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INFINITE DIMENSIONAL BANACH SPACE
OF BESICOVITCH FUNCTIONS

Abstract

Let C([0, 1]) be the set of all continuous functions mapping the unit
interval [0, 1] into R. A function f ∈ C([0, 1]) is called Besicovitch if
it has nowhere one-sided derivative (finite or infinite). We construct a
set Bsup⊂ C([0, 1]) such that (Bsup, || ||sup) is an infinite dimensional
Banach (sub)space in C([0,1]) and each nonzero element of Bsup is a
Besicovitch function.

1 Introduction.

In this paper we continue our investigation of nowhere differentiable functions
[3] and, in particular, Besicovitch functions [4] — real-valued functions of a real
variable without finite or infinite one-sided derivatives. They were introduced
many years ago by the classical work of Besicovitch [2]. In 1932 Saks [7] proved
that the collection of all Besicovitch functions is of the first category in the
space C([0, 1]) of continuous functions mapping the unit interval [0, 1] into R
equipped by the supremum norm || ||sup.

Recently, it has been proved in [1] (see also [9]) that there exists an infinite
dimensional closed subspace of C([0, 1]) such that each (not identically zero)
function from this subspace has nowhere one-sided finite derivative.

In this work we show that an analogous assertion remains true also for
the class of Besicovitch functions. More precisely, we construct a set Bsup⊂
C([0, 1]), such that (Bsup, || ||sup) is an infinite dimensional Banach (sub)space
in C([0,1]) and each nonzero element of Bsup is a Besicovitch function.
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2 Basic Pepper’s Construction.

The following construction is due to Pepper [6]. For a > 0, let us construct in
[0, a] a discontinuum

E = [0, a] \ L,where L =
∞⋃
m=1

2m−1⋃
p=1

rm,p, (2.1)

and the open intervals rm,p = (am,p, bm,p) are constructed as follows:
• d1,1 = [0, a], r1,1 ⊂ d1,1 so that the center of r1,1 coincides with that of
d1,1, λ(r1,1) = a

4 , where λ is the Lebesgue measure
• for m > 1, if dm,1 · · · dm,2m−1 are (from the left to the right) the intervals

of the set [0, a] \
⋃m−1
q=1

⋃2q−1

p=1 rq,p, then rm,p ⊂ dm,p so that the center of
rm,p coincides with that of dm,p and λ(rm,p) = a

4m .
We have λ(E) = a

2 . For b > 0, let ϕ : [0, a] → [0, b] be a nondecreasing
continuous function defined by

ϕ(x) = 2
b

a
λ(E ∩ [0, x]) . (2.2)

Then ϕ(0) = 0, ϕ(a) = b, ϕ is constant on every interval rm,p and

ϕ(rm,p) =
b(2p− 1)

2m
, m ∈ N, p = 1, . . . , 2m−1. (2.3)

Hence, for each m, p (with respect to [0, a]),

0 ≤ ϕ(rm,p)±
b

2m
≤ b. (2.4)

Remark 2.1. For any segment dm+1,p,

λ(dm+1,p) = a
( 1

2m+1
+

1
2 · 4m

)
. (2.5)

Since all parts of the graph of ϕ corresponding to the segments dm+1,1, dm+1,2,
. . . , dm+1,2m are similar, for any dm+1,p = [u, v] we have

ϕ(v)− ϕ(u) =
ϕ(a)− ϕ(0)

2m
=

b

2m
.

One can verify that bm,p = a
2m+1 + 3 a

2·4m + (2p− 2) a
2m · 4m−2m−2

4m−2m+1 . Using (2.3)

and the fact that
4m − 2m − 2
4m − 2m+1

∈ [1, 2] for each m ∈ N, we get

b

2a
≤ ϕ(bm,p)

bm,p
. (2.6)
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Define a function p : [0, 2a]→ [0, b] by

p(x) =

{
ϕ(x) for x ∈ [0, a],
ϕ(2a− x) for x ∈ [a, 2a].

The function p and the interval [0, 2a] form the (canonical) step-triangle
with the base [0, 2a] and the left side {(x, p(x)); x ∈ [0, a]}, resp. right side
{(x, p(x)); x ∈ [a, 2a]}.

