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INFINITE DIMENSIONAL BANACH SPACE
OF BESICOVITCH FUNCTIONS

Abstract

Let C(]0, 1]) be the set of all continuous functions mapping the unit
interval [0,1] into R. A function f € C([0,1]) is called Besicovitch if
it has nowhere one-sided derivative (finite or infinite). We construct a
set BsupC C([0,1]) such that (Bsup,|| ||sup) is an infinite dimensional
Banach (sub)space in C([0,1]) and each nonzero element of Bgyp is a
Besicovitch function.

1 Introduction.

In this paper we continue our investigation of nowhere differentiable functions
[3] and, in particular, Besicovitch functions [4] — real-valued functions of a real
variable without finite or infinite one-sided derivatives. They were introduced
many years ago by the classical work of Besicovitch [2]. In 1932 Saks [7] proved
that the collection of all Besicovitch functions is of the first category in the
space C(]0,1]) of continuous functions mapping the unit interval [0,1] into R
equipped by the supremum norm || ||sup-

Recently, it has been proved in [1] (see also [9]) that there exists an infinite
dimensional closed subspace of C([0,1]) such that each (not identically zero)
function from this subspace has nowhere one-sided finite derivative.

In this work we show that an analogous assertion remains true also for
the class of Besicovitch functions. More precisely, we construct a set BgupC
C([0,1]), such that (Bsup, || ||sup) is an infinite dimensional Banach (sub)space
in C([0,1]) and each nonzero element of By, is a Besicovitch function.
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2 Basic Pepper’s Construction.

The following construction is due to Pepper [6]. For a > 0, let us construct in
[0, a] a discontinuum

0o 2771.71

E =[0,a] \ L,where L = U U Trmps (2.1)

m=1 p=1

and the open intervals 7, , = (@m,p, bm,p) are constructed as follows:
e dy1 =1[0,a], r11 C di; so that the center of 1 ; coincides with that of
dia, A(r11) = %, where A is the Lebesgue measure
o form > 1,if dpy 1 - - - d,y, 9m—1 are (from the left to the right) the intervals

of the set [0, a] \UZ:ll Uiq:; rq,p, then rp, , C dp, p so that the center of
T'm,p coincides with that of d, , and A(rp, ) = %
We have A\(E) = §. For b > 0, let ¢ : [0,a] — [0,b] be a nondecreasing
continuous function defined by

b
o(x) = QaA(E N[0,z]) . (2.2)
Then ¢(0) =0, ¢(a) = b, ¢ is constant on every interval r,, ;, and
b(2p —1
(T p) = %, meN, p=1,...,2" % (2.3)
Hence, for each m,p (with respect to [0, a]),
b
0<(rmp) £ o <b. (2.4)
Remark 2.1. For any segment dy,41,p,
1 1
)\(dm+1,p) = G,(W + m) (25)

Since all parts of the graph of ¢ corresponding to the segments dy, 11,1, dm+1,2,
.oy dmg1,2m are similar, for any dy,11, = [u, v] we have

_pla) —p(0) b

olv) — o) = LD — 2
One can verify that by, , = 5% + 2% + (2p — 2) 5% - %. Using (2.3)
gm _gm Z 9
and the fact that T g € [1,2] for each m € N, we get
b bm
b elbny) (2.6)

2a — bm,p
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Define a function p : [0,2a] — [0,b] by

o o(z) for z € [0, al,
p(z) {90(2‘1 —z) for z € [a,2a).

The function p and the interval [0, 2a] form the (canonical) step-triangle
with the base [0,2a] and the left side {(x, p(x)); = € [0,a]}, resp. right side
{(2,p()); @ € [0, 2a]}.

Now we construct a Besicovitch function f: [0,2a] — [0, 0], see [6].

Oth step: Call the segment (0,2a) an L-segment of the zero category.

1st step: Construct a (canonical) step-triangle with the base [0,2a] and
height b. Call this step-triangle “triangle of the first category”, the segments
of L C [0,a] (see (2.1)) and symmetric segments in [a, 2a] “L-segments of the
first category” and the corresponding segments on the sides of the canonical
step-triangle “M-segments of the first category”.

