INROADS

Andrzej Nowik, University of Gdańsk, Institute of Mathematics, Wita Stwosza 57, 80 - 952 Gdańsk, Poland. email: matan@julia.univ.gda.pl Marcin Szyszkowski, University of Gdańsk, Institute of Mathematics, Wita Stwosza 57, 80 - 952 Gdańsk, Poland. email: matmsz@julia.univ.gda.pl

POINTS OF WEAK SYMMETRY

Abstract

We show that every set of reals is a set of points of weak symmetry for some function $f: \mathbb{R} \rightarrow \mathbb{N}$.

1 Preface.

The weakest notion of continuity is probably the following definition:
Definition 1.1. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is weakly (or peripherally) continuous at x if $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(x)$ for some sequence $x_{n} \rightarrow x$.

The following theorem characterizes the sets of points of weak continuity:
Theorem 1.2 (Chapter 2 of [4] and Theorem 4 of [3]). Any function has only countably many points of weak discontinuity, and any countable set is the set of points of weak discontinuity for some function.

2 Notation and Definitions.

Basic notion for our investigations is the following definition (see, for example, [1], [2] or [3]):

[^0]Definition 2.1. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is weakly symmetrically continuous at a point x if there exists a sequence $\left\langle h_{n}\right\rangle$ of positive numbers converging to 0 such that

$$
\lim _{n \rightarrow \infty} f\left(x+h_{n}\right)-f\left(x-h_{n}\right)=0
$$

For $f: \mathbb{R} \rightarrow \mathbb{R}$, let $S(f)$ denote the set of all points at which f is not weakly symmetrically continuous.
Definition 2.2. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is weakly symmetric (also called Schwartz symmetric) at a point x if there exists a sequence $\left\langle h_{n}\right\rangle$ of positive numbers converging to 0 such that

$$
\lim _{n \rightarrow \infty} f\left(x+h_{n}\right)+f\left(x-h_{n}\right)-2 \cdot f(x)=0
$$

Analogously, for $f: \mathbb{R} \rightarrow \mathbb{R}$, let $T(f)$ be the set of all $x \in \mathbb{R}$ such that f is not weakly symmetric at x, that is,

$$
T(f)=\{x \in \mathbb{R}: f \text { is not weakly symmetric at } x\}=
$$

$\left\{x \in \mathbb{R}\right.$: there is no sequence $h_{n} \searrow 0$ with $\left.\lim _{n \rightarrow \infty} f\left(x+h_{n}\right)+f\left(x-h_{n}\right)-2 f(x)=0\right\}$.
Let us formulate a "template" of general problems for characterizing the set $S(f)$, namely:
Problem 2.3. Suppose that $Y \subseteq \mathbb{R}$ is a fixed set. Find a characterization of the collection of all possible sets of the form $S(f)$ for any $f: \mathbb{R} \rightarrow Y$.

Notice that for some special cases of Y the answer is known, while for some others it is still an open problem. For example, we have:

Theorem 2.4 (M. Szyszkowski, [3]). Any set $A \subset \mathbb{R}$ is the set of points of weak symmetry for some function $f: \mathbb{R} \rightarrow \mathbb{N}$.

However, such a problem is still open for the case $Y=n$, where $n \geq 4$. Let us formulate a little stronger definition than Definition 2.2:
Definition 2.5. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is *-weakly symmetric at $x \in \mathbb{R}$ if there exists a sequence $\left\langle h_{n}\right\rangle$ of positive numbers converging to 0 such that $\forall_{n} f\left(x-h_{n}\right)=f\left(x+h_{n}\right)=f(x)$.

Analogously, for $f: \mathbb{R} \rightarrow \mathbb{R}$, let $T^{*}(f)$ be the set of all $x \in \mathbb{R}$ such that f is not ${ }^{*}$-weakly symmetric at x. Obviously, we have $T(f) \subseteq T^{*}(f)$. Notice that there is no provable inclusion between $T(f)$ and $S(f)$. The aim of this paper is to prove an analogous result to Theorem 2.4 in case of $T(f)$ instead of $S(f)$. Let us notice that the case of $T^{*}(f)$ is still open; i.e., we are unable to solve the following:

Problem 2.6. Is every set $A \subset \mathbb{R}$ of the form $T^{*}(f)$ for some function from \mathbb{R} to \mathbb{N} ?