Now we construct a Besicovitch function f : [0, 2a]→ [0, b], see [6].
0th step: Call the segment (0, 2a) an L-segment of the zero category.
1st step: Construct a (canonical) step-triangle with the base [0, 2a] and

height b. Call this step-triangle “triangle of the first category”, the segments
of L ⊂ [0, a] (see (2.1)) and symmetric segments in [a, 2a] “L-segments of the
first category” and the corresponding segments on the sides of the canonical
step-triangle “M -segments of the first category”.

The sides of the step-triangle define a function f1 (= p).
nth step: On each of those M -segments of n − 1st category, construct

in a similar way, a step-triangle directed inside the step-triangle of n − 1st
category on whose side the triangle has its base. On equal segments construct
equal triangles and the height of the triangle constructed on rm,p (with respect
to its base) is to be equal to b′

2m , where b′ is a height of the bigger triangle
of the n − 1st category on whose side the triangle has its base. Call these
triangles “triangles of the nth category”, new L-segments “L-segments of the
nth category” and the corresponding segments on the sides of new triangles
“M -segments of the nth category”.

The union of sides of all triangles constructed so far defines a function
fn. Since for each n ∈ N, fn is continuous and ||fn+1 − fn||sup = b

2n , the
continuous map f = lim

n→∞
fnis well defined.

A point x ∈ [0, 2a] outside of L-segments of the first category will be called
a point of the first category. A point which belongs to an L-segment of the first
category but not to that of the second category will be called a point of the
second category, etc. Any point which belongs to L-segments of all categories
will be called a point of infinite category.

3 The Space B∞.

Our aim is to construct a set B∞ ⊂ C([0, 2a]) in which any nonzero element is
a Besicovitch function and which is an infinite dimensional linear (sub)space
in C([0, 2a]).
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We start by recalling one notion from symbolic dynamics [5]. A sequence
(x(n))∞n=1 of symbols is called a Toeplitz sequence provided that N can be
decomposed into arithmetic progressions such that x(n) is constant on each
arithmetic progression. We will use two sequences η = (η(n))∞n=1 ∈ (N∪{0})N

and θ = (θ(n))∞n=0 ∈ (N∪{0})N∪{0}. The sequence η is chosen as any Toeplitz
sequence which is onto; i.e., η(N) = N ∪ {0}. The sequence θ is defined by
θ(2n) = θ(2n+ 1) = η(n+ 1), for n greater than or equal to 0. Thus,

θ = η(1)η(1)η(2)η(2)η(3)η(3)η(4)η(4)η(5)η(5)η(6)η(6)η(7)η(7) . . .

Clearly also, the sequence θ is Toeplitz (but indexed from 0). For n ≥ 0 we
denote by mn the infinite vector (mn0 mn1 . . . mnj . . . ) satisfying

mnj =

{
0 for j < n,

1 for j ≥ n.

Finally, we define the infinite matrix A = (anj)∞n,j=0 with the rows mθ(n), i.e.,
the matrix satisfying anj = mθ(n)j for each n, j.

Definition 3.1. Let h ∈ C([0, 2a]), I = (c, d) ⊂ [0, 2a] and h(c) = h(d). We
say that h|I is positively, resp. negatively oriented (on I) if

h((c+ d)/2) > h(c), resp. h((c+ d)/2) < h(c).

We put

o〈h, I〉 =


1 if h|I is positively oriented,
−1 if h|I is negatively oriented,
0 otherwise.

The number |h((c+d)/2)−h(c)| will be called the height of h on I; we denote
it v〈h, I〉.

By Ln, n ∈ N∪{0} we denote the set of all L-segments of the nth category.
In particular, L0 = {(0, 2a)}.

Definition 3.2. Let A = (anj)∞n,j=0 be as above. We introduce functions
F0, . . . , Fk, . . . from C([0, 2a]) constructed analogously as the function f in
Section 1 and such that for any L-segment I ∈ Ln of the nth category, n ∈
N ∪ {0},

v〈Fk, I〉 = ank · v〈f, I〉, and o〈Fk, I〉 = sign(ank) · o〈f, I〉.
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Let S be the set of all real convergent series. For any element µ =∑∞
k=0 µk ∈ S let ||µ||S = supn≥0 |

∑∞
k=n µk|. In [8] the authors showed that

(S, || ||S) is a Banach space. Now put

B∞ =
{ ∞∑
k=0

µkFk :
∞∑
k=0

µk ∈ S
}
.