The sides of the step-triangle define a function f; (= p).

nth step: On each of those M-segments of n — 1st category, construct
in a similar way, a step-triangle directed inside the step-triangle of n — 1st
category on whose side the triangle has its base. On equal segments construct
equal triangles and the height of the triangle constructed on r,, , (with respect
to its base) is to be equal to Qb—/, where b’ is a height of the bigger triangle
of the n — 1st category on whose side the triangle has its base. Call these
triangles “triangles of the nth category”, new L-segments “L-segments of the
nth category” and the corresponding segments on the sides of new triangles
“M-segments of the nth category”.

The union of sides of all triangles constructed so far defines a function
fn. Since for each n € N, f, is continuous and ||fr41 — fullsup = 2%, the
continuous map f = nlingo fnis well defined.

A point = € [0, 2a] outside of L-segments of the first category will be called
a point of the first category. A point which belongs to an L-segment of the first
category but not to that of the second category will be called a point of the
second category, etc. Any point which belongs to L-segments of all categories
will be called a point of infinite category.

3 The Space B.

Our aim is to construct a set B, C C([0,2a]) in which any nonzero element is
a Besicovitch function and which is an infinite dimensional linear (sub)space
in C(]0, 2a]).
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We start by recalling one notion from symbolic dynamics [5]. A sequence
(x(n))22; of symbols is called a Toeplitz sequence provided that N can be
decomposed into arithmetic progressions such that x(n) is constant on each
arithmetic progression. We will use two sequences = (n(n))2>; € (NU{0})N
and 0 = (0(n))22, € (NU{0})N10} The sequence 7 is chosen as any Toeplitz
sequence which is onto; i.e., n(N) = NU {0}. The sequence 6 is defined by
0(2n) =0(2n + 1) = n(n+ 1), for n greater than or equal to 0. Thus,

0 = n(L)n(L)n(2)n(2)n(3)n(3)n(4)n(4)nG)n5)n(6)n(6)n(7)n(7) . ..

Clearly also, the sequence 6 is Toeplitz (but indexed from 0). For n > 0 we

denote by m,, the infinite vector (my,o my1 ... Mmy; ...) satisfying
0 forj < n,
Mpj =
" 1 forj >n.

Finally, we define the infinite matrix A = (an;);°;—o with the rows mg(,,), i.e.,
the matrix satisfying a,; = mg(,); for each n, j.

Definition 3.1. Let h € C([0,2a]), I = (¢,d) C [0,2a] and h(c) = h(d). We
say that h|I is positively, resp. negatively oriented (on I) if

h((c+d)/2) > h(c), resp. h((c+d)/2) < h(c).

We put
1 if h|I is positively oriented,
o(h,I) = ¢ —1 if h|I is negatively oriented,
0 otherwise.

The number |h((c+d)/2) — h(c)| will be called the height of h on I; we denote
it v(h, I).

By £", n € NU{0} we denote the set of all L-segments of the nth category.
In particular, £° = {(0,2a)}.

Definition 3.2. Let A = (an;);°;—¢ be as above. We introduce functions
Fo,...,Fy,... from C([0,2a]) constructed analogously as the function f in
Section 1 and such that for any L-segment I € £" of the nth category, n €
Nu {0},

v(Fi, I) = ank - v(f,I), and o(Fy, I) = sign(ang) - o{f, I).
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Let S be the set of all real convergent series. For any element p =
Yoneo ik € S let [[ulls = sup,5q | >4, ] In [8] the authors showed that
(S,]] ||s) is a Banach space. Now put

Bo = {iMkai iuk GS}.
k=0 k=0

We finish this section with two lemmas.

Lemma 3.3. The following statements are true.
(i) Any element H € By, is a continuous function from C([0,2a]).
(i) Let p(l) :== Yoo otke, € > 1 and p == >0,k be series from S,
Hy =370 o e eFle and H =307 o e Fl. Then

() — plls =¢ 0 = |[He = Hl[sup —¢ 0.

