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SOME VARIATIONS ON THE
BANACH-ZARECKI THEOREM

Abstract

This note concerns some variations on the classical Theorem of
Banach-Zarecki [2].

In this note, we prove a slightly stronger version of the classical Theorem
of Banach-Zarecki (See [2, Theorem 4, Chapter IX, Section 4]).

Theorem (Banach and Zarecki). Let f be a continuous function on [a, b] that
maps sets of measure zero to sets of measure zero, and let f be a function of
bounded variation on [a, b]. Then f is an absolutely continuous function on
[a, b].

In [1], J. J. Koliha restated it in part, as follows.

Theorem (Koliha). Let f be a continuous function on [a, b], let f be Lebesgue
summable on [a, b], and let F ′(t) = f(t) for all but at most countably many t
in [a, b]. Then f is an absolutely continuous function on [a, b], and∫ b

a

f = F (b)− F (a) .

We will give a proof of the following theorem that subsumes these results.
We will use only standard results about Lebesgue measure and integration.
We do employ the result that a function of bounded variation has a finite
derivative almost everywhere on (a, b), and this derivative is summable on
[a, b]. (This can be derived from the Vitali Covering Theorem and Fatou’s
Lemma. Consult [2, Theorem 5, Chapter VIII, Section 2 and Theorem 6,
Chapter VIII, Section 3].)

We will prove the following.
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Theorem 1. Let f be a continuous function on [a, b], and let P be a mea-
surable subset of [a, b] such that the set f

(
[a, b] \ P

)
has measure zero and f

is differentiable at each point of P . Then a necessary and sufficient condition
that f be absolutely continuous on [a, b] is that there exists a positive summable
function g on [a, b] such that g ≥ f ′ on P .

In [3, (6.9), Chapter IX], we have a version of this proof which, however,
is much more complex. The essential difference between Theorem 1 and the
Koliha and Banach-Zarecki Theorems is that f ′ is dominated from above, but
not from below, in the hypotheses.

Before tackling the proof of Theorem 1, we make an easy application of
an old technique that should be familiar. We provide a proof of the following
lemma for the sake of completeness.

Lemma 1. Let f and F be as in Theorem 1, and let

P+ =
{
x ∈ P : f ′(x) ≥ 0

}
.

Then
max

(
0 , f(b)− f(a)

)
≤ m

(
f
(
(a, b) ∩ P+

))
.

Proof. Without loss of generality, we assume that f(b) > f(a). By hypoth-
esis, f

(
(a, b) \ P

)
has measure 0. Hence, the set(

f(a) , f(b)
)
\ f
(
(a, b) \ P

)
has measure f(b)− f(a).

So choose
y ∈ (f(a) , f(b)

)
\ f
(
(a, b) \ P )

)
.

Let x0 be the maximal element in the compact set f−1(y) ∩ (a, b). Then
f ′(x0) < 0 is necessarily impossible, so f ′(x0) ≥ 0. Finally, x0 ∈ (a, b) ∩ P+,
so

y = f(x0) ∈ f
(
(a, b) ∩ P+

)
,

and it follows that

m
(
f
(
(a, b) ∩ P+

))
≥ f(b)− f(a) .
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Proof of Theorem 1. Necessity is obvious so we prove sufficiency.
Let there exist a summable function g > 0 such that g ≥ f ′ on P . Let

P+ =
{
x ∈ P : f ′(x) ≥ 0

}
.

Choose indices i and j, and choose any ε > 0. Put

Ei =
{
x ∈ P+ : i− 1 ≤ g < i

}
and

Sij =
{
x ∈ Ei :m

(
f(I)

)
< im(I)

for any interval I containing x for which m(I) <
1
j

}
.

Then

Si1 ⊂ Si2 ⊂ Si3 ⊂ · · · ⊂ and ∪j Sij = Ei. (1)

Let U be an open set containing Sij such that m(U \Sij) < ε. We assume, by
deleting finitely many points from Sij if necessary, that m

(
Ik
)
< 1

j for each
component Ik of U . Delete any component Ik of U disjoint from Sij . Then
each component Ik of U contains a point of Sij , and

m
(
f(Sij)

)
≤ m

(
f(U)

)
≤
∑

k

m
(
f(Ik)

)
≤
∑

k

im(Ik) = im(U) ≤ im(Sij) + iε .