We finish this section with two lemmas.

Lemma 3.3. The following statements are true.
(i) Any element H ∈ B∞ is a continuous function from C([0, 2a]).

(ii) Let µ(`) :=
∑∞
k=0 µk,`, ` ≥ 1 and µ :=

∑∞
k=0 µk be series from S,

H` =
∑∞
k=0 µk,`Fk and H =

∑∞
k=0 µkFk. Then

||µ(`)− µ||S →` 0 =⇒ ||H` −H||sup →` 0.

Proof. (i) It is clear when ||µ||S = 0. Let

H =
∞∑
k=0

µkFk (3.1)

for some nonzero µ ∈ S . By Definition 3.2, for any L-segment I ∈ Ln of the
nth category

o〈H, I〉 v〈H, I〉 =
∞∑
k=0

µk o〈Fk, I〉 v〈Fk, I〉

=
∞∑
k=0

µk sign(ank) ank o〈f, I〉 v〈f, I〉

= o〈f, I〉 v〈f, I〉
∞∑

k=θ(n)

µk.

(3.2)

Hence
v〈H, I〉 ≤ ||µ||S v〈f, I〉.

The last inequality together with construction of f imply that H ∈ C([0, 2a]).
Let us prove (ii). From (3.2) and our assumption ||µ(`)−µ||S →` 0 we get

for each n ∈ N ∪ {0} and I ∈ Ln,

o〈H, I〉 v〈H, I〉 = o〈f, I〉 v〈f, I〉
∞∑

k=θ(n)

µk
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= lim
`→∞

o〈f, I〉 v〈f, I〉
∞∑

k=θ(n)

µk,` = lim
`→∞

o〈H`, I〉 v〈H`, I〉.

Applying the above equality consequently on L-segments of the nth category,
n = 0, 1, . . . , we get the conclusion (ii). �

Lemma 3.4. Let µ ∈ S be nonzero. Then the function
∑∞
k=0 µkFk is nonzero

on any subinterval of [0, 2a].

Proof. Let H be given by (3.1). Since µ is nonzero and θ : N∪{0} → N∪{0}
is onto, there exists an n ≥ 0 such that

∑∞
k=θ(n) µk 6= 0. By our construction,

o〈f, I〉 v〈f, I〉 6= 0 for any L-segment I. Then (3.2) implies that v〈H, I〉 is
nonzero for any I ∈ Ln. Thus, the function H is nonzero on any subinterval
of [0, 2a]. �

4 Besicovitch Functions in B∞.

Let f be a function defined on a (one-sided) neighborhood of x. The derived
numbers D+f(x), D+f(x) of f at x are equal to

D+f(x) = lim sup
h→0+

f(x+ h)− f(x)
h

, D+f(x) = lim inf
h→0+

f(x+ h)− f(x)
h

,

and the analogous limits from the left define D−f(x), D−f(x). Obviously, f
has a one-sided derivative at a point x if and only if either D+f(x) = D+f(x)
or D−f(x) = D−f(x).

The main result of this Section is the following.

Theorem 4.1. Each nonzero function from B∞ is a Besicovitch function.

Proof. Let H given by (3.1) be nonzero. If we put

νn =
∞∑
k=n

µk, n = 0, 1, . . . ,

then ||µ||S = supn≥0 |νn| > 0.
By Definition 3.2, for any L-segment I ∈ Ln,

o〈H, I〉 = sign(νθ(n)) · o〈f, I〉. (4.1)

We use L-segments (with corresponding categories) and intervals taken with
respect to [0, 2a]. In order to simplify our notation, in the first part of this
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proof we denote them rm,p, resp. dm,p as L-segments of the 1st category, resp.
intervals taken with respect to [c, (c+ d)/2] (instead of [0, a]). Analogously to
(2.1), we put

E′ = [c, (c+ d)/2] \
⋃
m,p

rm,p. (4.2)

Point of finite category. Assume that x is a point of the nth category,
n ∈ N, contained in an interval [c, d], where (c, d) ∈ Ln−1 is of the n − 1st
category.

