Aleksander Maliszewski, Institute of Mathematics, Technical University of Łódź, Wólczańska 215, 93-005 Łódź, Poland. email: AMal@p.lodz.pl

THE MAXIMAL CLASS WITH RESPECT TO MAXIMUMS FOR THE FAMILY OF ALMOST CONTINUOUS FUNCTIONS

Abstract

It is shown that a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is Darboux and upper semicontinuous if and only if its maximum with each almost continuous function is almost continuous. This result generalizes an old theorem due to J. Farková.

The letters \mathbb{R} and \mathbb{N} denote the real line and the set of positive integers, respectively. Let $f: \mathbb{R} \rightarrow \mathbb{R}$. We say that f is Darboux if it maps intervals onto connected sets. We say that f is almost continuous in the sense of Stallings [7], if for every open set $U \subset \mathbb{R}^{2}$ containing f there is a continuous function $h: \mathbb{R} \rightarrow \mathbb{R}$ with $h \subset U$. (We make no distinction between a function and its graph.) Recall that almost continuous functions possess the Darboux property, and that the converse is not true [7]. However, in Baire class one these two notions coincide [1].

Denote by \mathcal{M} the maximal class with respect to maximums for the family of almost continuous functions; i.e., let \mathcal{M} consist of all functions f such that $\max \{f, g\}$ is almost continuous whenever g is so. It is well-known that \mathcal{M} contains all continuous functions [5, Proposition 2] and that if $f \in \mathcal{M}$ is almost continuous, then f is upper semicontinuous [3]. (Recall that the class of Darboux upper semicontinuous functions is the maximal class with respect to maximums for the family of Darboux functions [2, Theorems 1 and 2].) T. Natkaniec asked for a characterization of \mathcal{M} [5, Problem], [6, Problem 6.5]. Corollary 4 is the solution to this problem.

We start with a simple lemma.

[^0]Lemma 1. Let $M \in \mathbb{R}$. Assume that a function $g:[a, b] \rightarrow(-\infty, M)$ is upper semicontinuous both at a and at b. Then there is a continuous function $\psi:[a, b] \rightarrow[\min \{g(a), g(b)\}, M]$ such that $\psi=g$ on $\{a, b\}$ and $\psi>g$ on (a, b).

Proof. Let $\delta_{0}=(b-a) / 2$. For each $n \in \mathbb{N}$, find a $\delta_{n} \in\left(0, \delta_{n-1} / 2\right)$ such that $g<g(a)+n^{-1}$ on $\left[a, a+\delta_{n}\right]$ and $g<g(b)+n^{-1}$ on $\left[b-\delta_{n}, b\right]$. Let

$$
\psi(x)= \begin{cases}M & \text { if } x \in\left[a+\delta_{1}, b-\delta_{1}\right] \\ \min \left\{g(a)+n^{-1}, M\right\} & \text { if } x=a+\delta_{n+1}, n \in \mathbb{N} \\ \min \left\{g(b)+n^{-1}, M\right\} & \text { if } x=b-\delta_{n+1}, n \in \mathbb{N} \\ g(x) & \text { if } x \in\{a, b\}\end{cases}
$$

and let ψ be linear on the intervals $\left[a+\delta_{n+1}, a+\delta_{n}\right]$ and $\left[b-\delta_{n}, b-\delta_{n+1}\right]$ $(n \in \mathbb{N})$. One can easily see that ψ has all required properties.

Theorem 2. Suppose f is almost continuous and g is Darboux and upper semicontinuous. Then $\varphi=\max \{f, g\}$ is almost continuous.

Proof. By [4] or [6, Corollary 2.2], it suffices to show that $\varphi \upharpoonright[\alpha, \beta]$ is almost continuous whenever $\alpha<\beta$. Fix $\alpha<\beta$ and let $U \subset \mathbb{R}^{2}$ be an open set such that $\varphi \upharpoonright[\alpha, \beta] \subset U$. Denote by \mathcal{J} the family of all compact (possibly degenerate) intervals $[a, b]$ for which there exists a continuous function $h:[a, b] \rightarrow \mathbb{R}$ such that $h \subset U, h=\varphi$ on $\{a, b\}$, and $h>g$ on (a, b).

The rest of the proof is divided into claims. The end of the proof of each claim is marked with a triangle \triangleleft.

Claim 1. For each $x \in[\alpha, \beta]$ and each $\varepsilon>0$, there are $a, b \in(x-\varepsilon, x+\varepsilon)$ such that $a<x<b$ and $[a, b] \in \mathcal{J}$.