PROOF. (i) It is clear when ||u||ls = 0. Let

H= Z/Lka (31)
k=0

for some nonzero u € S . By Definition 3.2, for any L-segment I € £™ of the
nth category

o(H,I) v(H,I) = o(Fy, I) v(Fy, I)
k=0

= Z Mk Sign(ank) Ank O<fa I) U<f’ I> (32)

k=0

:0<f7I> U<f>I> Z Hi-

k=0(n)
Hence
o(H, I) < ||plls v{f,I).

The last inequality together with construction of f imply that H € C([0, 2a)).
Let us prove (ii). From (3.2) and our assumption ||u(€) — p||s —¢ 0 we get
for each n e NU{0} and I € £",

o(H, I) v(H,I) = o{f, 1) v(f, 1) > p

k=0(n)
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oo
= lim o(f,I) v(f,1) > pwe= lim o(He,I) v(Hy,I).
£— 00 £— 00
k=0(n)
Applying the above equality consequently on L-segments of the nth category,
n=20,1,..., we get the conclusion (ii). O

Lemma 3.4. Let pn € S be nonzero. Then the function -, i Fi is nonzero
on any subinterval of [0, 2a].

PROOF. Let H be given by (3.1). Since u is nonzero and §: NU{0} — NU{0}
is onto, there exists an n > 0 such that Z,;“;G(n) i # 0. By our construction,
o{f, I) v(f,I) # 0 for any L-segment I. Then (3.2) implies that v(H,I) is
nonzero for any I € £". Thus, the function H is nonzero on any subinterval
of [0, 2a]. O

4 Besicovitch Functions in B...

Let f be a function defined on a (one-sided) neighborhood of 2. The derived
numbers D7 f(z), Dy f(z) of f at x are equal to

DT f(z) = limsup w

, Dy f(xz) = liminf flz+h) — f(z)
h—0., i

ﬁ0+ h ’

and the analogous limits from the left define D~ f(z), D_ f(z). Obviously, f
has a one-sided derivative at a point z if and only if either DT f(x) = Dy f(z)

or D™ f(x) = D_f(x).

The main result of this Section is the following.
Theorem 4.1. Each nonzero function from B, is a Besicovitch function.

PROOF. Let H given by (3.1) be nonzero. If we put

o
Vnzzluka TL:O,I,...,
k=n

then ||u||s = sup,,>q [Vn| > 0.
By Definition 3.2, for any L-segment I € £7,

o(H,I) = sign(vyn)) - o f, I). (4.1)

We use L-segments (with corresponding categories) and intervals taken with
respect to [0,2a]. In order to simplify our notation, in the first part of this
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proof we denote them r,, ;,, resp. d,, , as L-segments of the 1st category, resp.
intervals taken with respect to [e, (c+ d)/2] (instead of [0, a]). Analogously to
(2.1), we put

E' =c,(c+d)/2\ | rmp- (4.2)

Point of finite category. Assume that z is a point of the nth category,
n € N, contained in an interval [c,d], where (c,d) € £"~! is of the n — 1Ist
category.
By the symmetry, w.l.o.g. we can assume that
e zele(c+d)2)
b 0<fv (c;d)) =1,
® Vy(n-1) = 0.
Fix h > 0, and let
o 7 p = (a, ) the maximal L-segment of the nth category contained in
(z,z + h), resp.* (z — h, z);
o A the least positive integer for which vg,—11a) # 0 (such a A exists
since 6 is Toeplitz and onto the set NU {0});
e J=(d,3) the maximal L-segment of the (n — 1 + A)th category con-
tained in (a, B); obviously,

off. (o, 8)) = (=1)*. (4.3)

In particular, if A = 1, then J = («,3). Note that since rp,p, C dimyp
and 7,,, is maximal, the point = has to be from [, a), resp.* (0,¢], where
[0, o] = dmt1,2p—1, resp.” [B,€] = dpmy1,2p. Put v = (¢ + 3')/2.

