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ON THE POINTS OF ONE-SIDED
CLIQUISHNESS

Abstract

In this paper, an attempt has been made to characterize one-sided points
of cliquishness of a function in terms of generalized one-sided oscillations
and study the nature of one-sided points of cliquishness of the quasi-
uniform limit function of a sequence of functions.

1 Introduction.

In what follows, X is a topological space, and Y is a metric space with metric
d. Through the paper R and Q are the spaces of real numbers and rational
numbers, respectively, with the usual metric. Furthermore, N stands for the
set of natural numbers, and φ denotes the empty set.

The notions of quasicontinuity and cliquishness of a function was intro-
duced in [7] and [8], respectively. Recall that a function f : X → Y is said to
be quasicontinuous at a point x ∈ X if for each open neighbourhood U of x
and each open neighbourhood V of f(x), there is a non-empty open set G ⊆ U
such that f(G) ⊆ V ([7]).

Again, a function f : X → Y is said to be cliquish at a point x ∈ X ([8])
if for each ε > 0 and each open neighbourhood U of x, there is a non-empty
open set G ⊆ U such that d(f(x′), f(x′′)) < ε for all x′, x′′ ∈ G. A function f
is said to be quasicontinuous (cliquish) if it has this property at each point.
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With C(f), Q(f), and A(f), we define the sets of all points at which f is
continuous, quasicontinuous, and cliquish, respectively. It is known that C(f)
is a Gδ set ([5]) and A(f) is a closed set ([6]).

From the definitions, we have C(f) ⊆ Q(f) ⊆ A(f).
One-sided quasicontinuity has been studied by J. Borsik in [1]. J. Ewert

introduced some techniques including uniform convergency for studying one-
sided quasicontinuity ([3], [4]).

A function f : R → Y is said to be right-sidedly (left-sidedly) quasicon-
tinuous at x ∈ R if for each δ > 0 and each open neighbourhood V of f(x),
there is a non-empty open set U ⊆ (x, x + δ) (resp. U ⊆ (x − δ, x)) such
that f(U) ⊆ V . The function f is said to be right-sidedly (resp. left-sidedly)
quasicontinuous if it is so at each point.

By Q+(f) and Q−(f), we denote the sets of all points at which f is right-
sidedly, left-sidedly quasicontinuous, respectively. Then we have

Q+(f) ∪Q−(f) = Q(f) ([3]).

Here we introduce the concept of one-sided cliquishness as follows:
A function f : R → Y is said to be right-sidedly (left-sidedly) cliquish if for
each δ > 0 and ε > 0, there is a non-empty open set U ⊆ (x, x + δ) (resp.
U ⊆ (x − δ, x)) such that d(f(x′), f(x′′)) < ε for all x′, x′′ ∈ U . A function
f : R → Y is called right-sidedly (left-sidedly) cliquish if it has this property
at each point of R.

By A+(f) and A−(f), we denote the sets of all points at which f is right-
sidedly, left-sidedly cliquish, respectively. Then, from definitions,

Q+(f) ⊆ A+(f); Q−(f) ⊆ A−(f); A+(f) ∪A−(f) = A(f).

The following characterization of one-sided cliquishness readily follows from
the definition.

Proposition 1.1. A function f : R→ Y is right-sidedly (left-sidedly) cliquish
at a point x ∈ R if and only if for each δ > 0 and ε > 0, there exists at least
one y ∈ Y and a non-empty open set U ⊆ (x, x + δ) (resp. U ⊆ (x − δ, x))
such that d(f(x′), y) < ε for all x′ ∈ G.

Theorem 1.2. For a function f : R→ Y , A+(f) (resp. A−(f)) contains all
right-sided (resp. left-sided) cluster points of A(f).

Proof. Let x be a right-sided cluster point of A(f), δ > 0 and ε > 0. Then
(x, x+δ)∩A(f) 6= φ, and suppose x1 ∈ (x, x+δ) and x1 ∈ A+(f). Then there is
a non-empty open set U ⊆ (x1, x+δ) ⊆ (x, x+δ) such that d(f(x′), f(x′′)) < ε
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for all x′, x′′ ∈ U . So x ∈ A+(f). Similarly, assuming x1 ∈ (x, x + δ) and
x1 ∈ A−(f), we can show that x ∈ A+(f).

