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Abstract

We establish the existence of an entire weak solution for a class of
stationary Schrödinger systems with subcritical discontinuous nonlinear-
ities and lower bounded potentials that blow-up at infinity. The proof
relies on Chang’s version of the Mountain Pass Lemma for locally Lip-
schitz functionals. Our result generalizes in a nonsmooth framework, a
result of Rabinowitz [12] related to entire solutions of the Schrödinger
equation.

1 Introduction and the Main Result.

In quantum mechanics, the Schrödinger equation plays the role of Newton’s
laws and conservation of energy in classical mechanics; that is, it predicts
the future behavior of a dynamic system. The linear form of Schrödinger’s
equation is

∆ψ +
8π2m

~2
(E(x)− V (x))ψ = 0

where ψ is the Schrödinger wave function, m is the mass, ~ denotes Planck’s
constant, E is the energy, and V stands for the potential energy. The struc-
ture of the nonlinear Schrödinger equation is much more complicated. This
equation describes various phenomena arising: in self-channelling of a high-
power ultra-short laser in matter, in the theory of Heisenberg ferromagnets
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and magnons, in dissipative quantum mechanics, in condensed matter theory,
and in plasma physics (e.g., the Kurihara superfluid film equation). We refer
to [8] for a modern overview, including applications.

Consider the model problem

i~ψt = − ~2

2m
∆ψ + V (x)ψ − γ|ψ|p−1ψ in RN (N ≥ 2), (1)

where p < 2N/(N − 2) if N ≥ 3 and p < +∞ if N = 2. In the study of this
equation Oh [11] supposed that the potential V is bounded and possesses a
non-degenerate critical point at x = 0. More precisely, it is assumed that V
belongs to the class (Va) (for some a) introduced in Kato [9]. Taking γ > 0
and ~ > 0 sufficiently small and using a Lyapunov-Schmidt type reduction,
Oh [11] proved the existence of a standing wave solution of Problem (1), i.e.
a solution of the form

ψ(x, t) = e−iEt/~u(x). (2)

Note that substituting (2) into (1) leads to

−~2

2
∆u+ (V (x)− E)u = |u|p−1u.

The change of variable y = ~−1x (and replacing y by x) yields

−∆u+ 2 (V~(x)− E)u = |u|p−1u in RN ,

where V~(x) = V (~x).
In a celebrated paper, Rabinowitz [12] continued the study of standing wave

solutions of nonlinear Schrödinger equations. After constructing a standing
wave equation, Rabinowitz reduces the problem to that of studying the semi-
linear elliptic equation

−∆u+ b(x)u = f(x, u) in RN ,

under suitable conditions on b and assuming that f is smooth, super-linear
and subcritical.

Inspired by Rabinowitz’ paper, we consider the class of coupled elliptic
systems in RN (N ≥ 3){

−∆u1 + a(x)u1 = f(x, u1, u2) in RN

−∆u2 + b(x)u2 = g(x, u1, u2) in RN .
(3)

We point out that coupled nonlinear Schrödinger systems describe some
physical phenomena such as the propagation in birefringent optical fibers or
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Kerr-like photorefractive media in optics. Another motivation to the study
of coupled Schrödinger systems arises from the Hartree-Fock theory for the
double condensate, i.e. a binary mixture of Bose-Einstein condensates in two
different hyperfine states, cf. [6].

Throughout this paper we assume that a, b ∈ L∞loc(RN ) and there exist
a , b > 0 such that a(x) ≥ a , b(x) ≥ b a.e. in RN , and esslim|x|→∞a(x) =
esslim|x|→∞b(x) = +∞. Our aim in this paper is to study the existence
of solutions to the above problem in the case when f, g are not continuous
functions. Our goal is to show how variational methods can be used to find
existence results for stationary nonsmooth Schrödinger systems.

