RESEARCH

Jozef Bobok, KM FSv, ČVUT, 166 29 Praha 6, Czech Republic. email: bobok@mat.fsv.cvut.cz

INFINITE DIMENSIONAL BANACH SPACE OF BESICOVITCH FUNCTIONS

Abstract

Let C([0,1]) be the set of all continuous functions mapping the unit interval [0,1] into \mathbb{R} . A function $f \in C([0,1])$ is called Besicovitch if it has nowhere one-sided derivative (finite or infinite). We construct a set $\mathcal{B}_{\sup} \subset C([0,1])$ such that $(\mathcal{B}_{\sup}, || ||_{\sup})$ is an infinite dimensional Banach (sub)space in C([0,1]) and each nonzero element of \mathcal{B}_{\sup} is a Besicovitch function.

1 Introduction.

In this paper we continue our investigation of nowhere differentiable functions [3] and, in particular, Besicovitch functions [4] — real-valued functions of a real variable without *finite or infinite* one-sided derivatives. They were introduced many years ago by the classical work of Besicovitch [2]. In 1932 Saks [7] proved that the collection of all Besicovitch functions is of the first category in the space C([0, 1]) of continuous functions mapping the unit interval [0, 1] into \mathbb{R} equipped by the supremum norm $|| ||_{sup}$.

Recently, it has been proved in [1] (see also [9]) that there exists an infinite dimensional closed subspace of C([0, 1]) such that each (not identically zero) function from this subspace has nowhere one-sided *finite* derivative.

In this work we show that an analogous assertion remains true also for the class of Besicovitch functions. More precisely, we construct a set $\mathcal{B}_{\sup} \subset C([0,1])$, such that $(\mathcal{B}_{\sup}, || ||_{\sup})$ is an infinite dimensional Banach (sub)space in C([0,1]) and each nonzero element of \mathcal{B}_{\sup} is a Besicovitch function.

Key Words: Besicovitch function, infinite dimensional Banach space

Mathematical Reviews subject classification: 26A27

Received by the editors March 13, 2006

Communicated by: B. S. Thomson

^{*}The author supported by MYES of the Czech Republic via contract MSM 6840770010.

³¹⁹

$\mathbf{2}$ **Basic Pepper's Construction.**

The following construction is due to Pepper [6]. For a > 0, let us construct in [0, a] a discontinuum

$$E = [0, a] \setminus L, \text{ where } L = \bigcup_{m=1}^{\infty} \bigcup_{p=1}^{2^{m-1}} r_{m,p}, \qquad (2.1)$$

and the open intervals $r_{m,p} = (a_{m,p}, b_{m,p})$ are constructed as follows:

- $d_{1,1} = [0, a], r_{1,1} \subset d_{1,1}$ so that the center of $r_{1,1}$ coincides with that of $d_{1,1}, \lambda(r_{1,1}) = \frac{a}{4}$, where λ is the Lebesgue measure
- for m > 1, if $d_{m,1} \cdots d_{m,2^{m-1}}$ are (from the left to the right) the intervals of the set $[0, a] \setminus \bigcup_{q=1}^{m-1} \bigcup_{p=1}^{2^{q-1}} r_{q,p}$, then $r_{m,p} \subset d_{m,p}$ so that the center of $r_{m,p}$ coincides with that of $d_{m,p}$ and $\lambda(r_{m,p}) = \frac{a}{4^m}$. We have $\lambda(E) = \frac{a}{2}$. For b > 0, let $\varphi : [0, a] \to [0, b]$ be a nondecreasing

continuous function defined by

$$\varphi(x) = 2\frac{b}{a}\lambda(E \cap [0, x]) . \qquad (2.2)$$

Then $\varphi(0) = 0$, $\varphi(a) = b$, φ is constant on every interval $r_{m,p}$ and

$$\varphi(r_{m,p}) = \frac{b(2p-1)}{2^m}, \ m \in \mathbb{N}, \ p = 1, \dots, 2^{m-1}.$$
 (2.3)

Hence, for each m, p (with respect to [0, a]),

$$0 \le \varphi(r_{m,p}) \pm \frac{b}{2^m} \le b. \tag{2.4}$$

Remark 2.1. For any segment $d_{m+1,p}$,

$$\lambda(d_{m+1,p}) = a \left(\frac{1}{2^{m+1}} + \frac{1}{2 \cdot 4^m} \right).$$
(2.5)

Since all parts of the graph of φ corresponding to the segments $d_{m+1,1}, d_{m+1,2}$, $\ldots, d_{m+1,2^m}$ are similar, for any $d_{m+1,p} = [u, v]$ we have

$$\varphi(v) - \varphi(u) = \frac{\varphi(a) - \varphi(0)}{2^m} = \frac{b}{2^m}$$

One can verify that $b_{m,p} = \frac{a}{2^{m+1}} + \frac{3}{2 \cdot 4^m} + (2p-2)\frac{a}{2^m} \cdot \frac{4^m - 2^m - 2}{4^m - 2^{m+1}}$. Using (2.3) and the fact that $\frac{4^m - 2^m - 2}{4^m - 2^{m+1}} \in [1, 2]$ for each $m \in \mathbb{N}$, we get

$$\frac{b}{2a} \le \frac{\varphi(b_{m,p})}{b_{m,p}}.$$
(2.6)

Define a function $p: [0, 2a] \rightarrow [0, b]$ by

$$p(x) = \begin{cases} \varphi(x) & \text{for } x \in [0, a], \\ \varphi(2a - x) & \text{for } x \in [a, 2a] \end{cases}$$

The function p and the interval [0, 2a] form the (canonical) step-triangle with the base [0, 2a] and the left side $\{(x, p(x)); x \in [0, a]\}$, resp. right side $\{(x, p(x)); x \in [a, 2a]\}$.