(4) Assume that x # (c+d)/2 is not the left end of any L-segment of the
nth category and show that H', (x) does not exist. In this case 7, , C (z,z+h).
From (2.2), (4.2) and our assumption vg,,—1) > 0, we get
0< H)-Hz) _ iuk [Fie(@) — F()]

- oa—x a—x
k=0

d—c oa—z

= i HEA(n—1)k 2’U<f7 (C’ d)> )‘(E/ N [1‘, a]) (4'4)
k=0 2

4v{f, (¢, d))

S

for each h. Hence

4o(f, (¢, d))

Dy H(z) < vo(n—-1) q_

and DY f(x) > 0. (4.5)
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(I+) Either vg(,,—14a) < 0 and A is odd, or vg(,—14) > 0 and A is even.
From (4.1) and (4.3) we obtain o(H,J) = 1. It implies that H(z) <
H(')=H(@) < H{®) for x < a' <+ < . Using (2.5) we get

H(y) - H(z) H(P)-H(z) H(')-H()

v —x O - - v —x
o(H,J) v(H,J)  Von—14a) o{f,J) v(f,J)
B=6  Selme + g + g
_ Vo(n—1+)| v(f, (. d))
(d—o)gmm + g + 3] 2mTAT!
|V9(n—1+A)| v(f, (c,d)) >0
28(d —¢)

independent of h.

(IT+) Either vp—14a) < 0 and A is even, or vyp—14a) > 0 and A is
odd. From (4.1) and (4.3) we get o(H,J) = —1. Then H(x) < H(a') and
H(®) < H(a)=H(f) for x < o/ <~' < '. We get analogously as above,

H(a') - H(z) H()-H(z)  H(a) — H(Y)

o —x vV - - v -z
—o(H,J) v(H,J) _ Vo(n-144) (—o(f,J)) v(f,J)
B—35 G g + g + 17
|Vc9(n71+A)| U<fa (C, d)>
T A=) >0

independent of h. Thus, (I+) and (II4), together with (4.5), imply that H (z)
does not exist.

(=) Assume that = # c¢ is not the right end of any L-segment of the nth
category and show that H' (z) does not exist. In this case ry, , C (z — h, z)*.
Since the situation is completely analogous to the previous one, we can be
rather brief.

Similarly as in (4.4), we get

D_H(z) < Ve(nq)w

O D () 2 0. (4.6)

(I-) If either vg(,—14a) < 0 and A is odd, or vy —14a) > 0 and A is even,
then o(H, J) = 1. Similarly as in (I+),

H(z) - H(B) H(z) - HE) _ om-1ea)| vif (e d))
x— 0 T — 28(d —c¢)

>0
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independent of h.
(IT-) If either vg(,—14a) < 0 and A is even, or vgp—14a) > 0 and A is
odd, then o(H, J) = —1. Similarly as in (II+), we get
H(z) - H(Y) H(z)—H() _ Vom-14a)| v(f (¢ d))
- >
x—7 x—a 28(d —¢)
independent of h.

Summarizing, (I-),(II-) and (4.6) imply that H’ (z) does not exist. We
have proved the following.

>0

Proposition 4.2. At any point of finite category no one sided derivative of
nonzero H given by (3.1) exists.

Point of infinite category. Recall that it is a point which belongs to L-
segments of all categories.

Let us consider nonzero H given by (3.1). Fix a point z of infinite category
and the corresponding nested sequence of L-segments, i.e., the sequence

(alaﬁl) D (OéQ,BQ) Do, (a'ruﬁn) S Sn; {.’L‘} = m(anyﬁn)

Fix h > 0. From some number onwards, the segments (a,, 8,) are included
in the interval (x—h, x+h). By our construction of the functions Fy, ..., Fy, ...
(mainly since 6 is Toeplitz and onto the set N U {0}), there exists a positive
integer o such that

L4 (acmﬂcr) C ({E - h,(E + h)7

e O(o)=0(c +1),

o Vo] = llulls > Vo], n > o (n >0 in fact).

W.lo.g., we can assume that

* 2 € (ao, (a5 + B5)/2),

e of,(as,Bs)) =1,

® Vys) > 0.