Throughout this paper we assume that f(x, ·, ·), g(x, ·, ·) ∈ L∞loc(R2). Let

f(x, t1, t2) = lim
δ→0

essinf{f(x, s1, s2); |ti − si| ≤ δ; i = 1, 2}

f(x, t1, t2) = lim
δ→0

esssup{f(x, s1, s2); |ti − si| ≤ δ; i = 1, 2}

g(x, t1, t2) = lim
δ→0

essinf{g(x, s1, s2); |ti − si| ≤ δ; i = 1, 2}

g(x, t1, t2) = lim
δ→0

esssup{g(x, s1, s2); |ti − si| ≤ δ; i = 1, 2}.

Under these conditions we reformulate Problem (3) as

−∆u1 + a(x)u1 ∈ [f(x, u1(x), u2(x)), f(x, u1(x), u2(x))] a.e. x ∈ RN

−∆u2 + b(x)u2 ∈ [g(x, u1(x), u2(x)), g(x, u1(x), u2(x))] a.e. x ∈ RN .
(4)

Let H1 = H(RN ,R2) be the Sobolev space of all U = (u1, u2) ∈ (L2(RN ))2

with weak derivatives
∂u1

∂xj
,
∂u2

∂xj
(j = 1, . . . , N) also in L2(RN ), endowed with

the usual norm

‖U‖2H1
=
∫

RN

(|∇U |2 + |U |2) dx =
∫

RN

(|∇u1|2 + |∇u2|2 + u2
1 + u2

2) dx.

Given the functions a, b : RN → R as above, define the subspace

E = {U = (u1, u2) ∈ H1;
∫

RN

(|∇u1|2 + |∇u2|2 + a(x)u2
1 + b(x)u2

2) dx < +∞}.

Then the space E endowed with the norm

‖U‖2E =
∫

RN

(|∇u1|2 + |∇u2|2 + a(x)u2
1 + b(x)u2

2) dx
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becomes a Hilbert space.
Since a(x) ≥ a > 0, b(x) ≥ b > 0, we have the continuous embeddings

H1 ↪→ Lq(RN ,R2) for all 2 ≤ q ≤ 2∗ = 2N/(N − 2).
We assume throughout the paper that f, g : RN × R2 → R are nontrivial

measurable functions satisfying the hypotheses{
|f(x, t)| ≤ C(|t|+ |t|p) for a.e. (x, t) ∈ RN × R2

|g(x, t)| ≤ C(|t|+ |t|p) for a.e. (x, t) ∈ RN × R2
(5)

where p < 2∗; lim
δ→0

esssup
{
|f(x,t)|
|t| ; (x, t) ∈ RN × (−δ,+δ)2

}
= 0

lim
δ→0

esssup
{
|g(x,t)|
|t| ; (x, t) ∈ RN × (−δ,+δ)2

}
= 0;

(6)

f and g are chosen so that the mapping F : RN × R2 → R defined by
F (x, t1, t2) :=

∫ t1
0
f(x, τ, t2) dτ +

∫ t2
0
g(x, 0, τ) dτ satisfiesF (x, t1, t2) =

t2∫
0

g(x, t1, τ) dτ +
t1∫
0

f(x, τ, 0) dτ

and F (x, t1, t2) = 0 if and only if t1 = t2 = 0;
(7)

and there exists µ > 2 such that for any x ∈ RN

0 ≤ µF (x, t1, t2) ≤


t1f(x, t1, t2) + t2g(x, t1, t2); t1, t2 ∈ [0,+∞)
t1f(x, t1, t2) + t2g(x, t1, t2); t1 ∈ [0,+∞), t2 ∈ (−∞, 0]
t1f(x, t1, t2) + t2g(x, t1, t2); t1, t2 ∈ (−∞, 0]
t1f(x, t1, t2) + t2g(x, t1, t2); t1 ∈ (−∞, 0], t2 ∈ [0,+∞).