Now we construct a Besicovitch function $f: [0, 2a] \rightarrow [0, b]$, see [6].

Oth step: Call the segment (0, 2a) an *L*-segment of the zero category.

1st step: Construct a (canonical) step-triangle with the base [0, 2a] and height b. Call this step-triangle "triangle of the first category", the segments of $L \subset [0, a]$ (see (2.1)) and symmetric segments in [a, 2a] "L-segments of the first category" and the corresponding segments on the sides of the canonical step-triangle "M-segments of the first category".

The sides of the step-triangle define a function f_1 (= p).

nth step: On each of those M-segments of n - 1st category, construct in a similar way, a step-triangle directed inside the step-triangle of n - 1st category on whose side the triangle has its base. On equal segments construct equal triangles and the height of the triangle constructed on $r_{m,p}$ (with respect to its base) is to be equal to $\frac{b'}{2^m}$, where b' is a height of the bigger triangle of the n - 1st category on whose side the triangle has its base. Call these triangles "triangles of the *n*th category", new *L*-segments "*L*-segments of the *n*th category" and the corresponding segments on the sides of new triangles "*M*-segments of the *n*th category".

The union of sides of all triangles constructed so far defines a function f_n . Since for each $n \in \mathbb{N}$, f_n is continuous and $||f_{n+1} - f_n||_{\sup} = \frac{b}{2^n}$, the continuous map $f = \lim_{n \to \infty} f_n$ is well defined.

A point $x \in [0, 2a]$ outside of *L*-segments of the first category will be called a point of the first category. A point which belongs to an *L*-segment of the first category but not to that of the second category will be called a point of the second category, etc. Any point which belongs to *L*-segments of all categories will be called a point of infinite category.

3 The Space \mathcal{B}_{∞} .

Our aim is to construct a set $\mathcal{B}_{\infty} \subset C([0, 2a])$ in which any nonzero element is a Besicovitch function and which is an infinite dimensional linear (sub)space in C([0, 2a]). We start by recalling one notion from symbolic dynamics [5]. A sequence $(x(n))_{n=1}^{\infty}$ of symbols is called a Toeplitz sequence provided that \mathbb{N} can be decomposed into arithmetic progressions such that x(n) is constant on each arithmetic progression. We will use two sequences $\eta = (\eta(n))_{n=1}^{\infty} \in (\mathbb{N} \cup \{0\})^{\mathbb{N}}$ and $\theta = (\theta(n))_{n=0}^{\infty} \in (\mathbb{N} \cup \{0\})^{\mathbb{N} \cup \{0\}}$. The sequence η is chosen as any Toeplitz sequence which is *onto*; i.e., $\eta(\mathbb{N}) = \mathbb{N} \cup \{0\}$. The sequence θ is defined by $\theta(2n) = \theta(2n+1) = \eta(n+1)$, for n greater than or equal to 0. Thus,

$$\theta = \eta(1)\eta(1)\eta(2)\eta(2)\eta(3)\eta(3)\eta(4)\eta(4)\eta(5)\eta(5)\eta(6)\eta(6)\eta(7)\eta(7) \dots$$

Clearly also, the sequence θ is Toeplitz (but indexed from 0). For $n \ge 0$ we denote by m_n the infinite vector $(m_{n0} \ m_{n1} \ \dots \ m_{nj} \ \dots)$ satisfying

$$m_{nj} = \begin{cases} 0 & \text{for } j < n, \\ 1 & \text{for } j \ge n. \end{cases}$$

Finally, we define the infinite matrix $A = (a_{nj})_{n,j=0}^{\infty}$ with the rows $m_{\theta(n)}$, i.e., the matrix satisfying $a_{nj} = m_{\theta(n)j}$ for each n, j.

Definition 3.1. Let $h \in C([0, 2a])$, $I = (c, d) \subset [0, 2a]$ and h(c) = h(d). We say that h|I is positively, resp. negatively oriented (on I) if

$$h((c+d)/2) > h(c)$$
, resp. $h((c+d)/2) < h(c)$.

We put

$$o\langle h, I \rangle = \begin{cases} 1 & \text{if } h | I \text{ is positively oriented,} \\ -1 & \text{if } h | I \text{ is negatively oriented,} \\ 0 & \text{otherwise.} \end{cases}$$

The number |h((c+d)/2) - h(c)| will be called the height of h on I; we denote it $v\langle h, I \rangle$.