Using above assumptions, the fact that vy has a maximal absolute value
and repeatedly applying (2.4) with respect to (o, Bn), n > o + 1, we get

H(ay) < H(z) < H(agy1). (4.7)
Hence DT f(z) > 0, D™ f(z) > 0 and D, f(x) <0, D_f(x) < 0. Put v =
(0o + B5)/2 and J = (v, Bs). By virtue of (4.7), (4.1) and (3.2),
H(y) - H(z) H(f,)—-H(z)  H(y) = H(Sr)
Y- Bo —x - Bo —x
JOUH ) o(H,J) _ Vo) olf,J) v(f,J) o b
/817 — Qg /Brr — Qg 0(c) 2a
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independent of h. Thus, H' (x) does not exist. Similarly, with the help of
(2.6),

H(z) ~ H(ay) H(x) ~ H(0ps1) _ H(ops1) — H(o)

T — Qo T — Qg41 - T — Qo
H(a, — H(agy V(o Qy — flag b
 Hlar) = Hior) _ voio) Ueon) ~floo)) b
Bot1 — Qo Boy1 — Qo 2a

independent of h. Thus, H’ (z) does not exist. We have proved the next
assertion.

Proposition 4.3. At any point of infinite category no one sided derivative of
nonzero H given by (3.1) exists.

This finishes the proof of Theorem 4.1. O

By Lemma 3.4, there is an isomorphism ¢: B,, — S given by

L( ZMka) = Zﬂk~
k=0 k=0

Thus, we can equip the set By, by the norm defined as

1 H |5 = [[e(H)]]s-
We get the following theorem.
Theorem 4.4. The space (B, || - ||5..) s a Banach space.

PROOF. It is an easy consequence of our definitions and the fact that (S, || ||s)
is a Banach space.

5 The Space Bg,p.

In this section we define the set By, announced in our Introduction. Sim-
ilarly as By, also the set By, will be defined as a linear hull of countably
many linearly independent functions Go,...,Gg,... from C([0,2a]), where
each function Gy will be obtained from Fj by a suitable perturbation.

Definition 5.1. Let h € C([0,2a]), I; = (¢;,d;) C [0, 2a] be pairwise disjoint
intervals, h(c;) = h(d;) and v; € R. A map g € C([0,2a]) is a [(I;); ® (v5);]-
perturbation of h if g satisfies

o) = h(x) ifx§éUjIj,
9(@) {yj(h(x)—h(cj))+h(cj) itfzel,



INFINITE DIMENSIONAL BANACH SPACE OF BESICOVITCH FUNCTIONS 329

Recall that L-segments r;, , were introduced in Section 2.

Definition 5.2. Let us consider the sequence (r2m—1,1)50—; of L-segments of
the first category. We define a sequence (Gy)32, of functions from C/([0, 2a])
by
(i) Go = Fu,
(i) for k € N, Gy, is defined as a | (r2;m—1.1)%,_;®(1-22m"1)k _ |-perturbation
of Fk

Finally, let us define Bey, C C([0, 2a]) as follows: H € By, if and only if

3 ()oY o €[0,2a]: H(z) =Y vGrl). (5.1)
k=0

H =3%"7° ,viGk. Note that by our definition, By, C C([0, 2a]).

In this case we say that H is given by the sequence (v4)72, and we write

6 Basic Properties of Bg,p,.

Put v9 = a, and for each m € N, let v, be the center of 73,1 1.

Lemma 6.1. The following assertions are true.
(i)
b ifm <k,

Grlvm) = {o ifm > k.

(i1) If)H =3 1o VkGr € Bsup, then >3- o vk is a convergent series (Y pq Vi €
S).

(tii) H € Bsup given by the sequence (vy)72, is the zero function if and only
if vy = 0 for each k. In particular, the set

{Gk: k €Ny} C Bsyp
1s linearly independent.

PRrROOF. (i) This is an easy consequence of Definition 5.1 and the construction
of the functions Fy, Fi,..., Fk,....

(ii) From (5.1) we get H(v9) =b> oo vk € R.

(iii) By (ii) and Definition 5.1, the functions Fy, Gy, k > 0, coincide on the
interval [a, 2a]. Then, (iii) follows from Lemma 3.4. O

Theorem 6.2. (Bgup, || |lsup) s an infinite dimensional Banach space.
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PRrROOF. By (5.1), Bsyp is a linear (sub)space in C([0,2qa]). From Lemma
6.1(iil) we get that By, is infinite dimensional. Thus it is sufficient to show
that the set Bgyp is closed with respect to the topology induced by || ||sup-
Consider a Cauchy sequence

H, = G )°° C Bow.
( 14 kZ:OVk,Z k =1 P

Since (C([0,2d]), || ||sup) is a Banach space, there is a map H € C([0, 2a]) such
that lign [|H — Hel|sup = 0.