3 Main Result.

Let us formulate the main theorem which solves Problem 6 from [2]:
Theorem 3.1. For every set $A \subseteq \mathbb{R}$, there exists a function $f: \mathbb{R} \rightarrow \omega$ such that $T(f)=A$.

We will need the following notion:
Definition 3.2. By a four-points-block with a center $r \in \mathbb{R}$, we mean a set $\mathcal{B}(r, \eta, \delta)=\{r-\eta, r-\delta, r+\delta, r+\eta\}$, where $\eta, \delta>0$ are arbitrary and $\eta \neq \delta$.

Notice that a center of a fixed four-points-block is determined uniquely, that is, $\mathcal{B}\left(r_{1}, \eta_{1}, \delta_{1}\right)=\mathcal{B}\left(r_{2}, \eta_{2}, \delta_{2}\right) \Rightarrow r_{1}=r_{2}$. Let us start with a lemma which is a strengthening of Lemma 8 from [3].
Lemma 3.3. Suppose that $A \subseteq \mathbb{R}$ is any set, and let $\left\{a_{\mu}: \mu<\kappa\right\}$ be an enumeration without repetitions of its elements, where $\kappa=|A|$. Then for each $\mu<\kappa$, there exist a system of sequences:

$$
\left(x_{\mu}^{n}\right)_{n \in \omega} ; \quad\left(y_{\mu}^{n}\right)_{n \in \omega} ;
$$

such that:

1. $\forall_{\mu<\xi<\kappa}\left\{x_{\mu}^{n}, y_{\mu}^{n}: n \in \omega\right\} \cap\left\{x_{\xi}^{n}, y_{\xi}^{n}: n \in \omega\right\}=\emptyset$.
2. $\forall_{\mu<\kappa} \forall_{n \in \omega} \frac{x_{\mu}^{n}+y_{\mu}^{n}}{2}=a_{\mu}$ and $x_{\mu}^{n} \nearrow a_{\mu}$.
3. The set $X=\left\{x_{\mu}^{n}, y_{\mu}^{n}: n \in \omega \wedge \mu<\kappa\right\}$ contains no four-points-block with a center from $\mathbb{R} \backslash A$.
4. $\forall_{\mu<\kappa}\left\{x_{\mu}^{n}, y_{\mu}^{n}: n \in \omega\right\} \cap\left\{a_{\xi}: \xi<\mu\right\}=\emptyset$.

Proof. We will construct the sequences

$$
\left(x_{\mu}^{n}\right)_{n \in \omega} ; \quad\left(y_{\mu}^{n}\right)_{n \in \omega} ;
$$

by a transfinite induction. So, suppose that we are in the stage $\zeta<\kappa$, and we have constructed sequences:

$$
\left(x_{\mu}^{n}\right)_{n \in \omega} ; \quad\left(y_{\mu}^{n}\right)_{n \in \omega} ;
$$

for $\mu<\zeta$. Denote $X_{\zeta}^{*}=\left\{x_{\mu}^{n}, y_{\mu}^{n}: \mu<\zeta \wedge n \in \omega\right\}$. We are looking for a sequence $\left(x_{\zeta}^{n}\right)_{n \in \omega} ;\left(y_{\zeta}^{n}\right)_{n \in \omega}$ of the form:

$$
x_{\zeta}^{n}=a_{\zeta}-\frac{d_{\zeta}}{2^{n}} \text { and } y_{\zeta}^{n}=a_{\zeta}+\frac{d_{\zeta}}{2^{n}}
$$

where $d_{\zeta}>0$ is a positive real number which fulfills the following conditions.

1. $d_{\zeta} \neq \pm 2^{n} \cdot\left(x-y-z+a_{\zeta}\right)$ for $x, y, z \in X_{\zeta}^{*}$ and $n \in \omega$.
2. $d_{\zeta} \neq \frac{x-y}{ \pm \frac{1}{2^{n}} \pm \frac{1}{2^{m n}}}$ for $x, y \in X_{\zeta}^{*}$ and $n, m \in \omega, n \neq m$.
3. $d_{\zeta} \neq \frac{x-y}{ \pm \frac{2}{2^{n}}}$ for $x, y \in X_{\zeta}^{*}$ and $n \in \omega$.
4. $d_{\zeta} \neq \frac{x+y-2 a_{\zeta}}{ \pm \frac{1}{2^{n}} \pm \frac{1}{2^{m}}}$ for $x, y \in X_{\zeta}^{*}$ and $n, m \in \omega, n \neq m$.
5. $d_{\zeta} \neq \frac{a_{\zeta}-x}{ \pm \frac{1}{2^{n}} \pm \frac{1}{2^{m}} \pm \frac{1}{2^{l}}}$ for $x \in X_{\zeta}^{*}$ and $m, n, l \in \omega$ and $\pm \frac{1}{2^{n}} \pm \frac{1}{2^{m}} \pm \frac{1}{2^{l}} \neq 0$.
6. $d_{\zeta} \neq \pm 2^{n} \cdot\left(x-a_{\zeta}\right)$ for $x \in X_{\zeta}^{*}$ and $n \in \omega$.
7. $d_{\zeta} \neq \pm 2^{n} \cdot\left(a_{\zeta}-a_{\mu}\right)$ for $\mu<\zeta$ and $n \in \omega$.

