VARIATIONAL METHODS IN THE STUDY OF INEQUALITY PROBLEMS FOR NONLINEAR ELLIPTIC SYSTEMS WITH LACK OF COMPACTNESS

Abstract

We establish the existence of an entire weak solution for a class of stationary Schrödinger systems with subcritical discontinuous nonlinearities and lower bounded potentials that blow-up at infinity. The proof relies on Chang's version of the Mountain Pass Lemma for locally Lipschitz functionals. Our result generalizes in a nonsmooth framework, a result of Rabinowitz [12] related to entire solutions of the Schrödinger equation.

1 Introduction and the Main Result.

In quantum mechanics, the Schrödinger equation plays the role of Newton's laws and conservation of energy in classical mechanics; that is, it predicts the future behavior of a dynamic system. The linear form of Schrödinger's equation is

$$
\Delta \psi+\frac{8 \pi^{2} m}{\hbar^{2}}(E(x)-V(x)) \psi=0
$$

where ψ is the Schrödinger wave function, m is the mass, \hbar denotes Planck's constant, E is the energy, and V stands for the potential energy. The structure of the nonlinear Schrödinger equation is much more complicated. This equation describes various phenomena arising: in self-channelling of a highpower ultra-short laser in matter, in the theory of Heisenberg ferromagnets

[^0]and magnons, in dissipative quantum mechanics, in condensed matter theory, and in plasma physics (e.g., the Kurihara superfluid film equation). We refer to [8] for a modern overview, including applications.

Consider the model problem

$$
\begin{equation*}
i \hbar \psi_{t}=-\frac{\hbar^{2}}{2 m} \Delta \psi+V(x) \psi-\gamma|\psi|^{p-1} \psi \quad \text { in } \mathbb{R}^{N}(N \geq 2) \tag{1}
\end{equation*}
$$

where $p<2 N /(N-2)$ if $N \geq 3$ and $p<+\infty$ if $N=2$. In the study of this equation Oh [11] supposed that the potential V is bounded and possesses a non-degenerate critical point at $x=0$. More precisely, it is assumed that V belongs to the class $\left(V_{a}\right)$ (for some a) introduced in Kato [9]. Taking $\gamma>0$ and $\hbar>0$ sufficiently small and using a Lyapunov-Schmidt type reduction, Oh [11] proved the existence of a standing wave solution of Problem (1), i.e. a solution of the form

$$
\begin{equation*}
\psi(x, t)=e^{-i E t / \hbar} u(x) \tag{2}
\end{equation*}
$$

Note that substituting (2) into (1) leads to

$$
-\frac{\hbar^{2}}{2} \Delta u+(V(x)-E) u=|u|^{p-1} u
$$

The change of variable $y=\hbar^{-1} x$ (and replacing y by x) yields

$$
-\Delta u+2\left(V_{\hbar}(x)-E\right) u=|u|^{p-1} u \text { in } \mathbb{R}^{N}
$$

where $V_{\hbar}(x)=V(\hbar x)$.
In a celebrated paper, Rabinowitz [12] continued the study of standing wave solutions of nonlinear Schrödinger equations. After constructing a standing wave equation, Rabinowitz reduces the problem to that of studying the semilinear elliptic equation

$$
-\Delta u+b(x) u=f(x, u) \text { in } \mathbb{R}^{N}
$$

under suitable conditions on b and assuming that f is smooth, super-linear and subcritical.

Inspired by Rabinowitz' paper, we consider the class of coupled elliptic systems in $\mathbb{R}^{N}(N \geq 3)$

$$
\begin{cases}-\Delta u_{1}+a(x) u_{1}=f\left(x, u_{1}, u_{2}\right) & \text { in } \mathbb{R}^{N} \tag{3}\\ -\Delta u_{2}+b(x) u_{2}=g\left(x, u_{1}, u_{2}\right) & \text { in } \mathbb{R}^{N}\end{cases}
$$

We point out that coupled nonlinear Schrödinger systems describe some physical phenomena such as the propagation in birefringent optical fibers or

Kerr-like photorefractive media in optics. Another motivation to the study of coupled Schrödinger systems arises from the Hartree-Fock theory for the double condensate, i.e. a binary mixture of Bose-Einstein condensates in two different hyperfine states, cf. [6].

Throughout this paper we assume that $a, b \in L_{\text {loc }}^{\infty}\left(\mathbb{R}^{N}\right)$ and there exist $\underline{a}, \underline{b}>0$ such that $a(x) \geq \underline{a}, b(x) \geq \underline{b}$ a.e. in \mathbb{R}^{N}, and $\operatorname{esslim}_{|x| \rightarrow \infty} a(x)=$ $\operatorname{esslim}_{|x| \rightarrow \infty} b(x)=+\infty$. Our aim in this paper is to study the existence of solutions to the above problem in the case when f, g are not continuous functions. Our goal is to show how variational methods can be used to find existence results for stationary nonsmooth Schrödinger systems.

Throughout this paper we assume that $f(x, \cdot, \cdot), g(x, \cdot, \cdot) \in L_{\text {loc }}^{\infty}\left(\mathbb{R}^{2}\right)$. Let

$$
\begin{aligned}
& \underline{f}\left(x, t_{1}, t_{2}\right)=\lim _{\delta \rightarrow 0} \operatorname{essinf}\left\{f\left(x, s_{1}, s_{2}\right) ;\left|t_{i}-s_{i}\right| \leq \delta ; i=1,2\right\} \\
& \bar{f}\left(x, t_{1}, t_{2}\right)=\lim _{\delta \rightarrow 0} \operatorname{esssup}\left\{f\left(x, s_{1}, s_{2}\right) ;\left|t_{i}-s_{i}\right| \leq \delta ; i=1,2\right\} \\
& \underline{g}\left(x, t_{1}, t_{2}\right)=\lim _{\delta \rightarrow 0} \operatorname{essinf}\left\{g\left(x, s_{1}, s_{2}\right) ;\left|t_{i}-s_{i}\right| \leq \delta ; i=1,2\right\} \\
& \bar{g}\left(x, t_{1}, t_{2}\right)=\lim _{\delta \rightarrow 0} \operatorname{esssup}\left\{g\left(x, s_{1}, s_{2}\right) ;\left|t_{i}-s_{i}\right| \leq \delta ; i=1,2\right\} .
\end{aligned}
$$