By \mathfrak{L}^n , $n \in \mathbb{N} \cup \{0\}$ we denote the set of all *L*-segments of the *n*th category. In particular, $\mathfrak{L}^0 = \{(0, 2a)\}.$

Definition 3.2. Let $A = (a_{nj})_{n,j=0}^{\infty}$ be as above. We introduce functions F_0, \ldots, F_k, \ldots from C([0, 2a]) constructed analogously as the function f in Section 1 and such that for any *L*-segment $I \in \mathfrak{L}^n$ of the *n*th category, $n \in \mathbb{N} \cup \{0\}$,

$$v\langle F_k, I \rangle = a_{nk} \cdot v\langle f, I \rangle$$
, and $o\langle F_k, I \rangle = \operatorname{sign}(a_{nk}) \cdot o\langle f, I \rangle$.

Let S be the set of all real convergent series. For any element μ = $\sum_{k=0}^{\infty} \mu_k \in S$ let $||\mu||_S = \sup_{n\geq 0} |\sum_{k=n}^{\infty} \mu_k|$. In [8] the authors showed that $(S, || ||_S)$ is a Banach space. Now put

$$\mathcal{B}_{\infty} = \Big\{ \sum_{k=0}^{\infty} \mu_k F_k \colon \sum_{k=0}^{\infty} \mu_k \in \mathcal{S} \Big\}.$$

We finish this section with two lemmas.

Lemma 3.3. The following statements are true.

- (i) Any element $H \in \mathcal{B}_{\infty}^{\infty}$ is a continuous function from C([0, 2a]). (ii) Let $\mu(\ell) := \sum_{k=0}^{\infty} \mu_{k,\ell}, \ \ell \ge 1$ and $\mu := \sum_{k=0}^{\infty} \mu_k$ be series from S, $H_{\ell} = \sum_{k=0}^{\infty} \mu_{k,\ell} F_k$ and $H = \sum_{k=0}^{\infty} \mu_k F_k$. Then

$$||\mu(\ell) - \mu||_{\mathcal{S}} \to_{\ell} 0 \implies ||H_{\ell} - H||_{\sup} \to_{\ell} 0.$$

PROOF. (i) It is clear when $||\mu||_{\mathcal{S}} = 0$. Let

$$H = \sum_{k=0}^{\infty} \mu_k F_k \tag{3.1}$$

for some nonzero $\mu\in\mathcal{S}$. By Definition 3.2, for any L-segment $I\in\mathfrak{L}^n$ of the *n*th category

$$o\langle H, I \rangle \ v \langle H, I \rangle = \sum_{k=0}^{\infty} \mu_k \ o \langle F_k, I \rangle \ v \langle F_k, I \rangle$$
$$= \sum_{k=0}^{\infty} \mu_k \ \operatorname{sign}(a_{nk}) \ a_{nk} \ o \langle f, I \rangle \ v \langle f, I \rangle$$
$$= o \langle f, I \rangle \ v \langle f, I \rangle \sum_{k=\theta(n)}^{\infty} \mu_k.$$
(3.2)

Hence

$$v\langle H,I\rangle \leq ||\mu||_{\mathcal{S}} v\langle f,I\rangle$$

The last inequality together with construction of f imply that $H \in C([0, 2a])$.

Let us prove (ii). From (3.2) and our assumption $||\mu(\ell) - \mu||_{\mathcal{S}} \to_{\ell} 0$ we get for each $n \in \mathbb{N} \cup \{0\}$ and $I \in \mathfrak{L}^n$,

$$o\langle H,I\rangle \ v\langle H,I\rangle = o\langle f,I\rangle \ v\langle f,I\rangle \sum_{k=\theta(n)}^{\infty} \mu_k$$

$$= \lim_{\ell \to \infty} o\langle f, I \rangle \ v \langle f, I \rangle \sum_{k=\theta(n)}^{\infty} \mu_{k,\ell} = \lim_{\ell \to \infty} o\langle H_{\ell}, I \rangle \ v \langle H_{\ell}, I \rangle.$$

Applying the above equality consequently on *L*-segments of the *n*th category, $n = 0, 1, \ldots$, we get the conclusion (ii).

Lemma 3.4. Let $\mu \in S$ be nonzero. Then the function $\sum_{k=0}^{\infty} \mu_k F_k$ is nonzero on any subinterval of [0, 2a].

PROOF. Let H be given by (3.1). Since μ is nonzero and $\theta \colon \mathbb{N} \cup \{0\} \to \mathbb{N} \cup \{0\}$ is onto, there exists an $n \ge 0$ such that $\sum_{k=\theta(n)}^{\infty} \mu_k \ne 0$. By our construction, $o\langle f, I \rangle \ v \langle f, I \rangle \ne 0$ for any L-segment I. Then (3.2) implies that $v \langle H, I \rangle$ is nonzero for any $I \in \mathfrak{L}^n$. Thus, the function H is nonzero on any subinterval of [0, 2a].

4 Besicovitch Functions in \mathcal{B}_{∞} .

Let f be a function defined on a (one-sided) neighborhood of x. The derived numbers $D^+f(x)$, $D_+f(x)$ of f at x are equal to

$$D^{+}f(x) = \limsup_{h \to 0_{+}} \frac{f(x+h) - f(x)}{h}, \ D_{+}f(x) = \liminf_{h \to 0_{+}} \frac{f(x+h) - f(x)}{h},$$

and the analogous limits from the left define $D^-f(x)$, $D_-f(x)$. Obviously, f has a one-sided derivative at a point x if and only if either $D^+f(x) = D_+f(x)$ or $D^-f(x) = D_-f(x)$.

