff dimension and packing dimension
equal its self-similar dimension (see [6]), but there are almost no important
results about the Hausdorff measure and packing measure except for sets like
the Cantor set. The centered covering measure was introduced by Raymond
and Tricot in [9]. The dimension defined by centered covering measure is equal
to the Hausdorff dimension for any set and was used to give estimates for the
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multifractal spectrum of a measure. They have been used for other purposes
as well and have recently become an object of study themselves (see [10]).

However, because of the difficulty in the definition, there are few results
about the explicit computation of the above measures for fractal sets. Ayer
and Strichartz in [1] discussed the computation of Hausdorff measure for line
Cantor sets, and Dejun Feng in [3] gave a formula for packing measure for
linear Cantor sets. In [13], we obtained the exact centered covering measure
for the symmetry Cantor set. All of the above results are obtained for the
self-similar sets on the line. This paper considers the exact centered covering
measure for a class of self-similar sets on the plane.

Let δ > 0, s ≥ 0. Recall that a centered ball δ− cover of a given set
E ⊂ Rn is a δ− cover of E by the balls with center in E. Define

Cs
0(E) = lim

δ→0
inf{

∞∑
i=1

(2ri)s : {B(xi, ri)}i>0 is a centered ball δ-cover of E}

We call Cs
0(E) the centered covering pre-measure of E. It is not a measure as

Cs
0(E) is not monotonic. However, it gives rise to a measure and is called the

centered covering measure as follows:
Cs(E) = sup{Cs

0(F ) : F ⊂ E}.
The following properties of the above measure can be found in [5],[9],[10],

and [11]. Note that here Hs(E) denotes the s− dimensional Hausdorff measure
of E.

Lemma 1.1. Let s ≥ 0, E be a subset of Rn, then
(i) 2−sCs(E) ≤ Hs(E) ≤ Cs(E).
(ii) ∀λ > 0, Hs(λE) = λsHs(E), Cs(λE) = λsCs(E), where λE = {λx :

x ∈ E}.
(iii) Hs(E), Cs(E) are metric outer measures and Borel regular.

It is easy to see that for any sets E ⊂ Rn, there is a number dimC(E),
called the centered covering dimension of E such that

dimC(E) = inf{s : Cs(E) = 0} = sup{s : Cs(E) = ∞}.
From Lemma 1.1, we have dimH(E) = dimC(E) for any set E, where dimH(E)
denotes the Hausdorff dimension of E.

Let µ be a finite measure defined on the Borel sets E ⊂ Rn, for x ∈ Rn,
and the centered upper spherical density of x with respect to µ is defined by

D
s
(µ, x) = lim sup

r→0

µ(B(x, r))
(2r)s

. (1.1)

The relation between the upper spherical density and the centered covering
measure is given in the following Lemma.
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Lemma 1.2. [5][9] Let E ⊂ Rn, Cs(E), D
s
(µ, x) defined as above. If we

replace µ in (1.1) by Cs(.) and Cs(E) < ∞, then D
s
(Cs, x) = 1 for Cs−

almost all x ∈ E.
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Figure 1

Let S0 be the unit square on the plane. We establish an orthogonal co-
ordinate system as follows. Take the origin to be a vertex of S0 (see Figure
1), and {f1, f2, f3, f4} be the iterated function system iterating on S0, where
fi(x) = λix + bi, i = 1, 2, 3, 4, x = (x1, x2) ∈ R2, 0 < λi ≤ 1

2+
√

2
, b1 = (0, 0),

b2 = (1− λ2, 0), b3 = (1− λ3, 1− λ3), and b4 = (0, 1− λ4). Then there exists
an unique non-empty compact set S that satisfies [6]

S =
4⋃

i=1

fi(S).

If the set S is a self-similar set satisfying the strong separation condition (that
is, fi(S) ∩ fj(S) = ∅ for i 6= j), then dimH(S) = dimC(S) = s, where s is the
unique positive solution of the equation

4∑
i=1

λs
i = 1. (1.2)

Moreover, 0 < Hs(S) ≤ Cs(S) < ∞. That is, the above measures are positive
and finite [6].

Denote by µ the unique probability measure satisfying the self-similar re-
lation

µ =
4∑

i=1

λs
i µ ◦ f−1

i . (1.3)
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By the scaling property of Cs(S), µ = c0C
s|S , where c0 is a constant. Then

the self-similar set S is the support of µ.