Notice that all these conditions are fulfilled if we simply assume that $d_{\zeta} \notin$ $\operatorname{span}_{\mathbb{Q}}\left(X_{\zeta}^{*} \cup\left\{a_{\mu}: \mu \leq \zeta\right\}\right)$ (linear space spanned on $X_{\zeta}^{*} \cup\left\{a_{\mu}: \mu \leq \zeta\right\}$). Define $X=\left\{x_{\mu}^{n}, y_{\mu}^{n}: \mu<\kappa \wedge n \in \omega\right\}$.

For brevity, denote: $X_{\mu}=\left\{x_{\mu}^{n}, y_{\mu}^{n}: n \in \omega\right\}$ for any $\mu<\kappa$. We will show that there is no four-points-block $\mathcal{B} \subseteq X$ with center from $\mathbb{R} \backslash A$. So suppose that $\mathcal{B} \subseteq X$ is a four-points-block. We will show that there exists $\mu<\kappa$ such that $\mathcal{B} \subseteq X_{\mu}$. By way of contradiction, consider the following cases:
Case 1: There exists $\zeta<\kappa$ such that $\left|\mathcal{B} \cap X_{\zeta}\right|=1$ and $\left|\mathcal{B} \cap X_{\zeta}^{*}\right|=3$.
So, let $n \in \omega$ be a natural number such that $\mathcal{B} \cap X_{\zeta}=\left\{a_{\zeta} \pm \frac{d_{\zeta}}{2^{n}}\right\}$. Let $x, y, z \in \mathcal{B} \cap X_{\zeta}^{*}$ be distinct elements. Then we have (after possibly exchanging x and $y): x-y=z-\left(a_{\zeta} \pm \frac{d_{\zeta}}{2^{n}}\right)$, and hence $d_{\zeta}= \pm 2^{n} \cdot\left(-x+y+z-a_{\zeta}\right)$. By Assumption 1, this is impossible.
Case 2: There exists $\zeta<\kappa$ such that $\left|\mathcal{B} \cap X_{\zeta}\right|=2$ and $\left|\mathcal{B} \cap X_{\zeta}^{*}\right|=2$.
So let $n, m \in \omega$ be natural numbers such that $\mathcal{B} \cap X_{\zeta}=\left\{a_{\zeta} \pm \frac{d_{\zeta}}{2^{n}}, a_{\zeta} \pm \frac{d_{\zeta}}{2^{m}}\right\}$. Let $x, y \in \mathcal{B} \cap X_{\zeta}^{*}$ be distinct elements. Then we have two cases:

Case (a) $x-\left(a_{\zeta} \pm \frac{d_{\zeta}}{2^{n}}\right)=y-\left(a_{\zeta} \pm \frac{d_{\zeta}}{2^{m}}\right)$. If $m \neq n$, then $d_{\zeta}=\frac{x-y}{ \pm \frac{1}{2^{n} \mp \frac{1}{2^{m}}}}$, which is impossible by Assumption 2, and if $n=m$, then (after possibly exchanging x and $y) x-\left(a_{\zeta}-\frac{d_{\zeta}}{2^{n}}\right)=y-\left(a_{\zeta}+\frac{d_{\zeta}}{2^{n}}\right)$ so $d_{\zeta}=\frac{x-y}{-\frac{2}{2^{n}}}$ which is impossible by Assumption 3.