The main result of this Section is the following.

Theorem 4.1. Each nonzero function from \mathcal{B}_{∞} is a Besicovitch function.

PROOF. Let H given by (3.1) be nonzero. If we put

$$\nu_n = \sum_{k=n}^{\infty} \mu_k, \ n = 0, 1, \dots,$$

then $||\mu||_{\mathcal{S}} = \sup_{n \ge 0} |\nu_n| > 0.$

By Definition 3.2, for any L-segment $I \in \mathfrak{L}^n$,

$$o\langle H, I \rangle = \operatorname{sign}(\nu_{\theta(n)}) \cdot o\langle f, I \rangle.$$
(4.1)

We use L-segments (with corresponding categories) and intervals taken with respect to [0, 2a]. In order to simplify our notation, in the first part of this

324

proof we denote them $r_{m,p}$, resp. $d_{m,p}$ as *L*-segments of the 1st category, resp. intervals taken with respect to [c, (c+d)/2] (instead of [0, a]). Analogously to (2.1), we put

$$E' = [c, (c+d)/2] \setminus \bigcup_{m,p} r_{m,p}.$$
 (4.2)

Point of finite category. Assume that x is a point of the *n*th category, $n \in \mathbb{N}$, contained in an interval [c, d], where $(c, d) \in \mathfrak{L}^{n-1}$ is of the n-1st category.

By the symmetry, w.l.o.g. we can assume that

- $x \in [c, (c+d)/2],$
- $o\langle f, (c,d) \rangle = 1$,
- $\nu_{\theta(n-1)} \ge 0.$

Fix h > 0, and let

- $r_{m,p} = (\alpha, \beta)$ the maximal *L*-segment of the *n*th category contained in (x, x + h), resp.* (x h, x);
- Δ the least positive integer for which $\nu_{\theta(n-1+\Delta)} \neq 0$ (such a Δ exists since θ is Toeplitz and onto the set $\mathbb{N} \cup \{0\}$);
- $J = (\alpha', \beta')$ the maximal *L*-segment of the $(n 1 + \Delta)$ th category contained in (α, β) ; obviously,

$$o\langle f, (\alpha', \beta') \rangle = (-1)^{\Delta}. \tag{4.3}$$

In particular, if $\Delta = 1$, then $J = (\alpha, \beta)$. Note that since $r_{m,p} \subset d_{m,p}$ and $r_{m,p}$ is maximal, the point x has to be from $[\delta, \alpha)$, resp.^{*} $(\beta, \varepsilon]$, where $[\delta, \alpha] = d_{m+1,2p-1}$, resp.^{*} $[\beta, \varepsilon] = d_{m+1,2p}$. Put $\gamma' = (\alpha' + \beta')/2$.

(+) Assume that $x \neq (c+d)/2$ is not the left end of any *L*-segment of the *n*th category and show that $H'_+(x)$ does not exist. In this case $r_{m,p} \subset (x, x+h)$. From (2.2), (4.2) and our assumption $\nu_{\theta(n-1)} \geq 0$, we get

$$0 \leq \frac{H(\alpha) - H(x)}{\alpha - x} = \sum_{k=0}^{\infty} \mu_k \frac{[F_k(\alpha) - F_k(x)]}{\alpha - x}$$
$$= \sum_{k=0}^{\infty} \mu_k a_{(n-1)k} \frac{2v\langle f, (c, d) \rangle}{\frac{d-c}{2}} \cdot \frac{\lambda(E' \cap [x, \alpha])}{\alpha - x} \qquad (4.4)$$
$$\leq \nu_{\theta(n-1)} \frac{4v\langle f, (c, d) \rangle}{d - c}$$

for each h. Hence

$$D_{+}H(x) \le \nu_{\theta(n-1)} \frac{4v\langle f, (c,d) \rangle}{d-c} \text{ and } D^{+}f(x) \ge 0.$$
 (4.5)

(I+) Either $\nu_{\theta(n-1+\Delta)} < 0$ and Δ is odd, or $\nu_{\theta(n-1+\Delta)} > 0$ and Δ is even. From (4.1) and (4.3) we obtain $o\langle H, J \rangle = 1$. It implies that $H(x) \leq H(\alpha') = H(\beta') < H(\gamma')$ for $x < \alpha' < \gamma' < \beta'$. Using (2.5) we get

$$\frac{H(\gamma') - H(x)}{\gamma' - x} - \frac{H(\beta') - H(x)}{\beta' - x} \ge \frac{H(\gamma') - H(\beta')}{\gamma' - x}$$
$$> \frac{o\langle H, J \rangle \ v \langle H, J \rangle}{\beta - \delta} = \frac{\nu_{\theta(n-1+\Delta)} \ o \langle f, J \rangle \ v \langle f, J \rangle}{\frac{d - c}{2} \left[\frac{1}{2^{m+1}} + \frac{1}{2 \cdot 4^m} + \frac{1}{4^m}\right]}$$
$$= \frac{|\nu_{\theta(n-1+\Delta)}|}{(d - c) \left[\frac{1}{2^{m+2}} + \frac{1}{2^2 \cdot 4^m} + \frac{1}{2 \cdot 4^m}\right]} \cdot \frac{v \langle f, (c, d) \rangle}{2^{m+\Delta-1}}$$
$$> \frac{|\nu_{\theta(n-1+\Delta)}| \ v \langle f, (c, d) \rangle}{2^{\Delta}(d - c)} > 0$$

independent of h.