We first give some notation. Denote by P(x,y) the point with coordinate
(x, y). In Figure 1, EF is a straight line parallel to the diagonal P(0,1)P(1,0).
Set t = dist(P(0,0), EF ), ∆(P(0,0), t) = S0 ∩ (∆P(0,0)EF ) when 0 < t ≤

√
2

2

and ∆(P(0,0), t) = S0 − (S0 ∩ (∆P(1,1)EF )) when
√

2
2 ≤ t <

√
2, where

∆P(x,y)EF denotes the triangle with the vertexes P(x,y), E, and F . Let

µ be determined by (1.3), take d1
min = inf

0<t≤
√

2

µ(∆(P(0,0),t))

ts . We also de-

fine d2
min = inf

0<t≤
√

2

µ(∆(P(1,0),t))

ts , d3
min = inf

0<t≤
√

2

µ(∆(P(1,1),t))

ts and d4
min =

inf
0<t≤

√
2

µ(∆(P(0,1),t))

ts in the same way.

Lemma 1.3. Let 0 < λk ≤ 1
2+
√

2
, k = 1, 2, 3, 4, s be determined as in (1.2),

and s < 1. Then

dk
min = min

{ √
2sλs

k

(min{1− λi, 1− λj})s
,

λs
k + λs

i + λs
j

(
√

2(1− λp))s

}
,

where (k, i, j, p) ∈ {(1, 2, 4, 3), (2, 1, 3, 4), (3, 2, 4, 1), (4, 1, 3, 2)}.

Proof. Without loss of the generality, we only prove the case when (k, i, j, p) =
(1, 2, 4, 3). By self-similarity, we only need to consider the interval (0,

√
2] with√

2λ1 < t ≤
√

2. We shall prove that the infimum in the definition of d1
min

could not be attained when EF intersects fj(S0) in the interior of fj(S0)
(j=2,3,4). As 0 < λk ≤ 1

2+
√

2
, the straight line EF doesn’t intersect with

three of f1(S0), f2(S0), f3(S0), and f4(S0).

If there exists t0 ∈ (min{ 1−λ2√
2

, 1−λ4√
2
},max{ 1+λ2√

2
, 1+λ4√

2
}) such that

µ(∆(P(0,0), t0))
ts0

=
√

2sλs
1

(min{1− λ2, 1− λ4})s
,

EF must intersect at least one of f2(S0), f4(S0) in their interiors when t = t0.
Define t2 = dist(P(1−λ2,0), EF ) and t4 = dist(P(0,1−λ4), EF ). Note that if
EF doesn’t intersect fk(S0) in its interior, we take tk = 0, where k = 2 when
λ2 ≤ λ4 and k = 4 when λ2 ≥ λ4. Then
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µ(∆(P(0,0), t0))
ts0

≥
λs

1 + max{µ(∆(P(1−λ2,0), t2)), µ(∆(P(0,1−λ4), t4))}
(min{ 1−λ2√

2
, 1−λ4√

2
}+ max{t2, t4})s

>
λs

1 + max{µ(∆(P(1−λ2,0), t2)), µ(∆(P(0,1−λ4), t4))}
(min{ 1−λ2√

2
, 1−λ4√

2
})s + (max{t2, t4})s

≥ min{ λs
1

(min{ 1−λ2√
2

, 1−λ4√
2
})s

,
max{µ(∆(P(1−λ2,0), t2)), µ(∆(P(0,1−λ4), t4))}

(max{t2, t4})s
}

= min{
√

2sλs
1

(min{1− λ2, 1− λ4})s
,
max{µ(∆(P(1−λ2,0), t2)), µ(∆(P(0,1−λ4), t4))}

(max{t2, t4})s
},

which contradicts the definition of d1
min.

If there exists t0 ∈ (
√

2(1− λ3),
√

2) such that

µ(∆(P(0,0), t0))
ts0

=
λs

1 + λs
2 + λs

4

(
√

2(1− λ3))s
,

EF must intersect f3(S0) in its interior when t = t0. Define

t3 = dist(P(1−λ3,1−λ3), EF ).

Then

µ(∆(P(0,0), t0))
ts0

=
λs

1 + λs
2 + λs

4 + µ(∆(P(1−λ3,1−λ3), t3))

(
√

2(1− λ3) + t3)s

>
λs

1 + λs
2 + λs

4 + µ(∆(P(1−λ3,1−λ3), t3))

(
√

2(1− λ3))s + ts3

≥ min{ λs
1 + λs

2 + λs
4√

2s(1− λ3)s
,
µ(∆(P(1−λ3,1−λ3), t3))

ts3
},

which contradicts the definition of d1
min. This completes the proof.