By the symmetry, w.l.o.g. we can assume that
• x ∈ [c, (c+ d)/2],
• o〈f, (c, d)〉 = 1,
• νθ(n−1) ≥ 0.

Fix h > 0, and let
• rm,p = (α, β) the maximal L-segment of the nth category contained in

(x, x+ h), resp.∗ (x− h, x);
• ∆ the least positive integer for which νθ(n−1+∆) 6= 0 (such a ∆ exists

since θ is Toeplitz and onto the set N ∪ {0});
• J = (α′, β′) the maximal L-segment of the (n− 1 + ∆)th category con-

tained in (α, β); obviously,

o〈f, (α′, β′)〉 = (−1)∆. (4.3)

In particular, if ∆ = 1, then J = (α, β). Note that since rm,p ⊂ dm,p
and rm,p is maximal, the point x has to be from [δ, α), resp.∗ (β, ε], where
[δ, α] = dm+1,2p−1, resp.∗ [β, ε] = dm+1,2p. Put γ′ = (α′ + β′)/2.

(+) Assume that x 6= (c+ d)/2 is not the left end of any L-segment of the
nth category and show thatH ′+(x) does not exist. In this case rm,p ⊂ (x, x+h).
From (2.2), (4.2) and our assumption νθ(n−1) ≥ 0, we get

0 ≤ H(α)−H(x)
α− x

=
∞∑
k=0

µk
[Fk(α)− Fk(x)]

α− x

=
∞∑
k=0

µka(n−1)k
2v〈f, (c, d)〉

d−c
2

· λ(E′ ∩ [x, α])
α− x

≤ νθ(n−1)
4v〈f, (c, d)〉

d− c

(4.4)

for each h. Hence

D+H(x) ≤ νθ(n−1)
4v〈f, (c, d)〉

d− c
and D+f(x) ≥ 0. (4.5)
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(I+) Either νθ(n−1+∆) < 0 and ∆ is odd, or νθ(n−1+∆) > 0 and ∆ is even.
From (4.1) and (4.3) we obtain o〈H,J〉 = 1. It implies that H(x) ≤

H(α′) = H(β′) < H(γ′) for x < α′ < γ′ < β′. Using (2.5) we get

H(γ′)−H(x)
γ′ − x

− H(β′)−H(x)
β′ − x

≥ H(γ′)−H(β′)
γ′ − x

>
o〈H,J〉 v〈H,J〉

β − δ
=
νθ(n−1+∆) o〈f, J〉 v〈f, J〉
d−c

2 [ 1
2m+1 + 1

2·4m + 1
4m ]

=
|νθ(n−1+∆)|

(d− c)[ 1
2m+2 + 1

22·4m + 1
2·4m ]

· v〈f, (c, d)〉
2m+∆−1

>
|νθ(n−1+∆)| v〈f, (c, d)〉

2∆(d− c)
> 0

independent of h.
(II+) Either νθ(n−1+∆) < 0 and ∆ is even, or νθ(n−1+∆) > 0 and ∆ is

odd. From (4.1) and (4.3) we get o〈H,J〉 = −1. Then H(x) ≤ H(α′) and
H(γ′) < H(α′) = H(β′) for x < α′ < γ′ < β′. We get analogously as above,

H(α′)−H(x)
α′ − x

− H(γ′)−H(x)
γ′ − x

≥ H(α′)−H(γ′)
γ′ − x

>
−o〈H,J〉 v〈H,J〉

β − δ
=
νθ(n−1+∆) (−o〈f, J〉) v〈f, J〉

d−c
2 [ 1

2m+1 + 1
2·4m + 1

4m ]

>
|νθ(n−1+∆)| v〈f, (c, d)〉

2∆(d− c)
> 0

independent of h. Thus, (I+) and (II+), together with (4.5), imply that H ′+(x)
does not exist.