(II+) Either $\nu_{\theta(n-1+\Delta)} < 0$ and Δ is even, or $\nu_{\theta(n-1+\Delta)} > 0$ and Δ is odd. From (4.1) and (4.3) we get $o\langle H, J \rangle = -1$. Then $H(x) \leq H(\alpha')$ and $H(\gamma') < H(\alpha') = H(\beta')$ for $x < \alpha' < \gamma' < \beta'$. We get analogously as above,

$$\begin{split} & \frac{H(\alpha') - H(x)}{\alpha' - x} - \frac{H(\gamma') - H(x)}{\gamma' - x} \geq \frac{H(\alpha') - H(\gamma')}{\gamma' - x} \\ & > \frac{-o\langle H, J \rangle \; v\langle H, J \rangle}{\beta - \delta} = \frac{\nu_{\theta(n-1+\Delta)} \; (-o\langle f, J \rangle) \; v\langle f, J \rangle}{\frac{d - c}{2} \left[\frac{1}{2^{m+1}} + \frac{1}{2 \cdot 4^m} + \frac{1}{4^m}\right]} \\ & > \frac{|\nu_{\theta(n-1+\Delta)}| \; v\langle f, (c, d) \rangle}{2^{\Delta}(d - c)} > 0 \end{split}$$

independent of h. Thus, (I+) and (II+), together with (4.5), imply that $H'_+(x)$ does not exist.

(-) Assume that $x \neq c$ is not the right end of any *L*-segment of the *n*th category and show that $H'_{-}(x)$ does not exist. In this case $r_{m,p} \subset (x - h, x)^*$. Since the situation is completely analogous to the previous one, we can be rather brief.

Similarly as in (4.4), we get

$$D_{-}H(x) \le \nu_{\theta(n-1)} \frac{4v\langle f, (c,d) \rangle}{d-c}, \ D^{-}f(x) \ge 0.$$
 (4.6)

(I-) If either $\nu_{\theta(n-1+\Delta)} < 0$ and Δ is odd, or $\nu_{\theta(n-1+\Delta)} > 0$ and Δ is even, then $o\langle H, J \rangle = 1$. Similarly as in (I+),

$$\frac{H(x)-H(\beta')}{x-\beta'}-\frac{H(x)-H(\gamma')}{x-\gamma'} > \frac{|\nu_{\theta(n-1+\Delta)}| \ v\langle f,(c,d)\rangle}{2^{\Delta}(d-c)} > 0$$

independent of h.

(II-) If either $\nu_{\theta(n-1+\Delta)} < 0$ and Δ is even, or $\nu_{\theta(n-1+\Delta)} > 0$ and Δ is odd, then $o\langle H, J \rangle = -1$. Similarly as in (II+), we get

$$\frac{H(x) - H(\gamma')}{x - \gamma'} - \frac{H(x) - H(\alpha')}{x - \alpha'} > \frac{|\nu_{\theta(n-1+\Delta)}| \ v\langle f, (c, d) \rangle}{2^{\Delta}(d-c)} > 0$$

independent of h.

Summarizing, (I-),(II-) and (4.6) imply that $H'_{-}(x)$ does not exist. We have proved the following.

Proposition 4.2. At any point of finite category no one sided derivative of nonzero H given by (3.1) exists.

Point of infinite category. Recall that it is a point which belongs to *L*-segments of all categories.

Let us consider nonzero H given by (3.1). Fix a point x of infinite category and the corresponding nested sequence of L-segments, i.e., the sequence

$$(\alpha_1,\beta_1) \supset (\alpha_2,\beta_2) \supset \cdots, \ (\alpha_n,\beta_n) \in \mathfrak{L}^n, \ \{x\} = \bigcap_n (\alpha_n,\beta_n)$$

Fix h > 0. From some number onwards, the segments (α_n, β_n) are included in the interval (x-h, x+h). By our construction of the functions F_0, \ldots, F_k, \ldots (mainly since θ is Toeplitz and onto the set $\mathbb{N} \cup \{0\}$), there exists a positive integer σ such that

- $(\alpha_{\sigma}, \beta_{\sigma}) \subset (x h, x + h),$
- $\theta(\sigma) = \theta(\sigma+1),$

• $|\nu_{\theta(\sigma)}| = ||\mu||_{\mathcal{S}} \ge |\nu_{\theta(n)}|, n \ge \sigma \ (n \ge 0 \text{ in fact}).$

W.l.o.g., we can assume that

- $x \in (\alpha_{\sigma}, (\alpha_{\sigma} + \beta_{\sigma})/2),$
- $o\langle f, (\alpha_{\sigma}, \beta_{\sigma}) \rangle = 1,$