We now give the main result of this paper.
Main Theorem. Let 0 < λt < 1

2+
√

2
, t = 1, 2, 3, 4, 0 < s < 1. If the

parameters λ1, λ2, λ3, λ4 satisfy the following conditions
(i) 2λp ≤ ( (1−λk)dp

min√
2s

)
1

1−s , where k 6= p, k, p ∈ {1, 2, 3, 4},

(ii) λs
k+λs

i +λs
j

(1−λk)s ≤ 1√
2s

, where k 6= i,k 6= j, i 6= j, k, i, j ∈ {1, 2, 3, 4},
then
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Cs(S) = D−1
max,

where
Dmax = max

1≤t≤4
{ 1
(2
√

2(1− λt))s
}.

The proof of the main theorem will be given in next Section, we first give
an example that the exact centered covering measure can be determined by
the main theorem.

Example. Let λ1 = λ3 = 1
400 and λ2 = λ4 = 1

20 for the convenience of
computation. Then s = log20(

√
3 + 1), 1√

2s
≈ 0.8902 and the following can be

easily computed.

d1
min = d3

min = (
√

2
20× 19

)s, and d2
min = d4

min = (
20
√

2
399

)s.

2λ1 = 2λ3 =
1

200
= 0.0050, and 2λ2 = 2λ4 =

1
10

= 0.1000.

(
(1− λ3)d1

min√
2s

)
1

1−s = (
(1− λ1)d3

min√
2s

)
1

1−s ≈ 0.0496,

(
(1− λ4)d2

min√
2s

)
1

1−s = (
(1− λ2)d4

min√
2s

)
1

1−s ≈ 0.2043.

(
(1− λi)d

j
min√

2s
)

1
1−s = (

(1− λu)dv
min√

2s
)

1
1−s ≈ 0.0461 for i, u ∈ {2, 4} and j, v ∈ {1, 3}.

(
(1− λi)d

j
min√

2s
)

1
1−s = (

(1− λu)dv
min√

2s
)

1
1−s ≈ 0.2198 for i, u ∈ {1, 3} and j, v ∈ {2, 4}.

λs
1 + λs

2 + λs
4

(1− λ1)s
=

λs
3 + λs

2 + λs
4

(1− λ3)s
≈ 0.8668,

λs
2 + λs

1 + λs
3

(1− λ2)s
=

λs
4 + λs

1 + λs
3

(1− λ4)s
≈ 0.6450.

λs
1 + λs

2 + λs
3

(1− λ1)s
=

λs
3 + λs

1 + λs
2

(1− λ3)s
=

λs
1 + λs

3 + λs
4

(1− λ1)s
=

λs
3 + λs

1 + λs
4

(1− λ3)s
≈ 0.6345.

λs
2 + λs

3 + λs
4

(1− λ2)s
=

λs
4 + λs

2 + λs
3

(1− λ4)s
=

λs
2 + λs

1 + λs
4

(1− λ2)s
=

λs
4 + λs

1 + λs
2

(1− λ4)s
≈ 0.8811.

The above equalities indicate that all of the conditions of the main theorem
are satisfied so that

Dmax = max{ 1
(2
√

2(1− λ1))s
,

1
(2
√

2(1− λ2))s
} = (

10
19
√

2
)s,
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and thus

Cs(S) = (
19
√

2
10

)s.

2 Proof of the Main Theorem.

This section gives the proof of the main theorem. The desired statement
follows from the following Lemmas (see [1], Lemma 2.2).

Lemma 2.1. [1] Suppose 0 < α < 1, p ≤ p0, a ≥ a0 and y ≥ λ0x
α. Then

0 < x ≤ (a0λ0
p0

)
1

1−α implies p−y
(a−x)α < p

aα .

For any P(x,y) ∈ fi(S0), i = 1, 2, 3, 4, and let P
(x,y)

jq be the farthest vertex
of fj(S0) from P(x,y), where j 6= i, j ∈ {1, 2, 3, 4}, and the lower label jq

in P
(x,y)

jq denotes {P (x,y)

jq } = lim
n→∞

fj ◦ fn
q (S0). For example, in Figure 1, if

P(x,y) = P(0,λ1) ∈ f1(S0), then P
(0,λ1)

22 = P(1,0), P
(0,λ1)

33 = P(1,1), P
(0,λ1)

43 =
P(λ4,1), etc. With above notation, we have

Lemma 2.2. Under the conditions of the main theorem, for any P(x,y) ∈
fk(S) and any real r with

√
2λk ≤ r <

√
2, k = 1, 2, 3, 4, we have

µ(B(P(x,y), r))
(2r)s

≤ 1

(2 · dist(P(x,y), P
(x,y)

pq ))s
,

where (k, p) ∈ {(1, 3), (2, 4), (3, 1), (4, 2)}. Moreover,

sup√
2λk≤r<

√
2

µ(B(P(x,y), r))
(2r)s

=
1

(2 · dist(P(x,y), P
(x,y)

pq ))s
.