Under these conditions we reformulate Problem (3) as

$$
\begin{align*}
& -\Delta u_{1}+a(x) u_{1} \in\left[\underline{f}\left(x, u_{1}(x), u_{2}(x)\right), \bar{f}\left(x, u_{1}(x), u_{2}(x)\right)\right] \text { a.e. } x \in \mathbb{R}^{N} \\
& -\Delta u_{2}+b(x) u_{2} \in\left[\underline{g}\left(x, u_{1}(x), u_{2}(x)\right), \bar{g}\left(x, u_{1}(x), u_{2}(x)\right)\right] \text { a.e. } x \in \mathbb{R}^{N} \tag{4}
\end{align*}
$$

Let $H^{1}=H\left(\mathbb{R}^{N}, \mathbb{R}^{2}\right)$ be the Sobolev space of all $U=\left(u_{1}, u_{2}\right) \in\left(L^{2}\left(\mathbb{R}^{N}\right)\right)^{2}$ with weak derivatives $\frac{\partial u_{1}}{\partial x_{j}}, \frac{\partial u_{2}}{\partial x_{j}}(j=1, \ldots, N)$ also in $L^{2}\left(\mathbb{R}^{N}\right)$, endowed with the usual norm

$$
\|U\|_{H_{1}}^{2}=\int_{\mathbb{R}^{N}}\left(|\nabla U|^{2}+|U|^{2}\right) d x=\int_{\mathbb{R}^{N}}\left(\left|\nabla u_{1}\right|^{2}+\left|\nabla u_{2}\right|^{2}+u_{1}^{2}+u_{2}^{2}\right) d x
$$

Given the functions $a, b: \mathbb{R}^{N} \rightarrow \mathbb{R}$ as above, define the subspace

$$
E=\left\{U=\left(u_{1}, u_{2}\right) \in H^{1} ; \int_{\mathbb{R}^{N}}\left(\left|\nabla u_{1}\right|^{2}+\left|\nabla u_{2}\right|^{2}+a(x) u_{1}^{2}+b(x) u_{2}^{2}\right) d x<+\infty\right\}
$$

Then the space E endowed with the norm

$$
\|U\|_{E}^{2}=\int_{\mathbb{R}^{N}}\left(\left|\nabla u_{1}\right|^{2}+\left|\nabla u_{2}\right|^{2}+a(x) u_{1}^{2}+b(x) u_{2}^{2}\right) d x
$$

becomes a Hilbert space.
Since $a(x) \geq \underline{a}>0, b(x) \geq \underline{b}>0$, we have the continuous embeddings $H^{1} \hookrightarrow L^{q}\left(\mathbb{R}^{N}, \mathbb{R}^{2}\right)$ for all $2 \leq q \leq 2^{*}=2 N /(N-2)$.

We assume throughout the paper that $f, g: \mathbb{R}^{N} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ are nontrivial measurable functions satisfying the hypotheses

$$
\begin{cases}|f(x, t)| \leq C\left(|t|+|t|^{p}\right) & \text { for a.e. }(x, t) \in \mathbb{R}^{N} \times \mathbb{R}^{2} \tag{5}\\ |g(x, t)| \leq C\left(|t|+|t|^{p}\right) & \text { for a.e. }(x, t) \in \mathbb{R}^{N} \times \mathbb{R}^{2}\end{cases}
$$

where $p<2^{*}$;

$$
\left\{\begin{array}{l}
\lim _{\delta \rightarrow 0} \operatorname{esssup}\left\{\frac{|f(x, t)|}{|t|} ;(x, t) \in \mathbb{R}^{N} \times(-\delta,+\delta)^{2}\right\}=0 \tag{6}\\
\lim _{\delta \rightarrow 0} \operatorname{esssup}\left\{\frac{|g(x, t)|}{|t|} ;(x, t) \in \mathbb{R}^{N} \times(-\delta,+\delta)^{2}\right\}=0
\end{array}\right.
$$

f and g are chosen so that the mapping $F: \mathbb{R}^{N} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by $F\left(x, t_{1}, t_{2}\right):=\int_{0}^{t_{1}} f\left(x, \tau, t_{2}\right) d \tau+\int_{0}^{t_{2}} g(x, 0, \tau) d \tau$ satisfies

$$
\left\{\begin{array}{l}
F\left(x, t_{1}, t_{2}\right)=\int_{0}^{t_{2}} g\left(x, t_{1}, \tau\right) d \tau+\int_{0}^{t_{1}} f(x, \tau, 0) d \tau \tag{7}\\
\text { and } F\left(x, t_{1}, t_{2}\right)=0 \text { if and only if } t_{1}=t_{2}=0
\end{array}\right.
$$

and there exists $\mu>2$ such that for any $x \in \mathbb{R}^{N}$
$0 \leq \mu F\left(x, t_{1}, t_{2}\right) \leq \begin{cases}t_{1} \underline{f}\left(x, t_{1}, t_{2}\right)+t_{2} \underline{g}\left(x, t_{1}, t_{2}\right) ; & t_{1}, t_{2} \in[0,+\infty) \\ t_{1} \bar{f}\left(x, t_{1}, t_{2}\right)+t_{2} \bar{g}\left(x, t_{1}, t_{2}\right) ; & t_{1} \in[0,+\infty), t_{2} \in(-\infty, 0] \\ t_{1} \bar{f}\left(x, t_{1}, t_{2}\right)+t_{2} \bar{g}\left(x, t_{1}, t_{2}\right) ; & t_{1}, t_{2} \in(-\infty, 0] \\ t_{1} \bar{f}\left(x, t_{1}, t_{2}\right)+t_{2} \underline{g}\left(x, t_{1}, t_{2}\right) ; & t_{1} \in(-\infty, 0], t_{2} \in[0,+\infty) .\end{cases}$