For any ¢ > 0, we have ||H; — Hy||sup < € whenever ¢, ¢ are sufficiently
large. For such ¢, ¢', from Lemma 6.1(i), we obtain for each m € Ny,

e > ||He = Hollswp 2 [He(ym) = Ho ()| = | Y vie — viorl;

k=m

i.e., the sequence (3 p o vk,¢)72; C S is Cauchy in the space (S, || ||s). Denote
v(0) :== > 4o o Vi, and let

vi=Y v = s = lim(0). (6.1)

k=0

To finish our proof, it is sufficient to show that for each x € [0, 2a],
lim H () = liénkzouk’gGk(:c) = ;0 Gr(), (6.2)

since then H = "7 vx Gy € Bsup-

The last equality is clear when = € [0,2a] \ U,,,> r2m—1,1. On this set
F, = Gy, for each k and (6.2) follows immediately from (6.1) and Lemma
3.3(i).

If z € rom—1,1 = (o, ), then from Definitions 5.1 and 5.2, we get

[e%e} m—1
Z l/k,sz(x) = Vi ng(x)
k=0 k=0
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Hence, again by (6.1), Lemma 3.3(ii) and Definition 5.2,

m—1 0o
. _ __ 92m—1 _
lim Hy(x) = kz:;) v Fr(z) + ]; v [(1 = 22" ) (Fi(z) — Fi(@)) + Fi(a)]
= Z I/ka((E).
k=0
This proves the lemma. |

7 Besicovitch Functions in Bg,p,.

Theorem 7.1. Each nonzero function from Bgyy, is a Besicovitch function.

PROOF. Let H = > 7 vkGr € Bsyp be nonzero. Clearly, it means that
vk, # 0 for some k. From Lemma 6.1(ii), we know that > -, v is a convergent
series.

By Definition 5.2, the functions Gy, F}, coincide on the set

C = [O,Qa]\ U T2m_171,

m>1

where rom—1,1 = (@2m-1,1,b2m—1,1) is the leftmost L-segment with the length
a/4*m 1 e,

H(z) =Y wFi(x), v € C. (7.1)
k=0

The fact that the real series Y- v converges, (7.1) and Theorem 4.1 imply
that

e H' (z),H' (x) does not exist at any x € int C'

e M’ (x) does not exist at any x € {0} U {b2;,—1,1: m > 1}(in order to

show that H’, (0) does not exist we can use the intervals 72,1, m > 1 as
the maximal L-segments of the first category contained in (0, h))

e H' (x) does not exist at any = € {agm—11: m > 1}

Thus, it remains to show that H’ (), resp. H! (x) does not exist at any
point = € {bam—11: m > 1}, resp. x € {agm—1,1: m > 1}. By symmetry, we
will only prove the latter case.

Fix a = agp,—1,1 and show that H', (a) does not exist. For each x € 72,11
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we get from Definitions 5.1 and 5.2,

Z I/ka
k=
veFi(@) + Y v (1= 22" (Fi(z) — Fi(a)) + Fi(a)]  (7.2)

k=0 k=m
m—1 )
:(1_22m—1) Z W +Z I/ka +22m—lz Vka(a).
k=0 k=m
Since, by Theorem 4.1, the function
m—1
Gle) = Y T—osmr Fila) + Z viFi (@

k=0

is Besicovitch, G’, (a) does not exist. Hence, by (7.2), also H (a) does not
exist. This proves the theorem. O

Thus, for the value a = 1/2 we get the following.

Theorem 7.2. (Bsup, || ||sup) s an infinite dimensional Banach (sub)space in
C([0,1]) and each nonzero element of Bsp is a Besicovitch function.

PRrOOF. It is an immediate consequence of Theorem 6.2 and Theorem 7.1. [
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