(8)

Definition 1. A function U = (u1, u2) ∈ E is called solution to the problem
(4) if there exists a function W = (w1, w2) ∈ L2(RN ,R2) such that

(i) f(x, u1(x), u2(x)) ≤ w1(x) ≤ f(x, u1(x), u2(x)) a.e. x in RN ;
g(x, u1(x), u2(x)) ≤ w2(x) ≤ g(x, u1(x), u2(x)) a.e. x in RN ;

(ii)
∫

RN

(∇u1∇v1 +∇u2∇v2 +a(x)u1v1 + b(x)u2v2) dx =
∫

RN

(w1v1 +w2v2) dx,

for all (v1, v2) ∈ E.

Our main result is the following.

Theorem 1. Assume that conditions (5) - (8) are fulfilled. Then Problem (4)
has at least a nontrivial solution in E.
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2 Auxiliary Results.

We first recall some basic notions from the Clarke gradient theory for locally
Lipschitz functionals (see [4, 5] for more details). Let E be a real Banach
space and assume that I : E → R is a locally Lipschitz functional. Then the
Clarke generalized gradient is defined by

∂I(u) = {ξ ∈ E∗; I0(u, v) ≥ 〈ξ, v〉, for all v ∈ E},

where I0(u, v) stands for the directional derivative of I at u in the direction
v; i.e.

I0(u, v) = lim sup
w→u
λ↘0

I(w + λv)− I(w)
λ

.

Let Ω be an arbitrary domain in RN . Let EΩ be{
U = (u1, u2) ∈ H1(Ω; R2);

∫
Ω

(|∇u1|2 + |∇u2|2 + a(x)u2
1 + b(x)u2

2) dx < +∞
}

which is endowed with the norm

‖U‖2EΩ
=
∫
Ω

(|∇u1|2 + |∇u2|2 + a(x)u2
1 + b(x)u2

2) dx.

Then EΩ becomes a Hilbert space.

Lemma 1. The functional ΨΩ : EΩ → R,ΨΩ(U) =
∫
Ω

F (x, U) dx is locally

Lipschitz on EΩ.

Proof. We first observe that

F (x, U) = F (x, u1, u2) =

u1∫
0

f(x, τ, u2) dτ +

u2∫
0

g(x, 0, τ) dτ

=

u2∫
0

g(x, u1, τ) dτ +

u1∫
0

f(x, τ, 0) dτ

is a Carathéodory functional which is locally Lipschitz with respect to the
second variable. Indeed, by (5)

|F (x, t1, t)− F (x, s1, t)| =
∣∣∣∣
t1∫
s1

f(x, τ, t) dτ
∣∣∣∣ ≤ ∣∣∣∣

t1∫
s1

C(|τ, t|+ |τ, t|p) dτ
∣∣∣∣

≤ k(t1, s1, t)|t1 − s1|.
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Similarly
|F (x, t, t2)− F (x, t, s2)| ≤ k(t2, s2, t)|t2 − s2|.

Therefore

|F (x, t1, t2)− F (x, s1, s2)| ≤ |F (x, t1, t2)− F (x, s1, t2)|
+ |F (x, t1, s2)− F (x, s1, s2)|

≤ k(V )|(t2, s2)− (t1, s1)|

where V is a neighborhood of (t1, t2), (s1, s2).
For all x ∈ Ω let χ1(x) = max{u1(x), v1(x)} and χ2(x) = max{u2(x), v2(x)}.

It is obvious that if U = (u1, u2), V = (v1, v2) belong to EΩ, then (χ1, χ2) ∈
EΩ. So, by Hölder’s inequality and the continuous embedding EΩ ⊂ Lp(Ω; R2),

|ΨΩ(U)−ΨΩ(V )| ≤ C(‖χ1, χ2‖EΩ)‖U − V ‖EΩ ,

which concludes the proof.

The following result is a generalization of Lemma 6 in [10].

Lemma 2. Let Ω be an arbitrary domain in RN and let f : Ω×R2 → R be a
Borel function such that f(x, ·) ∈ L∞loc(R2). Then f and f are Borel functions.