Proof. Without loss of the generality, we only prove the case when (k, p) =
(1, 3). For any P(x,y) ∈ f1(S0), P

(x,y)

jq must be a vertex of fj(S0), j = 2, 3, 4
(see Figure 2). If the circular arc of B(P(x,y), r) intersects fj(S0) in its interior,
let

tjq = sup{t ∈ (0,
√

2λj ] : ∆(P
(x,y)

jq , t) ∩B(P(x,y), r) = ∅}, q ∈ {1, 2, 3, 4}.

Then ∆(P
(x,y)

jq , tjq) intersects the circular arc of B(P(x,y), r) at an unique point
which is denoted by Qj , and Qj ∈ fj(S0). It is easy to see that

r = dist(P(x,y), Qj) ≥ dist(P(x,y), P
(x,y)

jq )− dist(P
(x,y)

jq , Qj).
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Note that the angle between the sides of square and its diagonal is π
4 . Thus,

the above inequality implies

r = dist(P(x,y), Qj) ≥ dist(P(x,y), P
(x,y)

jq )−
√

2tjq. (2.1)

We first note that f1(S0) ⊂ B(P(x,y), r), and we may suppose that

dist(P(x,y), P
(x,y)

4q ) ≤ dist(P(x,y), P
(x,y)

2q ) ≤ dist(P(x,y), P
(x,y)

3q )

without loss of the generality. We continue our proof in the following four
cases:
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Figure 2

Case 1. When
√

2λ1 ≤ r < dist(P(x,y), P
(x,y)

4q ), then either B(P(x,y), r) ∩
fj0(S0) = ∅(j0 = 2, 3, 4), or the circular arc of B(P(x,y), r) intersects only
one of the squares f2(S0), f3(S0), f4(S0), or the circular arc of B(P(x,y), r)
intersects two of the squares f2(S0), f3(S0), f4(S0), or the circular arc of
B(P(x,y), r) intersects all of the squares f2(S0), f3(S0), f4(S0).

If B(P(x,y), r) ∩ fj0(S0) = ∅(j0 = 2, 3, 4), it is obvious that

µ(B(P(x,y), r))
(2r)s

≤ λs
1

(2
√

2λ1)s
=

1
(2
√

2)s
. (2.2)

If the circular arc of B(P(x,y), r) intersects only one of the squares f2(S0),
f3(S0), f4(S0). With the above notation, r = dist(P(x,y), Qj0), j0 = 2, 3, 4,

and µ(B(P(x,y), r)) ≤ λs
1 + λs

j0
− µ(∆(P

(x,y)

j0q , tj0q)). Combining with (2.1), we
obtain
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µ(B(P(x,y), r))
(2r)s

≤
λs

1 + λs
j0
− µ(∆(P

(x,y)

j0q , tj0q))

(2 · (dist(P(x,y), P
(x,y)

j0q )−
√

2tj0q))s

=
λs

1 + λs
j0
− µ(∆(P

(x,y)

j0q , tj0q))

(2 · dist(P(x,y), P
(x,y)

j0q )− 2
√

2tj0q)s
.

We take in Lemma 2.1, α = s, p0 = p = λs
1 + λs

j0
, a = 2 · dist(P(x,y), P

(x,y)

j0q ),
a0 = 2(1 − λ1) when j0 = 2, 4 and a0 = 2

√
2(1 − λ1) when j0 = 3, y =

µ(∆(P
(x,y)

j0q , tj0q)), x = 2
√

2tj0q. By Lemma 1.3, we have

y

xα
=

µ(∆(P
(x,y)

j0q , tj0q))

(2
√

2tj0q)s
≥ 1

2s
√

2s
dq

min.