Definition 1. A function $U=\left(u_{1}, u_{2}\right) \in E$ is called solution to the problem (4) if there exists a function $W=\left(w_{1}, w_{2}\right) \in L^{2}\left(\mathbb{R}^{N}, \mathbb{R}^{2}\right)$ such that
(i) $\underline{f}\left(x, u_{1}(x), u_{2}(x)\right) \leq w_{1}(x) \leq \bar{f}\left(x, u_{1}(x), u_{2}(x)\right)$ a.e. x in \mathbb{R}^{N}; $\underline{g}\left(x, u_{1}(x), u_{2}(x)\right) \leq w_{2}(x) \leq \bar{g}\left(x, u_{1}(x), u_{2}(x)\right)$ a.e. x in \mathbb{R}^{N};
(ii) $\int_{\mathbb{R}^{N}}\left(\nabla u_{1} \nabla v_{1}+\nabla u_{2} \nabla v_{2}+a(x) u_{1} v_{1}+b(x) u_{2} v_{2}\right) d x=\int_{\mathbb{R}^{N}}\left(w_{1} v_{1}+w_{2} v_{2}\right) d x$, for all $\left(v_{1}, v_{2}\right) \in E$.

Our main result is the following.
Theorem 1. Assume that conditions (5) - (8) are fulfilled. Then Problem (4) has at least a nontrivial solution in E.

2 Auxiliary Results.

We first recall some basic notions from the Clarke gradient theory for locally Lipschitz functionals (see [4, 5] for more details). Let E be a real Banach space and assume that $I: E \rightarrow \mathbb{R}$ is a locally Lipschitz functional. Then the Clarke generalized gradient is defined by

$$
\partial I(u)=\left\{\xi \in E^{*} ; I^{0}(u, v) \geq\langle\xi, v\rangle, \text { for all } v \in E\right\}
$$

where $I^{0}(u, v)$ stands for the directional derivative of I at u in the direction v; i.e.

$$
I^{0}(u, v)=\limsup _{\substack{w \rightarrow u \\ \lambda \backslash 0}} \frac{I(w+\lambda v)-I(w)}{\lambda}
$$

Let Ω be an arbitrary domain in \mathbb{R}^{N}. Let E_{Ω} be
$\left\{U=\left(u_{1}, u_{2}\right) \in H^{1}\left(\Omega ; \mathbb{R}^{2}\right) ; \int_{\Omega}\left(\left|\nabla u_{1}\right|^{2}+\left|\nabla u_{2}\right|^{2}+a(x) u_{1}^{2}+b(x) u_{2}^{2}\right) d x<+\infty\right\}$ which is endowed with the norm

$$
\|U\|_{E_{\Omega}}^{2}=\int_{\Omega}\left(\left|\nabla u_{1}\right|^{2}+\left|\nabla u_{2}\right|^{2}+a(x) u_{1}^{2}+b(x) u_{2}^{2}\right) d x
$$

Then E_{Ω} becomes a Hilbert space.
Lemma 1. The functional $\Psi_{\Omega}: E_{\Omega} \rightarrow \mathbb{R}, \Psi_{\Omega}(U)=\int_{\Omega} F(x, U) d x$ is locally Lipschitz on E_{Ω}.

Proof. We first observe that

$$
\begin{aligned}
F(x, U)=F\left(x, u_{1}, u_{2}\right) & =\int_{0}^{u_{1}} f\left(x, \tau, u_{2}\right) d \tau+\int_{0}^{u_{2}} g(x, 0, \tau) d \tau \\
& =\int_{0}^{u_{2}} g\left(x, u_{1}, \tau\right) d \tau+\int_{0}^{u_{1}} f(x, \tau, 0) d \tau
\end{aligned}
$$

is a Carathéodory functional which is locally Lipschitz with respect to the second variable. Indeed, by (5)

$$
\begin{aligned}
\left|F\left(x, t_{1}, t\right)-F\left(x, s_{1}, t\right)\right| & =\left|\int_{s_{1}}^{t_{1}} f(x, \tau, t) d \tau\right| \leq\left|\int_{s_{1}}^{t_{1}} C\left(|\tau, t|+|\tau, t|^{p}\right) d \tau\right| \\
& \leq k\left(t_{1}, s_{1}, t\right)\left|t_{1}-s_{1}\right|
\end{aligned}
$$

Similarly

$$
\left|F\left(x, t, t_{2}\right)-F\left(x, t, s_{2}\right)\right| \leq k\left(t_{2}, s_{2}, t\right)\left|t_{2}-s_{2}\right|
$$

Therefore

$$
\begin{aligned}
\left|F\left(x, t_{1}, t_{2}\right)-F\left(x, s_{1}, s_{2}\right)\right| \leq & \left|F\left(x, t_{1}, t_{2}\right)-F\left(x, s_{1}, t_{2}\right)\right| \\
& +\left|F\left(x, t_{1}, s_{2}\right)-F\left(x, s_{1}, s_{2}\right)\right| \\
\leq & k(V)\left|\left(t_{2}, s_{2}\right)-\left(t_{1}, s_{1}\right)\right|
\end{aligned}
$$

where V is a neighborhood of $\left(t_{1}, t_{2}\right),\left(s_{1}, s_{2}\right)$.
For all $x \in \Omega$ let $\chi_{1}(x)=\max \left\{u_{1}(x), v_{1}(x)\right\}$ and $\chi_{2}(x)=\max \left\{u_{2}(x), v_{2}(x)\right\}$. It is obvious that if $U=\left(u_{1}, u_{2}\right), V=\left(v_{1}, v_{2}\right)$ belong to E_{Ω}, then $\left(\chi_{1}, \chi_{2}\right) \in$ E_{Ω}. So, by Hölder's inequality and the continuous embedding $E_{\Omega} \subset L^{p}\left(\Omega ; \mathbb{R}^{2}\right)$,

$$
\left|\Psi_{\Omega}(U)-\Psi_{\Omega}(V)\right| \leq C\left(\left\|\chi_{1}, \chi_{2}\right\|_{E_{\Omega}}\right)\|U-V\|_{E_{\Omega}}
$$

which concludes the proof.
The following result is a generalization of Lemma 6 in [10].
Lemma 2. Let Ω be an arbitrary domain in \mathbb{R}^{N} and let $f: \Omega \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a Borel function such that $f(x, \cdot) \in L_{\mathrm{loc}}^{\infty}\left(\mathbb{R}^{2}\right)$. Then \underline{f} and \bar{f} are Borel functions.