Let $\delta \in(0, \varepsilon)$ be such that $((x-\delta, x+\delta) \times(\varphi(x)-\delta, \varphi(x)+2 \delta)) \subset U$. We consider two cases. If $f(x)>g(x)$, then choose $y \in(g(x), f(x))$, and let $I \subset(x-\delta, x+\delta)$ be an open interval such that $I \ni x$ and $g<y$ on I. Since f is almost continuous, there are $a, b \in I$ such that $a<x<b$ and $f(t) \in(\max \{y, f(x)-\delta\}, f(x)+\delta)$ for $t \in\{a, b\}$. Let $h=f$ on $\{a, b\}$ and let h be linear on $[a, b]$. Clearly h proves $[a, b] \in \mathcal{J}$.

Now assume $f(x) \leq g(x)$. There is an open interval $I \subset(x-\delta, x+\delta)$ such that $I \ni x$ and $g<g(x)+\delta$ on I. Since g is Darboux, there are $a, b \in I$ such that $a<x<b$ and $g>g(x)-\delta$ on $\{a, b\}$. Use Lemma 1 to construct a continuous function $\psi:[a, b] \rightarrow(g(x)-\delta, g(x)+\delta]$ such that $\psi=g$ on $\{a, b\}$ and $\psi>g$ on (a, b). Define the open set \widetilde{U} by

$$
\widetilde{U}=U \cup\left\{\langle t, y\rangle \in \mathbb{R}^{2}: t \notin[a, b] \text { or } y<\psi(t)\right\} .
$$

If $t \in[a, b]$ and $f(t) \geq \psi(t)$, then

$$
\langle t, f(t)\rangle=\langle t, \varphi(t)\rangle \in U \subset \widetilde{U}
$$

Thus, $f \upharpoonright[a, b] \subset \widetilde{U} . \operatorname{By}[6$, Lemma 6.2], we can find a continuous function $\widetilde{h}:[a, b] \rightarrow \mathbb{R}$ such that $\widetilde{h} \subset \widetilde{U}$ and $\widetilde{h}=f$ on $\{a, b\}$. Put $h=\max \{\psi, \widetilde{h}\}$. We will show that h proves $[a, b] \in \mathcal{J}$.

Indeed, let $t \in[a, b]$. If $h(t) \geq g(x)+\delta$, then $h(t) \geq \psi(t)$, whence

$$
\langle t, h(t)\rangle=\langle t, \widetilde{h}(t)\rangle \in U
$$

(Recall that $\widetilde{h} \subset \widetilde{U}$.) On the other hand, if $h(t)<g(x)+\delta$, then

$$
\langle t, h(t)\rangle \in(\{t\} \times(g(x)-\delta, g(x)+\delta)) \subset U
$$

(We used the fact that $h(t) \geq \psi(t)>g(x)-\delta$.) The conditions ' $h=\varphi$ on $\{a, b\}$ ' and ' $h>g$ on (a, b) ' are evident.

Let $S=\{x \in(-\infty, \beta]:[x, \beta] \in \mathcal{J}\}$, and note that $\beta \in S$.
Claim 2. $\inf S<\alpha$.
Suppose $\bar{\alpha}=\inf S \geq \alpha$. By Claim 1, there are $a, b \in(-\infty, \beta)$ with $a<\bar{\alpha}<b$ such that $[a, b] \in \mathcal{J}$. We will show that $a \in S$, which is impossible.

Let $h_{1}:[a, b] \rightarrow \mathbb{R}$ correspond to $[a, b] \in \mathcal{J}$. Choose an $x \in S \cap[\bar{\alpha}, b)$, and let $h_{2}:[x, \beta] \rightarrow \mathbb{R}$ correspond to $[x, \beta] \in \mathcal{J}$. First assume that $h_{1}(b)>h_{2}(b)$. Define the open set \widetilde{U} by

$$
\widetilde{U}=U \cup\left\{\langle t, y\rangle \in \mathbb{R}^{2}: t \notin[b, \beta] \text { or } y<h_{2}(t)\right\}
$$

and observe that $f \upharpoonright[b, \beta] \subset \widetilde{U}$. Construct a continuous function $\widetilde{h}:[b, \beta] \rightarrow \mathbb{R}$ such that $\widetilde{h} \subset \widetilde{U}$ and $\widetilde{h}=f$ on $\{x, b\}$. Let $h=h_{1} \cup \max \left\{h_{2} \upharpoonright[b, \beta], \widetilde{h}\right\}$. One can easily show that h proves $[a, \beta] \in \mathcal{J}$. (Cf. the argument used in Claim 1.)

The case $h_{1}(x)<h_{2}(x)$ is analogous. If neither of the above two cases holds, then $\left(h_{1}(x)-h_{2}(x)\right)\left(h_{1}(b)-h_{2}(b)\right) \leq 0$, so $h_{1}(t)=h_{2}(t)$ for some $t \in$ $[x, b]$. Put $h=h_{1} \upharpoonright[a, t] \cup h_{2} \upharpoonright[t, \beta]$. Clearly h proves that $[a, \beta] \in \mathcal{J}$. Consequently, $a \in S$. But $a<\bar{\alpha}=\inf S$, an impossibility.