(-) Assume that x 6= c is not the right end of any L-segment of the nth
category and show that H ′−(x) does not exist. In this case rm,p ⊂ (x− h, x)∗.
Since the situation is completely analogous to the previous one, we can be
rather brief.

Similarly as in (4.4), we get

D−H(x) ≤ νθ(n−1)
4v〈f, (c, d)〉

d− c
, D−f(x) ≥ 0. (4.6)

(I-) If either νθ(n−1+∆) < 0 and ∆ is odd, or νθ(n−1+∆) > 0 and ∆ is even,
then o〈H,J〉 = 1. Similarly as in (I+),

H(x)−H(β′)
x− β′

− H(x)−H(γ′)
x− γ′

>
|νθ(n−1+∆)| v〈f, (c, d)〉

2∆(d− c)
> 0
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independent of h.
(II-) If either νθ(n−1+∆) < 0 and ∆ is even, or νθ(n−1+∆) > 0 and ∆ is

odd, then o〈H,J〉 = −1. Similarly as in (II+), we get

H(x)−H(γ′)
x− γ′

− H(x)−H(α′)
x− α′

>
|νθ(n−1+∆)| v〈f, (c, d)〉

2∆(d− c)
> 0

independent of h.
Summarizing, (I-),(II-) and (4.6) imply that H ′−(x) does not exist. We

have proved the following.

Proposition 4.2. At any point of finite category no one sided derivative of
nonzero H given by (3.1) exists.

Point of infinite category. Recall that it is a point which belongs to L-
segments of all categories.

Let us consider nonzero H given by (3.1). Fix a point x of infinite category
and the corresponding nested sequence of L-segments, i.e., the sequence

(α1, β1) ⊃ (α2, β2) ⊃ · · · , (αn, βn) ∈ Ln, {x} =
⋂
n

(αn, βn).

Fix h > 0. From some number onwards, the segments (αn, βn) are included
in the interval (x−h, x+h). By our construction of the functions F0, . . . , Fk, . . .
(mainly since θ is Toeplitz and onto the set N ∪ {0}), there exists a positive
integer σ such that
• (ασ, βσ) ⊂ (x− h, x+ h),
• θ(σ) = θ(σ + 1),
• |νθ(σ)| = ||µ||S ≥ |νθ(n)|, n ≥ σ (n ≥ 0 in fact).

W.l.o.g., we can assume that
• x ∈ (ασ, (ασ + βσ)/2),
• o〈f, (ασ, βσ)〉 = 1,
• νθ(σ) > 0.

Using above assumptions, the fact that νθ(σ) has a maximal absolute value
and repeatedly applying (2.4) with respect to (αn, βn), n ≥ σ + 1, we get

H(ασ) ≤ H(x) ≤ H(ασ+1). (4.7)

Hence D+f(x) ≥ 0, D−f(x) ≥ 0 and D+f(x) ≤ 0, D−f(x) ≤ 0. Put γ =
(ασ + βσ)/2 and J = (ασ, βσ). By virtue of (4.7), (4.1) and (3.2),

H(γ)−H(x)
γ − x

− H(βσ)−H(x)
βσ − x

≥ H(γ)−H(βσ)
βσ − x

>
o〈H,J〉 v〈H,J〉

βσ − ασ
=
νθ(σ) o〈f, J〉 v〈f, J〉

βσ − ασ
= νθ(σ)

b

2a
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independent of h. Thus, H ′+(x) does not exist. Similarly, with the help of
(2.6),

H(x)−H(ασ)
x− ασ

− H(x)−H(ασ+1)
x− ασ+1

≥ H(ασ+1)−H(ασ)
x− ασ

>
H(ασ+1)−H(ασ)

βσ+1 − ασ
=
νθ(σ) [f(ασ+1)− f(ασ)]

βσ+1 − ασ
> νθ(σ)

b

2a

independent of h. Thus, H ′−(x) does not exist. We have proved the next
assertion.

Proposition 4.3. At any point of infinite category no one sided derivative of
nonzero H given by (3.1) exists.

This finishes the proof of Theorem 4.1. �

By Lemma 3.4, there is an isomorphism ι : B∞ → S given by

ι
( ∞∑
k=0

µkFk

)
=
∞∑
k=0

µk.