Proof. Since the requirement is local, we may suppose that f is bounded by M and it is nonnegative. Let

$$
f_{m, n}\left(x, t_{1}, t_{2}\right)=\left(\int_{t_{1}-\frac{1}{n}}^{t_{1}+\frac{1}{n}} \int_{t_{2}-\frac{1}{n}}^{t_{2}+\frac{1}{n}}\left|f\left(x, s_{1}, s_{2}\right)\right|^{m} d s_{1} d s_{2}\right)^{\frac{1}{m}}
$$

Since $\bar{f}\left(x, t_{1}, t_{2}\right)=\lim _{\delta \rightarrow 0} \operatorname{esssup}\left\{f\left(x, s_{1}, s_{2}\right) ;\left|t_{i}-s_{i}\right| \leq \delta ; i=1,2\right\}$, we deduce that for every $\varepsilon>0$, there exists $n \in \mathbb{N}^{*}$ such that for $\left|t_{i}-s_{i}\right|<\frac{1}{n}(i=1,2)$ we have $\left|\operatorname{esssup} f\left(x, s_{1}, s_{2}\right)-\bar{f}\left(x, t_{1}, t_{2}\right)\right|<\varepsilon$ or, equivalently,

$$
\begin{equation*}
\bar{f}\left(x, t_{1}, t_{2}\right)-\varepsilon<\operatorname{esssup} f\left(x, s_{1}, s_{2}\right)<\bar{f}\left(x, t_{1}, t_{2}\right)+\varepsilon \tag{9}
\end{equation*}
$$

By the second inequality in (9) we obtain $f\left(x, s_{1}, s_{2}\right) \leq \bar{f}\left(x, t_{1}, t_{2}\right)+\varepsilon$ a.e. $x \in \Omega$ for $\left|t_{i}-s_{i}\right|<\frac{1}{n}(i=1,2)$ which yields

$$
\begin{equation*}
f_{m, n}\left(x, t_{1}, t_{2}\right) \leq\left(\bar{f}\left(x, t_{1}, t_{2}\right)+\varepsilon\right)\left(\sqrt{4 / n^{2}}\right)^{\frac{1}{m}} \tag{10}
\end{equation*}
$$

Let

$$
A=\left\{\left(s_{1}, s_{2}\right) \in \mathbb{R}^{2} ;\left|t_{i}-s_{i}\right|<\frac{1}{n}(i=1,2) ; \bar{f}\left(x, t_{1}, t_{2}\right)-\varepsilon \leq f\left(x, s_{1}, s_{2}\right)\right\}
$$

By the first inequality in (9) and the definition of the essential supremum we obtain that $|A|>0$ and

$$
\begin{equation*}
f_{m, n} \leq\left(\iint_{A}\left(f\left(x, s_{1}, s_{2}\right)\right)^{m} d s_{1} d s_{2}\right)^{\frac{1}{m}} \geq\left(\bar{f}\left(x, s_{1}, s_{2}\right)-\varepsilon\right)|A|^{1 / m} \tag{11}
\end{equation*}
$$

Since (10) and (11) imply $\bar{f}\left(x, t_{1}, t_{2}\right)=\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} f_{m, n}\left(x, t_{1}, t_{2}\right)$, it suffices to prove that $f_{m, n}$ is Borel. Let $\mathcal{M}=\left\{f: \Omega \times \mathbb{R}^{2} \rightarrow \mathbb{R} ;|f| \leq M\right.$ and f is a Borel function $\}$ and $\mathcal{N}=\left\{f \in \mathcal{M} ; f_{m, n}\right.$ is a Borel function $\}$. Cf. [2, p.178], \mathcal{M} is the smallest set of functions having the properties:
(i) $\left\{f \in C\left(\Omega \times \mathbb{R}^{2} ; \mathbb{R}\right) ;|f| \leq M\right\} \subset \mathcal{M}$;
(ii) $f^{(k)} \in \mathcal{M}$ and $f^{(k)} \xrightarrow{k} f$ imply $f \in \mathcal{M}$.

Since \mathcal{N} obviously contains the continuous functions and (ii) is also true for \mathcal{N}, by the Lebesgue dominated convergence theorem, we obtain that $\mathcal{M}=\mathcal{N}$. For \underline{f} we note that $\underline{f}=-(-\bar{f}))$ and the proof of Lemma 2 is complete.

Let us now assume that $\Omega \subset \mathbb{R}^{N}$ is a bounded domain. By the continuous embedding $L^{p+1}\left(\Omega ; \mathbb{R}^{2}\right) \hookrightarrow L^{2}\left(\Omega ; \mathbb{R}^{2}\right)$, we may define the locally Lipschitz functional $\Psi_{\Omega}: L^{p+1}\left(\Omega ; \mathbb{R}^{2}\right) \rightarrow \mathbb{R}$ by $\Psi_{\Omega}(U)=\int_{\Omega} F(x, U) d x$.