Proof. Since the requirement is local, we may suppose that f is bounded by
M and it is nonnegative. Let

fm,n(x, t1, t2) =
( t1+ 1

n∫
t1− 1

n

t2+ 1
n∫

t2− 1
n

|f(x, s1, s2)|m ds1 ds2

) 1
m

.

Since f(x, t1, t2) = lim
δ→0

esssup{f(x, s1, s2); |ti − si| ≤ δ; i = 1, 2}, we deduce

that for every ε > 0, there exists n ∈ N∗ such that for |ti − si| < 1
n (i = 1, 2)

we have |esssupf(x, s1, s2)− f(x, t1, t2)| < ε or, equivalently,

f(x, t1, t2)− ε < esssupf(x, s1, s2) < f(x, t1, t2) + ε. (9)

By the second inequality in (9) we obtain f(x, s1, s2) ≤ f(x, t1, t2) + ε a.e.
x ∈ Ω for |ti − si| < 1

n (i = 1, 2) which yields

fm,n(x, t1, t2) ≤ (f(x, t1, t2) + ε)
(√

4/n2

) 1
m

. (10)
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Let

A =
{

(s1, s2) ∈ R2; |ti − si| <
1
n

(i = 1, 2); f(x, t1, t2)− ε ≤ f(x, s1, s2)
}
.

By the first inequality in (9) and the definition of the essential supremum we
obtain that |A| > 0 and

fm,n ≤
(∫ ∫

A

(f(x, s1, s2))mds1ds2

) 1
m

≥ (f(x, s1, s2)− ε)|A|1/m. (11)

Since (10) and (11) imply f(x, t1, t2) = lim
n→∞

lim
m→∞

fm,n(x, t1, t2), it suffices to

prove that fm,n is Borel. LetM = {f : Ω×R2 → R; |f | ≤M and f is a Borel
function} and N = {f ∈ M; fm,n is a Borel function}. Cf. [2, p.178], M is
the smallest set of functions having the properties:

(i) {f ∈ C(Ω× R2; R); |f | ≤M} ⊂ M;
(ii) f (k) ∈M and f (k) k→ f imply f ∈M.

Since N obviously contains the continuous functions and (ii) is also true for
N , by the Lebesgue dominated convergence theorem, we obtain thatM = N .
For f we note that f = −(−f)) and the proof of Lemma 2 is complete.

Let us now assume that Ω ⊂ RN is a bounded domain. By the continuous
embedding Lp+1(Ω; R2) ↪→ L2(Ω; R2), we may define the locally Lipschitz

functional ΨΩ : Lp+1(Ω; R2)→ R by ΨΩ(U) =
∫
Ω

F (x, U) dx.

Lemma 3. Under the above assumptions and for any U ∈ Lp+1(Ω; R2), we
have

∂ΨΩ(U)(x) ⊂ [f(x, U(x)), f(x, U(x))]× [g(x, U(x)), g(x, U(x))] a.e. x in Ω,

in the sense that if W = (w1, w2) ∈ ∂ΨΩ(U) ⊂ Lp+1(Ω; R2) then

f(x, U(x)) ≤ w1(x) ≤ f(x, U(x)) a.e. x in Ω (12)

g(x, U(x)) ≤ w2(x) ≤ g(x, U(x)) a.e. x in Ω. (13)

Proof. By the definition of the Clarke gradient we have∫
Ω

(w1v1 + w2v2) dx ≤ Ψ0
Ω(U, V ) for all V = (v1, v2) ∈ Lp+1(Ω; R2).
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Choose V = (v, 0) such that v ∈ Lp+1(Ω), v ≥ 0 a.e. in Ω. Thus, by Lemma
2,

∫
Ω

w1v ≤ lim sup
(h1,h2)→U

λ↘0

∫
Ω

( h1(x)+λv(x)∫
h1(x)

f(x, τ, h2(x)) dτ
)
dx

λ

≤
∫
Ω

(
lim sup

(h1,h2)→U
λ↘0

1
λ

h1(x)+λv(x)∫
h1(x)

f(x, τ, h2(x)) dτ
)
dx (14)

≤
∫
Ω

f(x, u1(x), u2(x))v(x) dx.