But ε is independent of i, so m
(
f(Sij)

)
≤ im(Sij). We let j →∞ and deduce

from (1) that

m
(
f(Ei)

)
≤ im(Ei) . (2)

From the definition of Ei, we deduce that im(Ei) ≤
∫

Ei
(g + 1), and from (2),

that
m
(
f(Ei)

)
≤
∫

Ei

(g + 1) . (3)

We sum on i and use the definition of Ei to obtain

m
(
f(P+)

)
≤
∑

i

m
(
f(Ei)

)
≤
∑

i

∫
Ei

(g + 1) =
∫

P+

(g + 1) . (4)
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By Lemma 1, we have

m
(
f(P+)

)
≥ max

(
0, f(b)− f(a)

)
.

From (4), we obtain ∫
P+

(g + 1) ≥ max
(
0, f(b)− f(a)

)
.

Likewise for any subinterval (u, v) of [a, b], we have

max
(
0, f(v)− f(u)

)
≤
∫ v

u

(g + 1) (5)

because g + 1 > 0. If
{

(uj , vj)
}

j
are mutually disjoint subintervals of [a, b], it

follows from this that∑
j

(
f(vj)− f(uj)

)
≤
∑

j

∫ vj

uj

(g + 1) ≤
∫ b

a

(g + 1) . (6)

From (6), we deduce that f has bounded upper variation on [a, b]. But f
is continuous and bounded on [a, b], so in fact f is of bounded variation on
[a, b]. As mentioned in our introductory remarks, f is differentiable almost
everywhere on [a, b], and f ′ is summable on [a, b]. Moreover, |f ′| ≥ −f ′ on P ,
and we repeat our arguments for −f to obtain∑

j

−
(
f(vj)− f(uj)

)
≤
∑

j

∫ vj

uj

(
|f ′|+ 1

)
. (7)

From the absolute continuity of the integrals of g + 1 and |f ′| + 1, it follows
(using (6) and (7)) that f is absolutely continuous on [a, b].

Our first Corollary is inspired by the Banach-Zarecki Theorem.

Corollary 1. Let f be a continuous function differentiable almost everywhere
on [a, b]. Let f map sets of measure zero to sets of measure zero. Then a
necessary and sufficient condition that f be absolutely continuous on [a, b] is
that there exists a positive summable function g on [a, b] such that g ≥ f ′

almost everywhere on [a, b].

We leave the proof that is immediate from Theorem 1.
We can use Theorem 1 to prove another corollary inspired by the Koliha

Theorem.
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Corollary 2. Let f be a continuous function differentiable everywhere except
possibly at countably many points on [a, b]. Let g be a positive summable
function on [a, b] such that g ≥ f ′ almost everywhere on [a, b]. Then f is an
absolutely continuous function on [a, b].

Let f and P be as in the proof of Theorem 1. Let E be a measurable
subset of P at each point of which f ′ = 0. For any fixed positive number i,
we see from (2) that m

(
f(E)

)
≤ im(E). But i is arbitrary, so m

(
f(E)

)
= 0.

We state the following.

Lemma 2. Let f and P be as in Theorem 1, and let E be a measurable subset
of P such that f ′(x) = 0 for any x ∈ E. Then m

(
f(E)

)
= 0.

We conclude with an elementary proof of the following.

Corollary 3. Let f be continuous on [a, b] and f ′ ≤ 0 almost everywhere. Let
f map sets of measure zero to sets of measure zero. Then f is nonincreasing
on [a, b].

Proof. Assume to the contrary, that there exists an interval (u, v) with
f(u) < f(v). It follows from Lemma 1 that

m

(
f
({
x ∈ (u, v) : f ′(x) = 0

}))
≥ f(v)− f(u) > 0 .

This conflicts with Lemma 2.
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