Lemma 3. Under the above assumptions and for any $U \in L^{p+1}\left(\Omega ; \mathbb{R}^{2}\right)$, we have

$$
\partial \Psi_{\Omega}(U)(x) \subset[\underline{f}(x, U(x)), \bar{f}(x, U(x))] \times[\underline{g}(x, U(x)), \bar{g}(x, U(x))] \text { a.e. } x \text { in } \Omega
$$

in the sense that if $W=\left(w_{1}, w_{2}\right) \in \partial \Psi_{\Omega}(U) \subset L^{p+1}\left(\Omega ; \mathbb{R}^{2}\right)$ then

$$
\begin{align*}
& \underline{f}(x, U(x)) \leq w_{1}(x) \leq \bar{f}(x, U(x)) \text { a.e. } x \text { in } \Omega \tag{12}\\
& \underline{g}(x, U(x)) \leq w_{2}(x) \leq \bar{g}(x, U(x)) \text { a.e. } x \text { in } \Omega . \tag{13}
\end{align*}
$$

Proof. By the definition of the Clarke gradient we have

$$
\int_{\Omega}\left(w_{1} v_{1}+w_{2} v_{2}\right) d x \leq \Psi_{\Omega}^{0}(U, V) \text { for all } V=\left(v_{1}, v_{2}\right) \in L^{p+1}\left(\Omega ; \mathbb{R}^{2}\right)
$$

Choose $V=(v, 0)$ such that $v \in L^{p+1}(\Omega), v \geq 0$ a.e. in Ω. Thus, by Lemma 2 ,

$$
\begin{align*}
\int_{\Omega} w_{1} v & \leq \limsup _{\substack{\left(h_{1}, h_{2}\right) \rightarrow U \\
\lambda \backslash 0}} \frac{\int_{\Omega}\left(\int_{h_{1}(x)}^{h_{1}(x)+\lambda v(x)} f\left(x, \tau, h_{2}(x)\right) d \tau\right) d x}{\lambda} \\
& \leq \int_{\Omega}\left(\limsup _{\substack{\left(h_{1}, h_{2}\right) \rightarrow U \\
\lambda \backslash 0}} \frac{1}{\lambda} \int_{h_{1}(x)}^{h_{1}(x)+\lambda v(x)} f\left(x, \tau, h_{2}(x)\right) d \tau\right) d x \tag{14}\\
& \leq \int_{\Omega} \bar{f}\left(x, u_{1}(x), u_{2}(x)\right) v(x) d x .
\end{align*}
$$

Analogously we obtain

$$
\int_{\Omega} \underline{f}\left(x, u_{1}(x), u_{2}(x)\right) v(x) d x \leq \int_{\Omega} w_{1} v d x \text { for all } v \geq 0 \text { in } \Omega
$$

Arguing by contradiction, suppose that (12) is false. Then there exist $\varepsilon>0$, a set $A \subset \Omega$ with $|A|>0$ and w_{1} as above such that in A

$$
\begin{equation*}
w_{1}(x)>\bar{f}(x, U(x))+\varepsilon . \tag{15}
\end{equation*}
$$

Taking $v=\mathbf{1}_{A}$ in (14) we obtain

$$
\int_{\Omega} w_{1} v d x=\int_{A} w_{1} d x \leq \int_{A} \bar{f}(x, U(x)) d x
$$

which contradicts (15). Proceeding in the same way we obtain the corresponding result for g in (13).

By Lemma 3, Lemma 2.1 in Chang [3] and the embedding $E_{\Omega} \hookrightarrow L^{p+1}\left(\Omega, \mathbb{R}^{2}\right)$ we also obtain that for $\Psi_{\Omega}: E_{\Omega} \rightarrow \mathbb{R}, \Psi_{\Omega}(U)=\int_{\Omega} F(x, U) d x$ we have

$$
\partial \Psi_{\Omega}(U)(x) \subset[\underline{f}(x, U(x)), \bar{f}(x, U(x))] \times[\underline{g}(x, U(x)), \bar{g}(x, U(x))] \text { a.e. } x \in \Omega .
$$

Let $V \in E_{\Omega}$. Then $\tilde{V} \in E$, where $\tilde{V}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{2}$ is defined by

$$
\tilde{V}= \begin{cases}V(x) & x \text { in } \Omega \\ 0 & \text { otherwise }\end{cases}
$$

For $W \in E^{*}$ we consider $W_{\Omega} \in E_{\Omega}^{*}$ such that $\left\langle W_{\Omega}, V\right\rangle=\langle W, \tilde{V}\rangle$ for all V in E_{Ω}. Set $\Psi: E \rightarrow \mathbb{R}, \Psi(U)=\int_{\mathbb{R}^{N}} F(x, U)$.

Lemma 4. Let $W \in \partial \Psi(U)$, where $U \in E$. Then $W_{\Omega} \in \partial \Psi_{\Omega}(U)$, in the sense that $W_{\Omega} \in \partial \Psi_{\Omega}\left(\left.U\right|_{\Omega}\right)$.

Proof. By the definition of the Clarke gradient we deduce that $\langle W, \tilde{V}\rangle \leq$ $\Psi^{0}(U, \tilde{V})$ for all V in E_{Ω}

$$
\begin{aligned}
\Psi^{0}(U, \tilde{V}) & =\limsup _{\substack{H \rightarrow U, H \in E \\
\lambda \rightarrow 0}} \frac{\Psi(H+\lambda \tilde{V})-\Psi(H)}{\lambda} \\
& =\limsup _{\substack{H \rightarrow U, H \in E \\
\lambda \rightarrow 0}} \frac{\int_{\mathbb{R}^{N}}(F(x, H+\lambda \tilde{V})-F(x, H)) d x}{\lambda} \\
& =\limsup _{\substack{H \rightarrow U, H \in E \\
\lambda \rightarrow 0}} \frac{\int_{\Omega}(F(x, H+\lambda \tilde{V})-F(x, H)) d x}{\lambda} \\
& =\limsup _{\substack{H \rightarrow U, H \in E_{\Omega} \\
\lambda \rightarrow 0}} \frac{\int_{\Omega}(F(x, H+\lambda \tilde{V})-F(x, H)) d x}{\lambda}=\Psi_{\Omega}^{0}(U, V)
\end{aligned}
$$

Hence $\left\langle W_{\Omega}, V\right\rangle \leq \Psi_{\Omega}^{0}(U, V)$ which implies $W_{\Omega} \in \partial \Psi_{\Omega}^{0}(U)$.
By Lemmas 3 and 4 we obtain that for any $W \in \partial \Psi(U)$ (with $U \in E$), W_{Ω} satisfies (12) and (13). We also observe that for $\Omega_{1}, \Omega_{2} \subset \mathbb{R}^{N}$ we have $\left.W_{\Omega_{1}}\right|_{\Omega_{1} \cap \Omega_{2}}=W_{\Omega_{2}} \mid \Omega_{1} \cap \Omega_{2}$.