Analogously we obtain∫
Ω

f(x, u1(x), u2(x))v(x) dx ≤
∫
Ω

w1v dx for all v ≥ 0 in Ω.

Arguing by contradiction, suppose that (12) is false. Then there exist
ε > 0, a set A ⊂ Ω with |A| > 0 and w1 as above such that in A

w1(x) > f(x, U(x)) + ε. (15)

Taking v = 1A in (14) we obtain∫
Ω

w1v dx =
∫
A

w1 dx ≤
∫
A

f(x, U(x)) dx,

which contradicts (15). Proceeding in the same way we obtain the correspond-
ing result for g in (13).

By Lemma 3, Lemma 2.1 in Chang [3] and the embedding EΩ ↪→ Lp+1(Ω,R2)

we also obtain that for ΨΩ : EΩ → R, ΨΩ(U) =
∫
Ω

F (x, U) dx we have

∂ΨΩ(U)(x) ⊂ [f(x, U(x)), f(x, U(x))]× [g(x, U(x)), g(x, U(x))] a.e. x ∈ Ω.

Let V ∈ EΩ. Then Ṽ ∈ E, where Ṽ : RN → R2 is defined by

Ṽ =

{
V (x) x in Ω
0 otherwise.
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For W ∈ E∗ we consider WΩ ∈ E∗Ω such that 〈WΩ, V 〉 = 〈W, Ṽ 〉 for all V in

EΩ. Set Ψ : E → R, Ψ(U) =
∫

RN

F (x, U).

Lemma 4. Let W ∈ ∂Ψ(U), where U ∈ E. Then WΩ ∈ ∂ΨΩ(U), in the sense
that WΩ ∈ ∂ΨΩ(U |Ω).

Proof. By the definition of the Clarke gradient we deduce that 〈W, Ṽ 〉 ≤
Ψ0(U, Ṽ ) for all V in EΩ

Ψ0(U, Ṽ ) = lim sup
H→U,H∈E

λ→0

Ψ(H + λṼ )−Ψ(H)
λ

= lim sup
H→U,H∈E

λ→0

∫
RN

(F (x,H + λṼ )− F (x,H)) dx

λ

= lim sup
H→U,H∈E

λ→0

∫
Ω

(F (x,H + λṼ )− F (x,H)) dx

λ

= lim sup
H→U,H∈EΩ

λ→0

∫
Ω

(F (x,H + λṼ )− F (x,H)) dx

λ
= Ψ0

Ω(U, V ).

Hence 〈WΩ, V 〉 ≤ Ψ0
Ω(U, V ) which implies WΩ ∈ ∂Ψ0

Ω(U).

By Lemmas 3 and 4 we obtain that for any W ∈ ∂Ψ(U) (with U ∈ E),
WΩ satisfies (12) and (13). We also observe that for Ω1, Ω2 ⊂ RN we have
WΩ1 |Ω1∩Ω2 = WΩ2 |Ω1∩Ω2 .

Let W0 : RN → R, where W0(x) = WΩ(x) if x ∈ Ω. Then W0 is well
defined and

W0(x) ∈ [f(x, U(x)), f(x, U(x))]× [g(x, U(x)), g(x, U(x))] a.e. x ∈ RN

and, for all ϕ ∈ C∞c (RN ,R2), 〈W,ϕ〉 =
∫

RN

W0ϕ. By density of C∞c (RN ,R2) in

E we deduce that 〈W,V 〉 =
∫

RN

W0V dx for all V in E. Hence, for a.e. x ∈ RN

W (x) = W0(x) ∈ [f(x, U(x)), f(x, U(x))]× [g(x, U(x)), g(x, U(x))]. (16)
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3 Proof of Theorem 1.