Case (b) $x-\left(a_{\zeta} \pm \frac{d_{\zeta}}{2^{n}}\right)=\left(a_{\zeta} \pm \frac{d_{\zeta}}{2^{m}}\right)-y$. If $n \neq m$, then $d_{\zeta}=\frac{x+y-2 a_{\zeta}}{ \pm \frac{1}{2^{m}} \pm \frac{1}{2^{n}}}$ which is impossible by Assumption 4. If $m=n$, then $x-\left(a_{\zeta} \pm \frac{d_{\zeta}}{2^{n}}\right)=\left(a_{\zeta} \mp \frac{d_{\zeta}}{2^{n}}\right)-y$ which is impossible because four-points-block \mathcal{B} would have a center at $a_{\zeta} \in A$.

Case 3: There exists $\zeta<\kappa$ such that $\left|\mathcal{B} \cap X_{\zeta}\right|=3$ and $\left|\mathcal{B} \cap X_{\zeta}^{*}\right|=1$.
So, let $\mathcal{B} \cap X_{\zeta}=\left\{a_{\zeta} \pm \frac{d_{\zeta}}{2^{n}}, a_{\zeta} \pm \frac{d_{\zeta}}{2^{m}}, a_{\zeta} \pm \frac{d_{\zeta}}{2^{l}}\right\}$, and let $\mathcal{B} \cap X_{\zeta}^{*}=\{x\}$. Then we have $\left(a_{\zeta} \pm \frac{d_{\zeta}}{2^{n}}\right)-\left(a_{\zeta} \pm \frac{d_{\zeta}}{2^{m}}\right)=\left(a_{\zeta} \pm \frac{d_{\zeta}}{2^{l}}\right)-x$. Hence, $d_{\zeta}=\frac{a_{\zeta}-x}{ \pm \frac{1}{2^{n}} \pm \frac{1}{2^{m} \mp \frac{1}{2^{l}}}}$, which is a contradiction by Assumption 5. In this way, we conclude that there exists $\mu<\kappa$ such that $\mathcal{B} \subseteq X_{\mu}$ for some $\mu<\kappa$. This is, however, possible only in the case where $\mathcal{B}=\left\{a_{\mu}-\frac{d_{\mu}}{2^{n}}, a_{\mu}-\frac{d_{\mu}}{2^{m}}, a_{\mu}+\frac{d_{\mu}}{2^{m}}, a_{\mu}+\frac{d_{\mu}}{2^{n}}\right\}$. Hence, \mathcal{B} has the center at the point a_{μ}.

This shows that condition 3 from Lemma 3.3 is satisfied. Condition 1 from the Lemma is satisfied by Assumption 6, and Condition 4 from the Lemma is satisfied by Assumption 7.

Proof of Theorem 3.1. It will be simpler to construct a function f with $T(f)=\mathbb{R} \backslash A$ (simply switch A with $\mathbb{R} \backslash A$ to get f as in the Theorem). Let $h_{1}: \mathbb{R} \rightarrow \omega$ be a function such that $T\left(h_{1}\right)=\mathbb{R}$ which exists by the Corollary 1.2 from $[1]^{1}$. Define $h: \mathbb{R} \rightarrow \omega$ by $h(x)=5 \cdot h_{1}(x)$. We also have $T(h)=\mathbb{R}$.

Let $\left\{a_{\mu}: \mu<\kappa=|A|\right\}$ be an enumeration of A, and the set

$$
X=\left\{x_{\mu}^{n}, y_{\mu}^{n}: \mu<\kappa, n \in \omega\right\}
$$

is as in Lemma 3.3. We will also use the auxiliary sets X_{ζ} and X_{ζ}^{*} from the proof of Lemma 3.3. Let us define a function $g: X \rightarrow \omega$ by induction:

Suppose that we have already constructed functions $g_{\mu}: X_{\mu} \rightarrow \omega$ for $\mu<\zeta$, where $\zeta<\kappa$. We want to define $g_{\zeta}: X_{\zeta} \rightarrow \omega$. Consider the following cases: CASE 1: $a_{\zeta} \notin X_{\zeta}^{*}$

Then define $g_{\zeta}\left(x_{n}^{\zeta}\right)=h\left(a_{\zeta}\right)-1$ and $g_{\zeta}\left(y_{n}^{\zeta}\right)=h\left(a_{\zeta}\right)+1$. CASE 2: $a_{\zeta} \in X_{\zeta}^{*}$

Then $a_{\zeta} \in X_{\xi}$ for some $\xi<\zeta$. Define $g_{\zeta}\left(x_{n}^{\zeta}\right)=g_{\zeta}\left(y_{n}^{\zeta}\right)=g_{\xi}\left(a_{\zeta}\right)$. In such a way, we have defined the function g. Now define the final function $f: \mathbb{R} \rightarrow \omega$:

$$
f(x)= \begin{cases}h(x) & \text { if } x \in \mathbb{R} \backslash X \\ g(x) & \text { if } x \in X\end{cases}
$$