Let $W_{0}: \mathbb{R}^{N} \rightarrow \mathbb{R}$, where $W_{0}(x)=W_{\Omega}(x)$ if $x \in \Omega$. Then W_{0} is well defined and

$$
W_{0}(x) \in[\underline{f}(x, U(x)), \bar{f}(x, U(x))] \times[\underline{g}(x, U(x)), \bar{g}(x, U(x))] \text { a.e. } x \in \mathbb{R}^{N}
$$

and, for all $\varphi \in C_{c}^{\infty}\left(\mathbb{R}^{N}, \mathbb{R}^{2}\right),\langle W, \varphi\rangle=\int_{\mathbb{R}^{N}} W_{0} \varphi$. By density of $C_{c}^{\infty}\left(\mathbb{R}^{N}, \mathbb{R}^{2}\right)$ in E we deduce that $\langle W, V\rangle=\int_{\mathbb{R}^{N}} W_{0} V d x$ for all V in E. Hence, for a.e. $x \in \mathbb{R}^{N}$

$$
\begin{equation*}
W(x)=W_{0}(x) \in[\underline{f}(x, U(x)), \bar{f}(x, U(x))] \times[\underline{g}(x, U(x)), \bar{g}(x, U(x))] . \tag{16}
\end{equation*}
$$

3 Proof of Theorem 1.

Define the energy functional $I: E \rightarrow \mathbb{R}$ as

$$
\begin{aligned}
I(U) & =\frac{1}{2} \int_{\mathbb{R}^{N}}\left(\left|\nabla u_{1}\right|^{2}+\left|\nabla u_{2}\right|^{2}+a(x) u_{1}^{2}+b(x) u_{2}^{2}\right) d x-\int_{\mathbb{R}^{N}} F(x, U) d x \\
& =\frac{1}{2}\|U\|_{E}^{2}-\Psi(U)
\end{aligned}
$$

The existence of solutions to problem (4) will be justified by a nonsmooth variant of the Mountain-Pass Theorem (see [3]) applied to the functional I, even if the $P S$ condition is not fulfilled. More precisely, we check the following geometric hypotheses.

$$
\begin{align*}
& I(0)=0 \text { and there exists } V \in E \text { such that } I(V) \leq 0 \tag{17}\\
& \text { there exist } \beta, \rho>0 \text { such that } I \geq \beta \text { on }\left\{U \in E ;\|U\|_{E}=\rho\right\} \tag{18}
\end{align*}
$$

Verification of (17). It is obvious that $I(0)=0$. For the second assertion we need the following lemma.
Lemma 5. There exist two positive constants C_{1} and C_{2} such that

$$
f(x, s, 0) \geq C_{1} s^{\mu-1}-C_{2} \text { for a.e. } x \in \mathbb{R}^{N} ; s \in[0,+\infty)
$$

Proof. We first observe that (8) implies

$$
0 \leq \mu F(x, s, 0) \leq \begin{cases}s f(x, s, 0) & s \in[0,+\infty) \\ s \overline{\bar{f}}(x, s, 0) & s \in(-\infty, 0]\end{cases}
$$

which places us in the conditions of Lemma 5 in [10].
Verification of (17) continued. Choose $v \in C_{c}^{\infty}\left(\mathbb{R}^{N}\right)-\{0\}$ so that $v \geq 0$ in \mathbb{R}^{N}. We have $\int_{\mathbb{R}^{N}}|\nabla v|^{2}+a(x) v^{2}<\infty$; hence $t(v, 0) \in E$ for all $t \in \mathbb{R}$.
Thus by Lemma 5 we obtain

$$
\begin{aligned}
I(t(v, 0)) & =\frac{t^{2}}{2} \int_{\mathbb{R}^{N}}|\nabla v|^{2}+a(x) v^{2} d x-\int_{\mathbb{R}^{N}} \int_{0}^{t v} f(x, \tau, 0) d \tau \\
& \leq \frac{t^{2}}{2} \int_{\mathbb{R}^{N}}|\nabla v|^{2}+a(x) v^{2} d x-\int_{\mathbb{R}^{N}} \int_{0}^{t v}\left(C_{1} \tau^{\mu-1}-C_{2}\right) d \tau \\
& =\frac{t^{2}}{2} \int_{\mathbb{R}^{N}}|\nabla v|^{2}+a(x) v^{2} d x+C_{2} t \int_{\mathbb{R}^{N}} v d x-C_{1}^{\prime} t^{\mu} \int_{\mathbb{R}^{N}} v^{\mu} d x<0
\end{aligned}
$$

for $t>0$ large enough.
VERification of (18). We observe that (6), (7) and (8) imply that, for any $\varepsilon>0$, there exists a constant $A_{\varepsilon}>0$ such that

$$
\begin{align*}
& |f(x, s)| \leq \varepsilon|s|+A_{\varepsilon}|s|^{p} \tag{19}\\
& |g(x, s)| \leq \varepsilon|s|+A_{\varepsilon}|s|^{p}
\end{align*} \text { for a.e. }(x, s) \in \mathbb{R}^{N} \times \mathbb{R}^{2} .
$$