Define the energy functional I : E → R as

I(U) =
1
2

∫
RN

(
|∇u1|2 + |∇u2|2 + a(x)u2

1 + b(x)u2
2

)
dx−

∫
RN

F (x, U) dx

=
1
2
‖U‖2E −Ψ(U).

The existence of solutions to problem (4) will be justified by a nonsmooth
variant of the Mountain-Pass Theorem (see [3]) applied to the functional I,
even if the PS condition is not fulfilled. More precisely, we check the following
geometric hypotheses.

I(0) = 0 and there exists V ∈ E such that I(V ) ≤ 0; (17)
there exist β, ρ > 0 such that I ≥ β on {U ∈ E; ‖U‖E = ρ}. (18)

Verification of (17). It is obvious that I(0) = 0. For the second
assertion we need the following lemma.

Lemma 5. There exist two positive constants C1 and C2 such that

f(x, s, 0) ≥ C1s
µ−1 − C2 for a.e. x ∈ RN ; s ∈ [0,+∞).

Proof. We first observe that (8) implies

0 ≤ µF (x, s, 0) ≤

{
sf(x, s, 0) s ∈ [0,+∞)
sf(x, s, 0) s ∈ (−∞, 0],

which places us in the conditions of Lemma 5 in [10].
Verification of (17) continued. Choose v ∈ C∞c (RN ) − {0} so that

v ≥ 0 in RN . We have
∫

RN
|∇v|2 + a(x)v2 <∞; hence t(v, 0) ∈ E for all t ∈ R.

Thus by Lemma 5 we obtain

I(t(v, 0)) =
t2

2

∫
RN

|∇v|2 + a(x)v2 dx−
∫

RN

tv∫
0

f(x, τ, 0) dτ

≤ t2

2

∫
RN

|∇v|2 + a(x)v2 dx−
∫

RN

tv∫
0

(C1τ
µ−1 − C2) dτ

=
t2

2

∫
RN

|∇v|2 + a(x)v2 dx+ C2t

∫
RN

v dx− C ′1tµ
∫

RN

vµ dx < 0
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for t > 0 large enough.
Verification of (18). We observe that (6), (7) and (8) imply that, for

any ε > 0, there exists a constant Aε > 0 such that

|f(x, s)| ≤ ε|s|+Aε|s|p

|g(x, s)| ≤ ε|s|+Aε|s|p
for a.e. (x, s) ∈ RN × R2 . (19)

By (19) and Sobolev’s embedding theorem we have, for any U ∈ E,

|Ψ(U)| = |Ψ(u1, u2)| ≤
∫

RN

|u1|∫
0

||f(x, τ, u2)| dτ +
∫

RN

u2∫
0

|g(x, 0, τ)| dτ

≤
∫

RN

(
ε

2
|(u1, u2)|2 +

Aε
p+ 1

|(u1, u2|p+1

)
dx

+
∫

RN

(
ε

2
|u2|2 +

Aε
p+ 1

|u2|p+1

)
dx

≤ ε‖U‖2L2 +
2Aε
p+ 1

‖U‖p+1
Lp+1 ≤ εC3‖U‖2E + C4‖U‖p+1

E

where ε is arbitrary and C4 = C4(ε). Thus

I(U) =
1
2
‖U‖2E −Ψ(U) ≥ 1

2
‖U‖2E − εC3‖U‖2E − C4‖U‖p+1

E ≥ β > 0,

for ‖U‖E = ρ, with ρ, ε and β sufficiently small positive constants.
Let P = {γ ∈ C([0, 1], E); γ(0) = 0, γ(1) 6= 0 and I(γ(1)) ≤ 0} and

c = infγ∈P maxt∈[0,1] I(γ(t)). Set λI(U) = minξ∈∂I(U) ‖ξ‖E∗ . Thus, by the
nonsmooth version of the Mountain Pass Lemma [3], there exists a sequence
{UM} ⊂ E such that

I(Um)→ c and λI(Um)→ 0. (20)