•
$$\nu_{\theta(\sigma)} > 0$$

Using above assumptions, the fact that $\nu_{\theta(\sigma)}$ has a maximal absolute value and repeatedly applying (2.4) with respect to (α_n, β_n) , $n \ge \sigma + 1$, we get

$$H(\alpha_{\sigma}) \le H(x) \le H(\alpha_{\sigma+1}). \tag{4.7}$$

Hence $D^+f(x) \ge 0$, $D^-f(x) \ge 0$ and $D_+f(x) \le 0$, $D_-f(x) \le 0$. Put $\gamma = (\alpha_{\sigma} + \beta_{\sigma})/2$ and $J = (\alpha_{\sigma}, \beta_{\sigma})$. By virtue of (4.7), (4.1) and (3.2),

$$\frac{H(\gamma) - H(x)}{\gamma - x} - \frac{H(\beta_{\sigma}) - H(x)}{\beta_{\sigma} - x} \ge \frac{H(\gamma) - H(\beta_{\sigma})}{\beta_{\sigma} - x}$$
$$> \frac{o\langle H, J \rangle \ v\langle H, J \rangle}{\beta_{\sigma} - \alpha_{\sigma}} = \frac{\nu_{\theta(\sigma)} \ o\langle f, J \rangle \ v\langle f, J \rangle}{\beta_{\sigma} - \alpha_{\sigma}} = \nu_{\theta(\sigma)} \frac{b}{2a}$$

independent of h. Thus, $H'_{+}(x)$ does not exist. Similarly, with the help of (2.6),

$$\frac{H(x) - H(\alpha_{\sigma})}{x - \alpha_{\sigma}} - \frac{H(x) - H(\alpha_{\sigma+1})}{x - \alpha_{\sigma+1}} \ge \frac{H(\alpha_{\sigma+1}) - H(\alpha_{\sigma})}{x - \alpha_{\sigma}}$$
$$> \frac{H(\alpha_{\sigma+1}) - H(\alpha_{\sigma})}{\beta_{\sigma+1} - \alpha_{\sigma}} = \frac{\nu_{\theta(\sigma)} \left[f(\alpha_{\sigma+1}) - f(\alpha_{\sigma})\right]}{\beta_{\sigma+1} - \alpha_{\sigma}} > \nu_{\theta(\sigma)} \frac{b}{2a}$$

independent of h. Thus, $H'_{-}(x)$ does not exist. We have proved the next assertion.

Proposition 4.3. At any point of infinite category no one sided derivative of nonzero H given by (3.1) exists.

This finishes the proof of Theorem 4.1.

By Lemma 3.4, there is an isomorphism $\iota: \mathcal{B}_{\infty} \to \mathcal{S}$ given by

$$\iota\Big(\sum_{k=0}^{\infty}\mu_k F_k\Big) = \sum_{k=0}^{\infty}\mu_k$$

Thus, we can equip the set \mathcal{B}_{∞} by the norm defined as

$$||H||_{\mathcal{B}_{\infty}} = ||\iota(H)||_{\mathcal{S}}.$$

We get the following theorem.

Theorem 4.4. The space $(\mathcal{B}_{\infty}, || \cdot ||_{\mathcal{B}_{\infty}})$ is a Banach space.

PROOF. It is an easy consequence of our definitions and the fact that $(S, || ||_S)$ is a Banach space.

5 The Space \mathcal{B}_{sup} .

In this section we define the set \mathcal{B}_{sup} announced in our Introduction. Similarly as \mathcal{B}_{∞} , also the set \mathcal{B}_{sup} will be defined as a linear hull of countably many linearly independent functions G_0, \ldots, G_k, \ldots from C([0, 2a]), where each function G_k will be obtained from F_k by a suitable perturbation.

Definition 5.1. Let $h \in C([0, 2a])$, $I_j = (c_j, d_j) \subset [0, 2a]$ be pairwise disjoint intervals, $h(c_j) = h(d_j)$ and $\nu_j \in \mathbb{R}$. A map $g \in C([0, 2a])$ is a $\lfloor (I_j)_j \oplus (\nu_j)_j \rfloor$ -perturbation of h if g satisfies

$$g(x) = \begin{cases} h(x) & \text{if } x \notin \bigcup_j I_j, \\ \nu_j(h(x) - h(c_j)) + h(c_j) & \text{if } x \in I_j. \end{cases}$$

328

Recall that L-segments $r_{m,p}$ were introduced in Section 2.

Definition 5.2. Let us consider the sequence $(r_{2m-1,1})_{m=1}^{\infty}$ of *L*-segments of the first category. We define a sequence $(G_k)_{k=0}^{\infty}$ of functions from C([0, 2a]) by

- (i) $G_0 = F_0$,
- (ii) for $k \in \mathbb{N}$, G_k is defined as a $\lfloor (r_{2m-1,1})_{m=1}^k \oplus (1-2^{2m-1})_{m=1}^k \rfloor$ -perturbation of F_k .

Finally, let us define $\mathcal{B}_{sup} \subset C([0, 2a])$ as follows: $H \in \mathcal{B}_{sup}$ if and only if

$$\exists \ (\nu_k)_{k=0}^{\infty} \ \forall \ x \in [0, 2a]: \ H(x) = \sum_{k=0}^{\infty} \nu_k G_k(x).$$
 (5.1)

In this case we say that H is given by the sequence $(\nu_k)_{k=0}^{\infty}$ and we write $H = \sum_{k=0}^{\infty} \nu_k G_k$. Note that by our definition, $B_{\sup} \subset C([0, 2a])$.