Take λ0 the right hand side of the above inequality, and condition (i) of the
main theorem ensures 2

√
2tj0q ≤ (a0λ0

p0
)

1
1−s . By Lemma 2.1, we have

µ(B(P(x,y), r))
(2r)s

≤
λs

1 + λs
j0

(2 · dist(P(x,y), P
(x,y)

j0q ))s
. (2.3)

If the circular arc of B(P(x,y), r) intersects two of the squares f2(S0), f3(S0),
f4(S0). Let

dist(P(x,y), P
(x,y)

m0q ) = max{dist(P(x,y), P
(x,y)

i0q ), dist(P(x,y), P
(x,y)

j0q )},
where (i0, j0) ∈ {(2, 3), (2, 4), (3, 4)}. With the above notation, we have

µ(B(P(x,y), r))
(2r)s

≤
λs

1 + λs
i0

+ λs
j0
− µ(∆(P

(x,y)

i0q , ti0q))− µ(∆(P
(x,y)

j0q , tj0q))

(2 · (dist(P(x,y), P
(x,y)

m0q )−
√

2tm0q))s

≤
λs

1 + λs
i0

+ λs
j0
− µ(∆(P

(x,y)

m0q , tm0q))

(2 · dist(P(x,y), P
(x,y)

m0q )− 2
√

2tm0q)s

We take in Lemma 2.1, α = s, p0 = p = λs
1 + λs

i0
+ λs

j0
, a = 2 ·

dist(P(x,y), P
(x,y)

m0q ), a0 = 2(1 − λ1) when m0 = 2, 4, and a0 = 2
√

2(1 − λ1)

when m0 = 3, y = µ(∆(P
(x,y)

m0q , tm0q)), x = 2
√

2tm0q. By Lemma 1.3, we have

y

xα
=

µ(∆(P
(x,y)

m0q , tm0q))

(2
√

2tm0q)s
≥ 1

2s
√

2s
dq

min.
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Take λ0 on the right hand side of the above inequality, and condition (i)
of the main theorem ensures 2

√
2tm0q ≤ (a0λ0

p0
)

1
1−s . By Lemma 2.1, we have

µ(B(P(x,y), r))
(2r)s

≤
λs

1 + λs
i0

+ λs
j0

(2 · dist(P(x,y), P
(x,y)

m0q ))s
. (2.4)

If the circular arc of B(P(x,y), r) intersects all of the squares f2(S0), f3(S0),
and f4(S0). Note that

dist(P(x,y), P
(x,y)

3q ) ≥ dist(P(x,y), P
(x,y)

2q )

and
dist(P(x,y), P

(x,y)

3q ) ≥ dist(P(x,y), P
(x,y)

4q ),

and then

µ(B(P(x,y), r))
(2r)s

≤
1− µ(∆(P

(x,y)

2q , t2q))− µ(∆(P
(x,y)

3q , t3q))− µ(∆(P
(x,y)

4q , t4q))

(2 · (dist(P(x,y), P
(x,y)

3q )−
√

2t3q))s

≤
1− µ(∆(P

(x,y)

3q , t3q))

(2 · dist(P(x,y), P
(x,y)

3q )− 2
√

2t3q)s
.

We take Lemma 2.1 α = s, p0 = p = 1, a = 2 · dist(P(x,y), P
(x,y)

3q ), a0 =

2
√

2(1− λ1), y = µ(∆(P
(x,y)

3q , t3q)), x = 2
√

2t3q.

By Lemma 1.3, we have y
xα = µ(∆(P

(x,y)
3q ,t3q))

(2
√

2t3q)s
≥ 1

2s
√

2s
dq

min.
Take λ0 the right hand side of the above inequality, and condition (i) of the
main theorem ensures that 2

√
2t3q ≤ (a0λ0

p0
)

1
1−s . By Lemma 2.1, we have

µ(B(P(x,y), r))
(2r)s

≤ 1

(2 · dist(P(x,y), P
(x,y)

3q ))s
. (2.5)

Case 2. When dist(P(x,y), P
(x,y)

4q ) ≤ r < dist(P(x,y), P
(x,y)

2q ), then

B(P(x,y), r) ⊃ f4(S0).