Thus, we can equip the set B∞ by the norm defined as

||H||B∞ = ||ι(H)||S .
We get the following theorem.

Theorem 4.4. The space (B∞, || · ||B∞) is a Banach space.

Proof. It is an easy consequence of our definitions and the fact that (S, || ||S)
is a Banach space. �

5 The Space Bsup.

In this section we define the set Bsup announced in our Introduction. Sim-
ilarly as B∞, also the set Bsup will be defined as a linear hull of countably
many linearly independent functions G0, . . . , Gk, . . . from C([0, 2a]), where
each function Gk will be obtained from Fk by a suitable perturbation.

Definition 5.1. Let h ∈ C([0, 2a]), Ij = (cj , dj) ⊂ [0, 2a] be pairwise disjoint
intervals, h(cj) = h(dj) and νj ∈ R. A map g ∈ C([0, 2a]) is a b(Ij)j ⊕ (νj)jc-
perturbation of h if g satisfies

g(x) =

{
h(x) if x /∈

⋃
j Ij ,

νj(h(x)− h(cj)) + h(cj) if x ∈ Ij .
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Recall that L-segments rm,p were introduced in Section 2.

Definition 5.2. Let us consider the sequence (r2m−1,1)∞m=1 of L-segments of
the first category. We define a sequence (Gk)∞k=0 of functions from C([0, 2a])
by

(i) G0 = F0,
(ii) for k ∈ N, Gk is defined as a b(r2m−1,1)km=1⊕(1−22m−1)km=1c-perturbation

of Fk.

Finally, let us define Bsup ⊂ C([0, 2a]) as follows: H ∈ Bsup if and only if

∃ (νk)∞k=0 ∀ x ∈ [0, 2a] : H(x) =
∞∑
k=0

νkGk(x). (5.1)

In this case we say that H is given by the sequence (νk)∞k=0 and we write
H =

∑∞
k=0 νkGk. Note that by our definition, Bsup ⊂ C([0, 2a]).

6 Basic Properties of Bsup.

Put γ0 = a, and for each m ∈ N, let γm be the center of r2m−1,1.

Lemma 6.1. The following assertions are true.
(i)

Gk(γm) =

{
b if m ≤ k,
0 if m > k.

(ii) If H =
∑∞
k=0 νkGk ∈ Bsup, then

∑∞
k=0 νk is a convergent series (

∑∞
k=0 νk ∈

S).
(iii) H ∈ Bsup given by the sequence (νk)∞k=0 is the zero function if and only

if νk = 0 for each k. In particular, the set

{Gk : k ∈ N0} ⊂ Bsup

is linearly independent.

Proof. (i) This is an easy consequence of Definition 5.1 and the construction
of the functions F0, F1, . . . , Fk, . . . .

(ii) From (5.1) we get H(γ0) = b
∑∞
k=0 νk ∈ R.

(iii) By (ii) and Definition 5.1, the functions Fk, Gk, k ≥ 0, coincide on the
interval [a, 2a]. Then, (iii) follows from Lemma 3.4. �

Theorem 6.2. (Bsup, || ||sup) is an infinite dimensional Banach space.
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Proof. By (5.1), Bsup is a linear (sub)space in C([0, 2a]). From Lemma
6.1(iii) we get that Bsup is infinite dimensional. Thus it is sufficient to show
that the set Bsup is closed with respect to the topology induced by || ||sup.
Consider a Cauchy sequence

(
H` =

∞∑
k=0

νk,`Gk

)∞
`=1
⊂ Bsup.

Since (C([0, 2a]), || ||sup) is a Banach space, there is a map H ∈ C([0, 2a]) such
that lim

`
||H −H`||sup = 0.