The other part can be proved similarly.

2 Points of One-Sided Cliquishness.

Theorem 2.1. For a function f : R → Y , the sets A+(f) \ A−(f) and
A−(f) \A+(f) are countable.

Proof. Suppose that A+(f) \ A−(f) is not countable. It is known that if
A ⊆ R is not countable, then there is a point a ∈ A such that a is a bilateral
accumulation point of A. Then there is a point a ∈ A+(f) \ A−(f) such that
a is a bilateral accumulation point of A+(f) \ A−(f). So by the Proposition
1.1, f is both right-sidedly and left-sidedly cliquish at a which is not true. So
A+(f) \A−(f) is countable.

Similarly, we can show that A−(f) \A+(f) is countable.

Remark 2.2. For a function f : R → Y , the set A(f) \ (A+(f) ∩ A−(f)) is
countable.

It follows from the fact that

A(f) \ (A+(f) ∩A−(f)) = (A+(f) \A−(f)) ∪ (A−(f) \A+(f)), ,

and both the sets A+(f) \A−(f), A−(f) \A+(f) are countable.

Corollary 2.3. A function f : R→ Y is cliquish if and only if A+(f)∩A−(f)
is dense in R.

Proof. Suppose f : R→ Y is cliquish. Then

R \ (A+(f) ∩A−(f)) = A(f) \ (A+(f) ∩A−(f))

is a countable set (by the Remark 2.2), and hence A+(f) ∩A−(f) is dense in
R.

Conversely, if A+(f) ∩ A−(f) is dense in R, then from the the fact that
A(f) is closed and A+(f) ∩ A−(f) ⊆ A(f), it follows that R = A(f), and the
proof is completed.
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3 Generalized One-Sided Oscillations.

A few types of bilateral oscillations were introduced by J. Borsik in [2]. For a
function f : R→ Y , the generalized right-sidedly, left-sidedly oscillations of f
at a point x ∈ R are denoted by w+(f, x) and w−(f, x), respectively, and are
defined as follows:

w+(f, x) = sup
δ>0

inf
U⊆(x,x+δ)

sup
x′,x′′∈U

d(f(x′), f(x′′)),

where the infimum is taken under all non-empty open sets U ⊆ (x, x+ δ), and

w−(f, x) = sup
δ>0

inf
U⊆(x−δ,x)

sup
x′,x′′∈U

d(f(x′), f(x′′)),

where the infimum is taken under all non-empty open sets U ⊆ (x− δ, x).
The sets Q(f), A(f) have been characterized in [6] when Y = R. We shall

now characterize the sets A+(f), A−(f) in terms of generalized, one-sided
oscillations.

Theorem 3.1. For a function f : R→ Y ,
i) A+(f) = {x ∈ R : w+(f, x) = 0}
ii) A−(f) = {x ∈ R : w−(f, x) = 0}

Proof of i). Let x ∈ A+(f), δ > 0 and ε > 0. Then there is a non-empty
open set U ⊆ (x, x+ δ) such that d(f(x′), f(x′′) < ε for all x′, x′′ ∈ U . So

inf
U⊆(x,x+δ)

sup
x′,x′′∈U

d(f(x′), f(x′′)) = 0,

and consequently, w+(f, x) = 0.
Conversely, suppose that w+(f, x) = 0. Then for each δ > 0,

inf
U⊆(x,x+δ)

sup
x′,x′′∈U

d(f(x′), f(x′′)) = 0.

So for each δ > 0, ε > 0, there is a non-empty open set U ⊆ (x, x + δ) such
that d(f(x′), f(x′′)) < ε, for all x′, x′′ ∈ U . Hence, x ∈ A+(f), and the proof
is completed.

The proof of ii) is analogous.
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4 Limits.