In this case, either B(P(x,y), r) ∩ f2(S0) = ∅ and B(P(x,y), r) ∩ f3(S0) = ∅, or
the circular arc of B(P(x,y), r) intersects one of the f2(S0) and f3(S0), or the
circular arc of B(P(x,y), r) intersects all of the f2(S0) and f3(S0).
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If B(P(x,y), r) ∩ f2(S0) = ∅ and B(P(x,y), r) ∩ f3(S0) = ∅, then

µ(B(P(x,y), r))
(2r)s

≤ λs
1 + λs

4

(2 · dist(P(x,y), P
(x,y)

4q ))s
. (2.6)

If the circular arc of B(P(x,y), r) intersects one of f2(S0) or f3(S0), then

µ(B(P(x,y), r))
(2r)s

≤
λs

1 + λs
4 + λs

j0
− µ(∆(P

(x,y)

j0q , tj0q))

(2 · (dist(P(x,y), P
(x,y)

j0q )−
√

2tj0q))s

=
λs

1 + λs
4 + λs

j0
− µ(∆(P

(x,y)

j0q , tj0q))

(2 · dist(P(x,y), P
(x,y)

j0q )− 2
√

2tj0q)s
,

where j0 ∈ {2, 3}. We take in Lemma 2.1, α = s, p0 = p = λs
1 + λs

4 + λs
j0

,

a = 2 · dist(P(x,y), P
(x,y)

j0q ), a0 = 2(1− λ1) when j0 = 2, and a0 = 2
√

2(1− λ1)

when j0 = 3, y = µ(∆(P
(x,y)

j0q , tj0q)), x = 2
√

2tj0q. By Lemma 1.3, we have

y

xα
=

µ(∆(P
(x,y)

j0q , tj0q))

(2
√

2tj0q)s
≥ 1

2s
√

2s
dq

min.

Take λ0 on the right hand side of the above inequality, and condition (i) of
the main theorem ensures 2

√
2tj0q ≤ (a0λ0

p0
)

1
1−s . By Lemma 2.1, we have

µ(B(P(x,y), r))
(2r)s

≤
λs

1 + λs
4 + λs

j0

(2 · dist(P(x,y), P
(x,y)

j0q ))s
, j0 ∈ {2, 3}. (2.7)

If the circular arc of B(P(x,y), r) intersects all of the f2(S0) and f3(S0), it is

obvious that dist(P(x,y), P
(x,y)

3q ) ≥ dist(P(x,y), P
(x,y)

2q ). Then

µ(B(P(x,y), r))
(2r)s

≤
1− µ(∆(P

(x,y)

3q , t3q))

(2 · (dist(P(x,y), P
(x,y)

3q )−
√

2t3q))s

=
1− µ(∆(P

(x,y)

3q , t3q))

(2 · dist(P(x,y), P
(x,y)

3q )− 2
√

2t3q)s
.

As in Lemma 2.1, take α = s, p0 = p = 1, a = 2 · dist(P(x,y), P
(x,y)

3q ), a0 =

2
√

2(1− λ1), y = µ(∆(P
(x,y)

3q , t3q)), x = 2
√

2t3q. By Lemma 1.3, we have
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y

xα
=

µ(∆(P
(x,y)

3q , t3q))

(2
√

2t3q)s
≥ 1

2s
√

2s
dq

min.

Taking λ0 on the right hand side of the above inequality, the condition (i) of
the main theorem ensures 2

√
2t3q ≤ (a0λ0

p0
)

1
1−s . By Lemma 2.1, we have

µ(B(P(x,y), r))
(2r)s

≤ 1

(2 · dist(P(x,y), P
(x,y)

3q ))s
. (2.8)

Case 3. When dist(P(x,y), P
(x,y)

2q ) ≤ r < dist(P(x,y), P
(x,y)

3q ), then

B(P(x,y), r) ⊃ f4(S0) and B(P(x,y), r) ⊃ f2(S0).

In this case, either B(P(x,y), r)∩ f3(S0) = ∅, or the circular arc of B(P(x,y), r)
intersects f3(S0). If B(P(x,y), r) ∩ f3(S0) = ∅, then

µ(B(P(x,y), r))
(2r)s

≤ λs
1 + λs

2 + λs
4

(2 · dist(P(x,y), P
(x,y)

2q ))s
. (2.9)

If the circular arc of B(P(x,y), r) intersects f3(S0), then

µ(B(P(x,y), r))
(2r)s

≤
1− µ(∆(P

(x,y)

3q , t3q))

(2 · (dist(P(x,y), P
(x,y)

3q )−
√

2t3q))s

=
1− µ(∆(P

(x,y)

3q , t3q))

(2 · dist(P(x,y), P
(x,y)

3q )− 2
√

2t3q)s
.

The discussion is now the same as above, take in Lemma 2.1 α = s, p0 = p = 1,
a = 2·dist(P(x,y), P

(x,y)

3q ), a0 = 2
√

2(1−λ1), y = µ(∆(P
(x,y)

3q , t3q)), x = 2
√

2t3q.
By Lemma 1.3, we have

y

xα
=

µ(∆(P
(x,y)

3q , t3q))

(2
√

2t3q)s
≥ 1

2s
√

2s
dq

min.