6 Basic Properties of \mathcal{B}_{sup} .

Put $\gamma_0 = a$, and for each $m \in \mathbb{N}$, let γ_m be the center of $r_{2m-1,1}$.

Lemma 6.1. The following assertions are true. (i)

$$G_k(\gamma_m) = \begin{cases} b & \text{if } m \le k, \\ 0 & \text{if } m > k. \end{cases}$$

- (ii) If $H = \sum_{k=0}^{\infty} \nu_k G_k \in \mathcal{B}_{sup}$, then $\sum_{k=0}^{\infty} \nu_k$ is a convergent series $(\sum_{k=0}^{\infty} \nu_k \in \mathcal{S})$.
- (iii) $H \in \mathcal{B}_{sup}$ given by the sequence $(\nu_k)_{k=0}^{\infty}$ is the zero function if and only if $\nu_k = 0$ for each k. In particular, the set

$$\{G_k: k \in \mathbb{N}_0\} \subset \mathcal{B}_{\sup}$$

is linearly independent.

PROOF. (i) This is an easy consequence of Definition 5.1 and the construction of the functions $F_0, F_1, \ldots, F_k, \ldots$

(ii) From (5.1) we get $H(\gamma_0) = b \sum_{k=0}^{\infty} \nu_k \in \mathbb{R}$.

(iii) By (ii) and Definition 5.1, the functions $F_k, G_k, k \ge 0$, coincide on the interval [a, 2a]. Then, (iii) follows from Lemma 3.4.

Theorem 6.2. $(\mathcal{B}_{sup}, || ||_{sup})$ is an infinite dimensional Banach space.

PROOF. By (5.1), \mathcal{B}_{sup} is a linear (sub)space in C([0, 2a]). From Lemma 6.1(iii) we get that \mathcal{B}_{sup} is infinite dimensional. Thus it is sufficient to show that the set \mathcal{B}_{sup} is closed with respect to the topology induced by $|| ||_{sup}$. Consider a Cauchy sequence

$$\left(H_{\ell}=\sum_{k=0}^{\infty}\nu_{k,\ell}G_k\right)_{\ell=1}^{\infty}\subset\mathcal{B}_{\mathrm{sup}}.$$

Since $(C([0, 2a]), || ||_{sup})$ is a Banach space, there is a map $H \in C([0, 2a])$ such that $\lim_{e} ||H - H_{\ell}||_{sup} = 0$.

For any $\varepsilon > 0$, we have $||H_{\ell} - H_{\ell'}||_{\sup} < \varepsilon$ whenever ℓ, ℓ' are sufficiently large. For such ℓ, ℓ' , from Lemma 6.1(i), we obtain for each $m \in \mathbb{N}_0$,

$$\varepsilon > ||H_{\ell} - H_{\ell'}||_{\sup} \ge |H_{\ell}(\gamma_m) - H_{\ell'}(\gamma_m)| = b |\sum_{k=m}^{\infty} \nu_{k,\ell} - \nu_{k,\ell'}|$$

i.e., the sequence $(\sum_{k=0}^{\infty} \nu_{k,\ell})_{\ell=1}^{\infty} \subset S$ is Cauchy in the space $(S, || ||_S)$. Denote $\nu(\ell) := \sum_{k=0}^{\infty} \nu_{k,\ell}$ and let

$$\nu := \sum_{k=0}^{\infty} \nu_k = || \, ||_{\mathcal{S}} - \lim_{\ell} \nu(\ell).$$
(6.1)

To finish our proof, it is sufficient to show that for each $x \in [0, 2a]$,

$$\lim_{\ell} H_{\ell}(x) = \lim_{\ell} \sum_{k=0}^{\infty} \nu_{k,\ell} G_k(x) = \sum_{k=0}^{\infty} \nu_k G_k(x),$$
(6.2)

since then $H = \sum_{k=0}^{\infty} \nu_k G_k \in \mathcal{B}_{sup}$.

The last equality is clear when $x \in [0, 2a] \setminus \bigcup_{m \ge 1} r_{2m-1,1}$. On this set $F_k = G_k$ for each k and (6.2) follows immediately from (6.1) and Lemma 3.3(ii).

If $x \in r_{2m-1,1} = (\alpha, \beta)$, then from Definitions 5.1 and 5.2, we get

$$\sum_{k=0}^{\infty} \nu_{k,\ell} G_k(x) = \sum_{k=0}^{m-1} \nu_{k,\ell} F_k(x) + \sum_{k=m}^{\infty} \nu_{k,\ell} \left[(1 - 2^{2m-1}) (F_k(x) - F_k(\alpha)) + F_k(\alpha) \right]$$

Hence, again by (6.1), Lemma 3.3(ii) and Definition 5.2,

$$\lim_{\ell} H_{\ell}(x) = \sum_{k=0}^{m-1} \nu_k F_k(x) + \sum_{k=m}^{\infty} \nu_k \left[(1 - 2^{2m-1}) (F_k(x) - F_k(\alpha)) + F_k(\alpha) \right]$$
$$= \sum_{k=0}^{\infty} \nu_k G_k(x).$$

This proves the lemma.