For any ε > 0, we have ||H` − H`′ ||sup < ε whenever `, `′ are sufficiently
large. For such `, `′, from Lemma 6.1(i), we obtain for each m ∈ N0,

ε > ||H` −H`′ ||sup ≥ |H`(γm)−H`′(γm)| = b |
∞∑
k=m

νk,` − νk,`′ |;

i.e., the sequence (
∑∞
k=0 νk,`)

∞
`=1 ⊂ S is Cauchy in the space (S, || ||S). Denote

ν(`) :=
∑∞
k=0 νk,` and let

ν :=
∞∑
k=0

νk = || ||S − lim
`
ν(`). (6.1)

To finish our proof, it is sufficient to show that for each x ∈ [0, 2a],

lim
`
H`(x) = lim

`

∞∑
k=0

νk,`Gk(x) =
∞∑
k=0

νkGk(x), (6.2)

since then H =
∑∞
k=0 νkGk ∈ Bsup.

The last equality is clear when x ∈ [0, 2a] \
⋃
m≥1 r2m−1,1. On this set

Fk = Gk for each k and (6.2) follows immediately from (6.1) and Lemma
3.3(ii).

If x ∈ r2m−1,1 = (α, β), then from Definitions 5.1 and 5.2, we get

∞∑
k=0

νk,`Gk(x) =
m−1∑
k=0

νk,`Fk(x)

+
∞∑
k=m

νk,` [(1− 22m−1)(Fk(x)− Fk(α)) + Fk(α)].
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Hence, again by (6.1), Lemma 3.3(ii) and Definition 5.2,

lim
`
H`(x) =

m−1∑
k=0

νkFk(x) +
∞∑
k=m

νk [(1− 22m−1)(Fk(x)− Fk(α)) + Fk(α)]

=
∞∑
k=0

νkGk(x).

This proves the lemma. �

7 Besicovitch Functions in Bsup.

Theorem 7.1. Each nonzero function from Bsup is a Besicovitch function.

Proof. Let H =
∑∞
k=0 νkGk ∈ Bsup be nonzero. Clearly, it means that

νk 6= 0 for some k. From Lemma 6.1(ii), we know that
∑∞
k=0 νk is a convergent

series.
By Definition 5.2, the functions Gk, Fk coincide on the set

C = [0, 2a] \
⋃
m≥1

r2m−1,1,

where r2m−1,1 = (a2m−1,1, b2m−1,1) is the leftmost L-segment with the length
a/42m−1; i.e.,

H(x) =
∞∑
k=0

νkFk(x), x ∈ C. (7.1)

The fact that the real series
∑∞
k=0 νk converges, (7.1) and Theorem 4.1 imply

that
• H ′+(x), H ′−(x) does not exist at any x ∈ intC
• H ′+(x) does not exist at any x ∈ {0} ∪ {b2m−1,1 : m ≥ 1}(in order to

show that H ′+(0) does not exist we can use the intervals r2m,1, m ≥ 1 as
the maximal L-segments of the first category contained in (0, h))

• H ′−(x) does not exist at any x ∈ {a2m−1,1 : m ≥ 1}
Thus, it remains to show that H ′−(x), resp. H ′+(x) does not exist at any

point x ∈ {b2m−1,1 : m ≥ 1}, resp. x ∈ {a2m−1,1 : m ≥ 1}. By symmetry, we
will only prove the latter case.

Fix a = a2m−1,1 and show that H ′+(a) does not exist. For each x ∈ r2m−1,1
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we get from Definitions 5.1 and 5.2,

H(x) =
∞∑
k=0

νkGk(x)

=
m−1∑
k=0

νkFk(x) +
∞∑
k=m

νk [(1− 22m−1)(Fk(x)− Fk(a)) + Fk(a)] (7.2)

=(1−22m−1)

[
m−1∑
k=0

νk
1− 22m−1

Fk(x) +
∞∑
k=m

νkFk(x)

]
+ 22m−1

∞∑
k=m

νkFk(a).

Since, by Theorem 4.1, the function

G(x) =
m−1∑
k=0

νk
1− 22m−1

Fk(x) +
∞∑
k=m

νkFk(x)

is Besicovitch, G′+(a) does not exist. Hence, by (7.2), also H ′+(a) does not
exist. This proves the theorem. �

Thus, for the value a = 1/2 we get the following.

Theorem 7.2. (Bsup, || ||sup) is an infinite dimensional Banach (sub)space in
C([0,1]) and each nonzero element of Bsup is a Besicovitch function.

Proof. It is an immediate consequence of Theorem 6.2 and Theorem 7.1. �
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