Taking λ0 on the right hand side of the above inequality, and condition (i) of
the main theorem ensures 2

√
2t3q ≤ (a0λ0

p0
)

1
1−s . By Lemma 2.1, we have

µ(B(P(x,y), r))
(2r)s

≤ 1

(2 · dist(P(x,y), P
(x,y)

3q ))s
. (2.10)
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Case 4. When dist(P(x,y), P
(x,y)

3q ) ≤ r <
√

2, then B(P(x,y), r) ⊃ fk(S0),
k = 1, 2, 3, 4. It is obvious that

µ(B(P(x,y), r))
(2r)s

≤ 1

(2 · dist(P(x,y), P
(x,y)

3q ))s
. (2.11)

The above discussion indicated that the right hand sides of the above inequal-
ities (2.2)− (2.11) are all no more than

1

(2 · dist(P(x,y), P
(x,y)

pq ))s
,

p=2,3,4. Note that P(x,y) ∈ f1(S0), and P
(x,y)

pq is the farthest vertex of the

square fp(S0) from P(x,y). Then dist(P(x,y), P
(x,y)

pq ) ≥ 1− λ1 when p ∈ {2, 4},
and dist(P(x,y), P

(x,y)

pq ) ≥
√

2(1−λ1) when p = 3. Moreover, dist(P(x,y), P
(x,y)

pq ) ≤√
2. Combining condition (ii) of the main theorem with the above inequalities,

we complete the proof of Lemma 2.2.

Corollary 2.3. For any P(x,y) ∈ fk(S), we have

sup√
2λk≤r<

√
2

µ(B(P(x,y), r))
(2r)s

≤ 1
(2
√

2(1− λk))s
,

where k = 1, 2, 3, 4.

Proof. Without loss of the generality, we only consider the case k = 1. Note
that the point P(λ1,λ1) is the nearest point from P(1,1) in all of the points of
f1(S0). By Lemma 2.2, we have

sup√
2λ1≤r<

√
2

µ(B(P(λ1,λ1), r))
(2r)s

=
1

(2
√

2(1− λ1)s
.

Then,

sup√
2λ1≤r<

√
2

µ(B(P(x,y), r))
(2r)s

≤ sup√
2λ1≤r<

√
2

µ(B(P(λ1,λ1), r))
(2r)s

=
1

(2
√

2(1− λ1)s
.

This completes the proof.

Lemma 2.4. Let 0 < λk ≤ 1
2+
√

2
, k = 1, 2, 3, 4, µ be the self-similar measure

defined as in (1.3), and s be determined as in (1.2), then
(i) For any point P(x,y) ∈ S, D

s
(µ, P(x,y)) ≤ max

1≤k≤4
{ 1

(2
√

2(1−λk))s
}.

(ii) D
s
(µ, P(x,y)) ≥ max

1≤k≤4
{ 1

(2
√

2(1−λk))s
} for µ− almost all P(x,y) ∈ S.
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Proof. (i) For any point P(x,y) ∈ S, there exists a sequence i1, i2, · · · , in, · · ·
such that {P(x,y)} = lim

n→∞
fi1 ◦ fi2 ◦ · · · ◦ fin(S0), where ij ∈ {1, 2, 3, 4}, j =

1, 2, · · · , n. If a real r satisfies 0 < r ≤
√

2, there is an integer n > 0 such that√
2λi1λi2 · · ·λin

λin+1 < r ≤
√

2λi1λi2 · · ·λin
. It is easy to see that

(fi1 ◦ fi2 ◦ · · · ◦ fin)−1(B(P(x,y), r))

= B((fi1◦fi2◦···◦fin
)−1(P(x,y)), (λi1λi2 · · ·λin

)−1r),

then
√

2λin+1 < (λi1λi2 · · ·λin)−1r ≤
√

2. Note that for any point P(x,y) ∈
fi(S) and any radius 0 < r ≤

√
2λi, the condition 0 < λi ≤ 1

2+
√

2
implies that

B(P(x,y), r) ∩ fj(S) = ∅, j 6= i, i, j ∈ {1, 2, 3, 4}. Combining this fact with the
self-similarity of S,

µ(B(P(x,y), r))
(2r)s

=
µ(B((fi1 ◦ fi2 ◦ · · · ◦ fin)−1(P(x,y)), (λi1λi2 · · ·λin)−1r))

(2(λi1λi2 · · ·λin
)−1r)s

.