7 Besicovitch Functions in \mathcal{B}_{sup} .

Theorem 7.1. Each nonzero function from \mathcal{B}_{sup} is a Besicovitch function.

PROOF. Let $H = \sum_{k=0}^{\infty} \nu_k G_k \in \mathcal{B}_{sup}$ be nonzero. Clearly, it means that $\nu_k \neq 0$ for some k. From Lemma 6.1(ii), we know that $\sum_{k=0}^{\infty} \nu_k$ is a convergent series.

By Definition 5.2, the functions G_k, F_k coincide on the set

$$C = [0, 2a] \setminus \bigcup_{m \ge 1} r_{2m-1,1},$$

where $r_{2m-1,1} = (a_{2m-1,1}, b_{2m-1,1})$ is the leftmost *L*-segment with the length $a/4^{2m-1}$; i.e.,

$$H(x) = \sum_{k=0}^{\infty} \nu_k F_k(x), \ x \in C.$$
 (7.1)

The fact that the real series $\sum_{k=0}^{\infty} \nu_k$ converges, (7.1) and Theorem 4.1 imply that

- $H'_+(x), H'_-(x)$ does not exist at any $x \in \operatorname{int} C$
- $H'_+(x)$ does not exist at any $x \in \{0\} \cup \{b_{2m-1,1}: m \ge 1\}$ (in order to show that $H'_+(0)$ does not exist we can use the intervals $r_{2m,1}, m \ge 1$ as the maximal *L*-segments of the first category contained in (0,h))

• $H'_{-}(x)$ does not exist at any $x \in \{a_{2m-1,1}: m \ge 1\}$

Thus, it remains to show that $H'_{-}(x)$, resp. $H'_{+}(x)$ does not exist at any point $x \in \{b_{2m-1,1}: m \ge 1\}$, resp. $x \in \{a_{2m-1,1}: m \ge 1\}$. By symmetry, we will only prove the latter case.

Fix $a = a_{2m-1,1}$ and show that $H'_+(a)$ does not exist. For each $x \in r_{2m-1,1}$

we get from Definitions 5.1 and 5.2,

$$H(x) = \sum_{k=0}^{\infty} \nu_k G_k(x)$$

= $\sum_{k=0}^{m-1} \nu_k F_k(x) + \sum_{k=m}^{\infty} \nu_k \left[(1 - 2^{2m-1})(F_k(x) - F_k(a)) + F_k(a) \right]$ (7.2)
= $(1 - 2^{2m-1}) \left[\sum_{k=0}^{m-1} \frac{\nu_k}{1 - 2^{2m-1}} F_k(x) + \sum_{k=m}^{\infty} \nu_k F_k(x) \right] + 2^{2m-1} \sum_{k=m}^{\infty} \nu_k F_k(a).$

Since, by Theorem 4.1, the function

$$G(x) = \sum_{k=0}^{m-1} \frac{\nu_k}{1 - 2^{2m-1}} F_k(x) + \sum_{k=m}^{\infty} \nu_k F_k(x)$$

is Besicovitch, $G'_+(a)$ does not exist. Hence, by (7.2), also $H'_+(a)$ does not exist. This proves the theorem.

Thus, for the value a = 1/2 we get the following.

Theorem 7.2. $(\mathcal{B}_{sup}, || ||_{sup})$ is an infinite dimensional Banach (sub)space in C([0,1]) and each nonzero element of \mathcal{B}_{sup} is a Besicovitch function.

PROOF. It is an immediate consequence of Theorem 6.2 and Theorem 7.1. \Box

References

- E. I. Berezhnoĭ, The Subspace of C[0, 1] Consisting of Functions Having No Finite One-sided Derivatives at Any Point, Mat. Zametki, 73(3) (2003), 348–354.
- [2] A. S. Besicovitch, Diskussion der stetigen Funktionen im Zusammenhang mit der Frage über ihre Differentierbarkeit, Bulletin de l'Académie des Sciences de Russie, 19 (1925), 527–540.
- J. Bobok, On Non-differentiable Measure-preserving Functions, Real Anal. Exchange, 16 (1990-91), 119–129.
- [4] _____, On a Space of Besicovitch Functions, Real Anal. Exchange, 30(1) (2004-2005), 173–182.

INFINITE DIMENSIONAL BANACH SPACE OF BESICOVITCH FUNCTIONS 333

- [5] D. Lind and B. Marcus, An introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995.
- [6] E. D. Pepper, On Continuous Functions Without a Derivative, Fund. Math., 12 (1928), 244–253.
- S. Saks, On the Functions of Besicovitch in the Space of Continuous Functions, Fund. Math., 19 (1932), 211–219.
- [8] G. S. De Souza and G. O. Golightly, On Some Spaces of Summable Sequences and Their Duals, Internat. J. Math. Math. Sci., 9(1) (1986), 71– 79.
- [9] V. P. Fonf, V. I. Gurariy and M. I. Kadets, An Infinite Dimensional Subspace of C[0,1] Consisting of Nowhere Differentiable Functions, C. R. Acad. Bulgare Sci., 52(11-12) (1999), 13–16.

Jozef Bobok

334