[^1]We will check that such defined function f has the property $T(f)=\mathbb{R} \backslash A$. It is easy to see that if $a \in A$, then $a \in \mathbb{R} \backslash T(f)$. Indeed, there is $\zeta<\kappa$ such that $a_{\zeta}=a$. Hence, by the construction of the function $g, f\left(x_{n}^{\zeta}\right)=g\left(x_{n}^{\zeta}\right)=$ $h\left(a_{\zeta}\right)-1$ and $f\left(y_{n}^{\zeta}\right)=g\left(y_{n}^{\zeta}\right)=h\left(a_{\zeta}\right)+1$, or $f\left(x_{n}^{\zeta}\right)=g\left(x_{n}^{\zeta}\right)=g\left(a_{\zeta}\right)$ and $f\left(y_{n}^{\zeta}\right)=g\left(y_{n}^{\zeta}\right)=g\left(a_{\zeta}\right)$. In both cases, $f\left(x_{n}^{\zeta}\right)+f\left(y_{n}^{\zeta}\right)-2 f\left(a_{\zeta}\right)=0$, and hence $a \in \mathbb{R} \backslash T(f)$.

On the other hand, suppose that $b \in \mathbb{R} \backslash A$ and let $h_{n} \searrow 0$ be any sequence. By way of contradiction, suppose that

$$
\lim _{n \rightarrow \infty}\left|f\left(b+h_{n}\right)+f\left(b-h_{n}\right)-2 f(b)\right| \rightarrow 0
$$

At first, observe that since $f\left(b+h_{n}\right)+f\left(b-h_{n}\right)-2 f(b) \in \mathbb{Z}$, we can assume without loss of generality that $\forall_{n \in \omega} f\left(b+h_{n}\right)+f\left(b-h_{n}\right)-2 f(b)=0$.

We have $f\left(b+h_{n}\right)=5 k_{n}+s_{n} ; f\left(b-h_{n}\right)=5 k_{n}^{\prime}+s_{n}^{\prime}$ for some $k_{n}, k_{n}^{\prime} \in \omega \backslash\{0\}$ and $s_{n}, s_{n}^{\prime} \in\{-1,0,1\}$. Also, we have $f(b)=5 k+s$ for some $k \in \omega \backslash\{0\}$ and $s \in\{-1,0,1\}$. Then, we have $5 k_{n}+5 k_{n}^{\prime}-2 \cdot 5 k+s_{n}+s_{n}^{\prime}-2 \cdot s=0$, and therefore $s_{n}+s_{n}^{\prime}=2 \cdot s$.
We will verify that this last equation cannot be satisfied.
If $s \in\{-1,1\}$, then $s_{n}=s_{n}^{\prime}=s$, but this shows that $\forall_{n \in \omega} b-h_{n}, b+h_{n} \in$ X, which is impossible by Condition 3 of Lemma 3.3.

If $s=0$, then $s_{n}=s_{n}^{\prime}=0$ or $s_{n} \cdot s_{n}^{\prime}=-1$.
By the same argument as above, we have that $\exists_{M \in \omega} \forall_{n>M} s_{n}=s_{n}^{\prime}=0$, which is impossible, since $b \in T(h)=\mathbb{R}$.

References

[1] K. Ciesielski, L. Larson, Uniformly antisymmetric functions, Real Anal. Exchange, 19(1) (1993/94), 226-235.
[2] K. Ciesielski, K. Muthuvel, A. Nowik, On nowhere weakly symmetric functions and functions with two-element range, Fund. Math., 168(2) (2001), 119-130.
[3] M. Szyszkowski, Points of weak symmetric continuity, Real Anal. Exchange, 24(2) (1998/99), 807-814.
[4] B. S. Thomson, Real Functions, Springer-Verlag, New York, 1985.

[^0]: Key Words: Symmetric continuity.
 Mathematical Reviews subject classification: Primary: 26A15; Secondary: 26A03
 Received by the editors October 31, 2006
 Communicated by: Krzysztof Chris Ciesielski
 *Both authors partially supported by grant BW/5100-5-0201-6

[^1]: ${ }^{1}$ To obtain such a function just put $h_{1}(x)=3^{f(x)}$, where f is a function from [1].