By (19) and Sobolev's embedding theorem we have, for any $U \in E$,

$$
\begin{aligned}
|\Psi(U)|= & \left|\Psi\left(u_{1}, u_{2}\right)\right| \leq \int_{\mathbb{R}^{N}} \int_{0}^{\left|u_{1}\right|} \| f\left(x, \tau, u_{2}\right)\left|d \tau+\int_{\mathbb{R}^{N}} \int_{0}^{u_{2}}\right| g(x, 0, \tau) \mid d \tau \\
\leq & \int_{\mathbb{R}^{N}}\left(\left.\frac{\varepsilon}{2}\left|\left(u_{1}, u_{2}\right)\right|^{2}+\frac{A_{\varepsilon}}{p+1} \right\rvert\,\left(u_{1},\left.u_{2}\right|^{p+1}\right) d x\right. \\
& \quad+\int_{\mathbb{R}^{N}}\left(\frac{\varepsilon}{2}\left|u_{2}\right|^{2}+\frac{A_{\varepsilon}}{p+1}\left|u_{2}\right|^{p+1}\right) d x \\
\leq & \varepsilon\|U\|_{L^{2}}^{2}+\frac{2 A_{\varepsilon}}{p+1}\|U\|_{L^{p+1}}^{p+1} \leq \varepsilon C_{3}\|U\|_{E}^{2}+C_{4}\|U\|_{E}^{p+1}
\end{aligned}
$$

where ε is arbitrary and $C_{4}=C_{4}(\varepsilon)$. Thus

$$
I(U)=\frac{1}{2}\|U\|_{E}^{2}-\Psi(U) \geq \frac{1}{2}\|U\|_{E}^{2}-\varepsilon C_{3}\|U\|_{E}^{2}-C_{4}\|U\|_{E}^{p+1} \geq \beta>0
$$

for $\|U\|_{E}=\rho$, with ρ, ε and β sufficiently small positive constants.
Let $\mathcal{P}=\{\gamma \in C([0,1], E) ; \gamma(0)=0, \gamma(1) \neq 0$ and $I(\gamma(1)) \leq 0\}$ and $c=\inf _{\gamma \in \mathcal{P}} \max _{t \in[0,1]} I(\gamma(t))$. Set $\lambda_{I}(U)=\min _{\xi \in \partial I(U)}\|\xi\|_{E^{*}}$. Thus, by the nonsmooth version of the Mountain Pass Lemma [3], there exists a sequence $\left\{U_{M}\right\} \subset E$ such that

$$
\begin{equation*}
I\left(U_{m}\right) \rightarrow c \text { and } \lambda_{I}\left(U_{m}\right) \rightarrow 0 \tag{20}
\end{equation*}
$$

So, there exists a sequence $\left\{W_{m}\right\} \subset \partial \Psi\left(U_{m}\right) ; W_{m}=\left(w_{m}^{1}, w_{m}^{2}\right)$ such that

$$
\begin{equation*}
\left(-\Delta u_{m}^{1}+a(x) u_{m}^{1}-w_{m}^{1},-\Delta u_{m}^{2}+a(x) u_{m}^{2}-w_{m}^{2}\right) \rightarrow 0 \quad \text { in } E^{*} \tag{21}
\end{equation*}
$$

Note that, by (8),

$$
\begin{aligned}
& \Psi(U) \leq \frac{1}{\mu}\left(\int_{u_{1} \geq 0} u_{1}(x) \underline{f}(x, U) d x+\int_{u_{1} \leq 0} u_{1}(x) \bar{f}(x, U) d x\right. \\
&\left.+\int_{u_{2} \geq 0} u_{1}(x) \underline{g}(x, U) d x+\int_{u_{2} \leq 0} u_{2}(x) \bar{g}(x, U) d x\right)
\end{aligned}
$$

Therefore, by (16),

$$
\Psi(U) \leq \frac{1}{\mu} \int_{\mathbb{R}^{N}} U(x) W(x) d x=\frac{1}{\mu} \int_{\mathbb{R}^{N}}\left(u_{1} w_{1}+u_{2} w_{2}\right) d x
$$

for every $U \in E$ and $W \in \partial \Psi(U)$. Hence, if $\langle\cdot, \cdot\rangle$ denotes the duality pairing between E^{*} and E, we have

$$
\begin{aligned}
I\left(U_{m}\right)= & \frac{\mu-2}{2 \mu} \int_{\mathbb{R}^{N}}\left(\left|\nabla u_{m}^{1}\right|^{2}+\left|\nabla u_{m}\right|^{2}+a(x)\left|u_{m}\right|^{1}+b(x)\left|u_{m}\right|^{2}\right) d x \\
& +\frac{1}{\mu}\left\langle\left(-\Delta u_{m}^{1}+a(x) u_{m}^{1}-w_{m}^{1},-\Delta u_{m}^{2}+b(x) u_{m}^{2}-w_{m}^{2}\right), U_{m}\right\rangle \\
& +\frac{1}{\mu}\left\langle W_{m}, U_{m}\right\rangle-\Psi\left(U_{m}\right) \\
\geq & \frac{\mu-2}{2 \mu} \int_{\mathbb{R}^{N}}\left(\left|\nabla u_{m}^{1}\right|^{2}+\left|\nabla u_{m}^{2}\right|^{2}+a(x)\left|u_{m}^{1}\right|^{2}+b(x)\left|u_{m}^{2}\right|^{2}\right) d x \\
& +\frac{1}{\mu}\left\langle\left(-\Delta u_{m}^{1}+a(x) u_{m}^{1}-w_{m}^{1},-\Delta u_{m}^{2}+b(x) u_{m}^{2}-w_{m}^{2}\right), U_{m}\right\rangle \\
\geq & \frac{\mu-2}{2 \mu}\left\|U_{m}\right\|_{E}^{2}-o(1)\left\|U_{m}\right\|_{E}
\end{aligned}
$$