A net {fj : j ∈ J} of functions fj : R → Y is said to be quasi-uniformly
convergent to a function f : R → Y ([9]) if for each x ∈ R, ε > 0, there is
j0 ∈ J such that for each j ∈ J , j ≥ j0, there is a neighbourhood U of x with
d(f(x′), fj(x′)) < ε for each x′ ∈ U .
For a net {Mj : j ∈ J} of sets, we will use the following notations:

lim supMj =
⋂
j∈J

⋃
i∈J,i≥j

Mi, lim inf Mj =
⋃
j∈J

⋂
i∈J,i≥j

Mi,

and we will write limMj , if lim supMj = lim inf Mj .
Now we obtain the following results.

Theorem 4.1. Let {fn}n be a sequence of functions fn : R→ Y which quasi-
uniformly converges to a function f : R→ Y . Then

i) lim supA+(fn) ⊆ A+(f) ⊆ lim inf A+(fn)
ii) lim supA−(fn) ⊆ A−(f) ⊆ lim inf A−(fn)

Proof of i). Let x0 ∈ lim supA+(fn), δ > 0, and ε > 0. From assumptions,
we can choose n ∈ N and an open neighbourhood U of x0 such that

x0 ∈ A+(fn), d(f(x), fn(x)) < ε/2,

for all x ∈ U . Let us take δ1, 0 < δ1 < δ, with (x0, x0 + δ1) ⊆ U . Since
x0 ∈ A+(fn), by the Proposition 1.1, there is a point yn(x0) ∈ Y and a
non-empty open set G ⊆ (x0, x0 + δ1) with

d(fn(x), yn(x0)) < ε/2,

for all x ∈ G. Now for x ∈ G,

d(f(x), yn(x0)) ≤ d(f(x), fn(x)) + d(fn(x), yn(x0)) < ε.

So by the Proposition 1.1, x0 ∈ A+(f), and consequently lim supA+(fn) ⊆
A+(f).
Again let x0 ∈ A+(f), δ > 0, and ε > 0. Since {fn}n converges quasi-
uniformly to f , there is n0 ∈ N such that for each n ∈ N, n ≥ n0, there is
a neighbourhood U of x0 with d(f(x), fn(x)) < ε/2, for all x ∈ U . For each
n ∈ N, n ≥ n0, let us take δn, 0 < δn < δ with (x0, x0 + δn) ⊆ U . Since
x0 ∈ A+(f), by Proposition 1.1, for each n ∈ N, n ≥ n0, there is a point
yn(x0) ∈ Y and a non-empty open set Gn ⊆ (x0, x0 + δn) with

d(f(x), yn(x0)) < ε/2,
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for all x ∈ Gn. Now for x ∈ Gn, (n ≥ n0),

d(fn(x), yn(x0)) ≤ d(fn(x), f(x)) + d(f(x), yn(x0)) < ε

which gives x0 ∈ A+(fn), n ≥ n0. So x0 ∈
⋂
n≥n0

A+(fn), and consequently

x0 ∈ lim inf A+(fn). Hence, A+(f) ⊆ lim inf A+(fn), and the result follows.

The proof of ii) can be similarly done.

Corollary 4.2. Let {fn}n be a sequence of functions fn : R→ Y which quasi-
uniformly converges to a function f : R→ Y . Then

i) limA+(fn) = A+(f)
ii) limA−(fn) = A−(f)

In the sequel, we will consider R∪{∞} with the generalized metric d given
by d(x, y) =| x− y |. However, we assume that

−∞+∞ =∞−∞ = 0 and | ±∞ |=∞ ([3]).

The next theorem shows that one-sided points of quasi-uniform limit of a
sequence of functions {fn}n is translated to that of the sequences of one-sided
oscillation type functions associated with the sequence of functions {fn}n.

Theorem 4.3. Let {fn}n be sequence of functions fn : R → Y which quasi-
uniformly converges to a function f : R→ Y . Then

i) the sequence {w+(fn, .)}n of functions w+(fn, .) : R→ R ∪ {∞} given by
x 7→ w+(fn, x) is quasi-uniformly convergent to a function w+(f, .) : R→
R ∪ {∞} given by x 7→ w+(f, x).

ii) the sequence {w−(fn, .)}n of functions w−(fn, .) : R → R ∪ {∞} given
by x 7→ w−(fn, x) is quasi-uniformly convergent to a function w−(f, .) :
R→ R ∪ {∞} given by x 7→ w−(f, x).