So, there exists a sequence {Wm} ⊂ ∂Ψ(Um); Wm = (w1
m, w

2
m) such that

(−∆u1
m + a(x)u1

m − w1
m,−∆u2

m + a(x)u2
m − w2

m)→ 0 in E∗. (21)

Note that, by (8),

Ψ(U) ≤ 1
µ

( ∫
u1≥0

u1(x)f(x, U) dx+
∫

u1≤0

u1(x)f(x, U) dx

+
∫

u2≥0

u1(x)g(x, U) dx+
∫

u2≤0

u2(x)g(x, U) dx
)
.
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Therefore, by (16),

Ψ(U) ≤ 1
µ

∫
RN

U(x)W (x) dx =
1
µ

∫
RN

(u1w1 + u2w2) dx,

for every U ∈ E and W ∈ ∂Ψ(U). Hence, if 〈·, ·〉 denotes the duality pairing
between E∗ and E, we have

I(Um) =
µ− 2

2µ

∫
RN

(|∇u1
m|2 + |∇um|2 + a(x)|um|1 + b(x)|um|2) dx

+
1
µ
〈(−∆u1

m + a(x)u1
m − w1

m,−∆u2
m + b(x)u2

m − w2
m), Um〉

+
1
µ
〈Wm, Um〉 −Ψ(Um)

≥µ− 2
2µ

∫
RN

(|∇u1
m|2 + |∇u2

m|2 + a(x)|u1
m|2 + b(x)|u2

m|2) dx

+
1
µ
〈(−∆u1

m + a(x)u1
m − w1

m,−∆u2
m + b(x)u2

m − w2
m), Um〉

≥µ− 2
2µ
‖Um‖2E − o(1)‖Um‖E .

This relation in conjunction with (20) implies that the Palais-Smale sequence
{Um} is bounded in E. Thus, it converges weakly (up to a subsequence) in E
and strongly in L2

loc(RN ) to some U . Taking into account that Wm ∈ ∂Ψ(Um)
and Um ⇀ U in E, we deduce from (21) that there exists W ∈ E∗ such that
Wm ⇀ W in E∗ (up to a subsequence). Since the mapping U 7−→ F (x, U) is
compact from E to L1, it follows that W ∈ ∂Ψ(U). Therefore

W (x) ∈ [f(x, U(x)), f(x, U(x))]× [g(x, U(x)), g(x, U(x))] a.e. x in RN

and (−∆u1
m + a(x)u1

m − w1
m,−∆u2

m + b(x)u2
m − w2

m) = 0, or equivalently∫
RN

(∇u1∇v1 +∇u2∇v2 + a(x)u1v1 + b(x)u2v2) dx =
∫

RN

(w1v1 + w2v2) dx

for all (v1, v2) ∈ E. These last two relations show that U is a solution of the
problem (4).

It remains to prove that U 6≡ 0. If {Wm} is as in (21), then by (8), (16),
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(20) and for large m

c

2
≤I(Um)− 1

2
〈(−∆u1

m + a(x)u1
m − w1

m,−∆u2
m + b(x)u2

m − w2
m), Um〉

=
1
2
〈Wm, Um〉 −

∫
RN

F (x, Um) dx

≤1
2

( ∫
u1≥0

u1(x)f(x, U) dx+
∫

u1≤0

u1(x)f(x, U) dx (22)

+
∫

u2≥0

u1(x)g(x, U) dx+
∫

u2≤0

u2(x)g(x, U) dx
)
.

Now, taking into account the definition of f, f , g, g we deduce that f, f , g, g
verify (17), too. So by (22) we obtain

c

2
≤
∫

RN

(ε|Um|2 +Aε|um|p+1) = ε‖Um‖2L2 +Aε‖Um‖p+1
Lp+1 .

So, {Um} does not converge strongly to 0 in Lp+1(RN ; R2). With the same
arguments as in the proof of Theorem 1 in [7], we deduce that U 6≡ 0, which
concludes our proof.
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