This relation in conjunction with (20) implies that the Palais-Smale sequence $\left\{U_{m}\right\}$ is bounded in E. Thus, it converges weakly (up to a subsequence) in E and strongly in $L_{\mathrm{loc}}^{2}\left(\mathbb{R}^{N}\right)$ to some U. Taking into account that $W_{m} \in \partial \Psi\left(U_{m}\right)$ and $U_{m} \rightharpoonup U$ in E, we deduce from (21) that there exists $W \in E^{*}$ such that $W_{m} \rightharpoonup W$ in E^{*} (up to a subsequence). Since the mapping $U \longmapsto F(x, U)$ is compact from E to L^{1}, it follows that $W \in \partial \Psi(U)$. Therefore

$$
W(x) \in[\underline{f}(x, U(x)), \bar{f}(x, U(x))] \times[\underline{g}(x, U(x)), \bar{g}(x, U(x))] \text { a.e. } x \text { in } \mathbb{R}^{N}
$$

and $\left(-\Delta u_{m}^{1}+a(x) u_{m}^{1}-w_{m}^{1},-\Delta u_{m}^{2}+b(x) u_{m}^{2}-w_{m}^{2}\right)=0$, or equivalently

$$
\int_{\mathbb{R}^{N}}\left(\nabla u_{1} \nabla v_{1}+\nabla u_{2} \nabla v_{2}+a(x) u_{1} v_{1}+b(x) u_{2} v_{2}\right) d x=\int_{\mathbb{R}^{N}}\left(w_{1} v_{1}+w_{2} v_{2}\right) d x
$$

for all $\left(v_{1}, v_{2}\right) \in E$. These last two relations show that U is a solution of the problem (4).

It remains to prove that $U \not \equiv 0$. If $\left\{W_{m}\right\}$ is as in (21), then by (8), (16),
(20) and for large m

$$
\begin{align*}
\frac{c}{2} \leq & I\left(U_{m}\right)-\frac{1}{2}\left\langle\left(-\Delta u_{m}^{1}+a(x) u_{m}^{1}-w_{m}^{1},-\Delta u_{m}^{2}+b(x) u_{m}^{2}-w_{m}^{2}\right), U_{m}\right\rangle \\
= & \frac{1}{2}\left\langle W_{m}, U_{m}\right\rangle-\int_{\mathbb{R}^{N}} F\left(x, U_{m}\right) d x \\
\leq & \frac{1}{2}\left(\int_{u_{1} \geq 0} u_{1}(x) \underline{f}(x, U) d x+\int_{u_{1} \leq 0} u_{1}(x) \bar{f}(x, U) d x\right. \tag{22}\\
& \left.+\int_{u_{2} \geq 0} u_{1}(x) \underline{g}(x, U) d x+\int_{u_{2} \leq 0} u_{2}(x) \bar{g}(x, U) d x\right) .
\end{align*}
$$

Now, taking into account the definition of $\bar{f}, \underline{f}, \bar{g}, \underline{g}$ we deduce that $\bar{f}, \underline{f}, \bar{g}, \underline{g}$ verify (17), too. So by (22) we obtain

$$
\frac{c}{2} \leq \int_{\mathbb{R}^{N}}\left(\varepsilon\left|U_{m}\right|^{2}+A_{\varepsilon}\left|u_{m}\right|^{p+1}\right)=\varepsilon\left\|U_{m}\right\|_{L^{2}}^{2}+A_{\varepsilon}\left\|U_{m}\right\|_{L^{p+1}}^{p+1}
$$

So, $\left\{U_{m}\right\}$ does not converge strongly to 0 in $L^{p+1}\left(\mathbb{R}^{N} ; \mathbb{R}^{2}\right)$. With the same arguments as in the proof of Theorem 1 in [7], we deduce that $U \not \equiv 0$, which concludes our proof.

References

[1] A. Ambrosetti \& P. H. Rabinowitz, Dual Variational Methods in Critical Point Theory and Applications, J. Funct. Anal., 14 (1973), 349-381.
[2] S. Berberian, Measure and Integration, Macmillan Co., New York, 1967.
[3] K. C. Chang, Variational Methods for Non-differentiable Functionals and Applications to Partial Differential Equations, J. Math. Anal. Appl., 80 (1996), 102-129.
[4] F. H. Clarke, Generalized Gradients and Applications, Trans. Amer. Math. Soc., 205 (1975), 247-262.
[5] F. H. Clarke, Generalized Gradients of Lipschitz Functionals, Adv. in Math., 40 (1981), 52-67.
[6] B. D. Esry, C. H. Greene, J. P. Burke Jr., and J. L. Bohn, Hartree-Fock Theory for Double Condensates, Phys. Rev. Lett., 78 (1997), 3594-3597.
[7] F. Gazzola \& V. Rădulescu, A nonsmooth critical point theory approach to some nonlinear elliptic equation in \mathbb{R}^{n}, Differential and Integral Equations, 13 (2000), 47-60.
[8] H. Grosse \& A. Martin, Particle Physics and the Schrödinger Equation, Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology, Cambridge Univ. Press, 1997.
[9] T. Kato, Remarks on holomorphic families of Schrödinger and Dirac operators, in Differential equations, (Knowles I. \& Lewis R., Eds.), NorthHolland Math. Stud., 92, North-Holland, Amsterdam, 1984, 341-352.
[10] P. Mironescu \& V. Rădulescu, A Multiplicity Theorem for Locally Lipschitz Periodic Functionals, J. Math. Anal. Appl., 195 (1995), 621-637.
[11] Y.-G. Oh, Existence of semi-classical bound states of nonlinear Schr.odinger equations with potentials of the class (V_{a}), Communications on Partial Differential Equations, 13 (1988), 1499-1519.
[12] P. H. Rabinowitz, On a Class of Nonlinear Schrödinger Equations, Zeit. Angew. Math. Phys. (ZAMP), 43 (1992), 270-291.

[^0]: Key Words: nonlinear elliptic system, entire solution, Lipschitz functional, Clarke generalized gradient

 Mathematical Reviews subject classification: 35J50, 49J52, 58E05
 Received by the editors August 8, 2005
 Communicated by: Bernd Kirchheim