Proof of i). Let x0 ∈ R and ε > 0. Then there is n0 ∈ N such that for each
n ∈ N, n ≥ n0, there is a neighbourhood Un of x0 with d(fn(x), f(x)) < ε/3
for all x ∈ Un. We fix n ≥ n0, x ∈ Un, and δ > 0 satisfying (x, x + δ) ⊆ Un.
Assume w+(f, x) <∞. Then

inf
U⊆(x,x+δ)

sup
x′,x′′∈U

d(f(x′), f(x′′)) < w+(f, x) + ε/3.

So there is a non-empty open set U ⊆ (x, x+ δ) such that

d(f(x′), f(x′′)) < w+(f, x) + ε/3,
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for all x′, x′′ ∈ U . Now for x′, x′′ ∈ U ,

d(fn(x′), fn(x′′)) ≤ d(fn(x′), f(x′)) + d(f(x′), f(x′′)) + d(f(x′′), fn(x′′))

< ε+ w+(f, x).

So w+(fn, x) ≤ w+(f, x) + ε. Similarly, we find w+(f, x) ≤ w+(fn, x) + ε.
Thus,

| w+(fn, x)− w+(f, x) |< ε.

If w+(f, x) =∞ for some x ∈ Un, then w+(f, x) > k + ε for each k ∈ N. Now
δ1 > 0 can be chosen such that (x, x+δ1) ⊆ Un and sup

x′,x′′∈U
d(f(x′), f(x′′)) > k,

for each k ∈ N and each non-empty open set U ⊆ (x, x+ δ1). Hence,

sup
x′,x′′∈U

d(fn(x′), fn(x′′)) > k,

for each k ∈ N and U as above. So w+(fn, x) =∞, and hence

| w+(fn, x)− w+(f, x) |< ε,

for each x ∈ Un. Hence, the proof is completed.

The proof of ii) is analogous.

Remark 4.4. In theorem 4.1 and theorem 4.3, the quasi-uniform convergence
cannot be replaced by the pointwise convergence which follows from the fol-
lowing example.

Example 4.5. Let {r1, r2, . . . } be an enumeration of the set of rationals in
[0, 1] and fn : [0, 1]→ R be given by

fn(x) =
{

1 if x ∈ {r1, r2, . . . . . . , rn}
0 otherwise.

Then the sequence {fn}n converges pointwise to the function f : [0, 1] → R,
given by

f(x) =
{

1 if x is rational
0 if x is irrational.
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Hence, we have A+(fn) = [0, 1] = A−(fn) for each n ∈ N, and A+(f) = φ =
A−(f). So lim supA+(fn) = [0, 1] = lim inf A+(fn) and lim supA−(fn) =
[0, 1] = lim inf A−(fn). Hence, limA+(fn) 6= A+(f) and limA−(fn) 6= A−(f).
Furthermore,

w+(fn, x) = sup
δ>0

inf
U⊆(x,x+δ)

sup
x′,x′′∈U

|fn(x′)− fn(x′′)| = 0

and

w−(fn, x) = sup
δ>0

inf
U⊆(x−δ,x)

sup
x′,x′′∈U

|fn(x′)− fn(x′′)| = 0

for each n ∈ N and for each x ∈ [0, 1]. Also,

w+(f, x) = sup
δ>0

inf
U⊆(x,x+δ)

sup
x′,x′′∈U

|f(x′)− f(x′′)| = 1,

and

w−(f, x) = sup
δ>0

inf
U⊆(x−δ,x)

sup
x′,x′′∈U

|f(x′)− f(x′′)| = 1

for each x ∈ [0, 1].
So w+(f, .) and w−(f, .) are not pointwise limits of the sequences {w+(fn, .)}n
and {w−(fn, .)}n, respectively.
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