By Corollary 2.3,

µ(B(P(x,y), r))
(2r)s

≤ max
1≤k≤4

{ 1
(2
√

2(1− λk))s
}.

Then,

D
s
(µ, P(x,y)) ≤ max

1≤k≤4
{ 1
(2
√

2(1− λk))s
}.

(ii) Take 1
(2
√

2(1−λk0 ))s
= max

1≤i≤4
{ 1

(2
√

2(1−λi))s
}. For any p ≥ 1, k ≥ 1,

let fk
l0

= fl0 ◦ fl0 ◦ · · · ◦ fl0 , where (k0, l0) ∈ {(1, 3), (2, 4), (3, 1), (4, 2)}. We
construct a subset Fp,k of S0 that satisfies µ(Fp,k) = 1 as follows

Fp,k =
∞⋃

n=p

⋃
(i1i2···in)∈In

fi1 ◦ fi2 ◦ · · · ◦ fin
◦ fk0 ◦ fk

l0(S0),

where In = {(i1i2 · · · in) : ij ∈ {1, 2, 3, 4}, j = 1, 2, · · · , n}. According to
[2], we have µ(

⋂
k≥1

(
⋂

p≥1

Fp,k)) = 1. By the above results, if P(x,y) ∈ S ∩

(
⋂

k≥1

(
⋂

p≥1

Fp,k)), then P(x,y) ∈ S ∩ Fp,k for any k ≥ 1 and p ≥ 1. The def-

inition of Fp,k implies that there exists some n > p (n relative to p) such
that dist(P(x,y), P

0
n) ≤

√
2λi1λi2 · · ·λin

λk0λ
k
l0

, where {P 0
n} = lim

k→∞
fi1 ◦ fi2 ◦

· · · ◦ fin ◦ fk0 ◦ fk
l0

(S0). Take rp =
√

2(λi1λi2 · · ·λin
− λi1λi2 · · ·λin

λk0) +√
2λi1λi2 · · ·λinλk0λ

k
l0

, then

B(P(x,y), rp) ⊃ B(P 0
n ,
√

2(λi1λi2 · · ·λin − λi1λi2 · · ·λinλk0)).
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Thus,

µ(B(P(x,y), rp)) ≥ µ(B(P 0
n ,
√

2(λi1λi2 · · ·λin
− λi1λi2 · · ·λin

λk0))),

and

µ(B(P(x,y), rp))
(2rp)s

≥

λs
i1

λs
i2
· · ·λs

in

2s
√

2s(λi1λi2 · · ·λin − λi1λi2 · · ·λinλk0 + λi1λi2 · · ·λinλk0λ
k
l0

)s

=
1

2s
√

2s(1− λk0 + λk0λ
k
l0

)s
.

Note that rp → 0 when p → ∞, and P(x,y) ∈ S ∩ (
⋂

p≥1

Fp,k) for any k ≥ 1,

which implies

D
s
(µ, P(x,y)) ≥

1
2s
√

2s(1− λk0 + λk0λ
k
l0

)s
.

Combining P(x,y) ∈ S ∩ (
⋂

k≥1

(
⋂

p≥1

Fp,k)) with the above inequality, let k →∞,

then

D
s
(µ, P(x,y)) ≥

1
2s
√

2s(1− λk0)s
.

As µ(
⋂

k≥1

(
⋂

p≥1

Fp,k)) = 1 and S is the support of the measure µ, then the above

inequality is valid for µ− almost all P(x,y) ∈ S. This completes the proof of
Lemma 2.4.

Proof of the Main theorem. By the definition of the self-similar measure
µ, for any measurable subset E ⊂ R2, µ(E) = Cs(E∩S)

Cs(S) . Combining with the
definition of the centered upper spherical density and Lemma 1.2, we have
D

s
(µ, P(x,y)) = 1

Cs(S) for µ− almost all P(x,y) ∈ S. Lemma 2.4 showed that if

D
s
(µ, P(x,y)) = max

1≤i≤4
{ 1

(2
√

2(1−λi))s
} for µ− almost all P(x,y) ∈ S, then Cs(S) =

( max
1≤i≤4

{ 1
(2
√

2(1−λi))s
})−1. This complete the proof of the main theorem.

Remark. The method developed in this paper can be generalized to other
self-similar sets with a larger number of generators and dimensions no more
than one, but the computations are more tedious.
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