By Claim 2, there exists a continuous function $h:[\alpha, \beta] \rightarrow \mathbb{R}$ such that $h \subset U$. Since U was arbitrary open neighborhood of $\varphi \upharpoonright[\alpha, \beta]$, we conclude that $\varphi \upharpoonright[\alpha, \beta]$ is almost continuous. Since $\alpha<\beta$ were arbitrary, φ is almost continuous as well. This completes the proof.

The following theorem, which is interesting by itself, is due to D. Preiss.

Theorem 3. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ and assume that the function $\varphi_{c}=\max \{c, g\}$ is almost continuous for each $c \in \mathbb{R}$. Then the function g is almost continuous.

Proof. Clearly g is Darboux. To show that g is almost continuous fix $\alpha<\beta$ and let $U \subset \mathbb{R}^{2}$ be an open set such that $g \upharpoonright[\alpha, \beta] \subset U$. Denote by S the set of all $x \in[\alpha, \beta]$ for which there is a continuous function $h:[x, \beta] \rightarrow \mathbb{R}$ such that $h \subset U$ and $h=g$ on $\{x, \beta\}$. Observe that $\beta \in S$. Lry $\bar{\alpha}=\inf S$.

The rest of the proof is divided into claims. The end of the proof of each claim is marked with a triangle \triangleleft.

Claim 1. $\bar{\alpha} \in S$.
Let $c<\min \{g(\bar{\alpha}), g(\beta)\}$. Since the function φ_{c-1} is almost continuous, there is a continuous function $h_{0}:[\bar{\alpha}, \beta] \rightarrow \mathbb{R}$ such that $h_{0} \subset U \cup(\mathbb{R} \times(-\infty, c))$ and $h_{0}=\varphi_{c-1}=g$ on $\{\bar{\alpha}, \beta\}$. Let $\delta \in(0, g(\bar{\alpha})-c)$ be such that

$$
((\bar{\alpha}-\delta, \bar{\alpha}+\delta) \times(g(\bar{\alpha})-\delta, g(\bar{\alpha})+\delta)) \subset U
$$

There is a $\tau \in(0, \min \{\delta, \beta-\bar{\alpha}\})$ such that

$$
\left|h_{0}(x)-g(\bar{\alpha})\right|<\delta \text { whenever } x \in[\bar{\alpha}, \bar{\alpha}+\tau]
$$

Since g is Darboux, there is an $x_{0} \in(\bar{\alpha}, \bar{\alpha}+\tau)$ with $\left|g(\bar{\alpha})-g\left(x_{0}\right)\right|<\delta$. Take an arbitrary $x_{1} \in S \cap\left(\bar{\alpha}, x_{0}\right)$ and let $h_{1} \subset U$ correspond to $x_{1} \in S$. We consider three cases.

If $h_{1}\left(x_{1}\right) \geq h_{0}\left(x_{1}\right)$, then find a continuous function $h_{2}:\left[\bar{\alpha}, x_{1}\right] \rightarrow \mathbb{R}$ with $h_{2} \subset U \cup(\mathbb{R} \times(-\infty, c))$ such that $h_{2}=g$ on $\left\{\bar{\alpha}, x_{1}\right\}$. (Again we use the fact that the function φ_{c-1} is almost continuous.) Let

$$
h=\max \left\{h_{0} \upharpoonright\left[\bar{\alpha}, x_{1}\right], h_{2}\right\} \cup h_{1} .
$$

Clearly the function h proves $\bar{\alpha} \in S$.
If $h_{1}\left(x_{0}\right) \leq h_{0}\left(x_{0}\right)$, then choose a $c_{1}<\min \left(h_{1}\left[\left[x_{1}, \beta\right]\right] \cup\{c\}\right)$. Use the fact that the function $\varphi_{c_{1}-1}$ is almost continuous to find a continuous function $h_{2}:\left[x_{0}, \beta\right] \rightarrow \mathbb{R}$ such that $h_{2} \subset U \cup\left(\mathbb{R} \times\left(-\infty, c_{1}\right)\right)$ and $h_{2}=g$ on $\left\{x_{0}, \beta\right\}$. Let

$$
h(x)= \begin{cases}\max \left\{h_{1}(x), h_{2}(x)\right\} & \text { if } x \in\left[x_{0}, \beta\right] \\ g(\bar{\alpha}) & \text { if } x=\bar{\alpha} \\ \text { linear } & \text { on }\left[\bar{\alpha}, x_{0}\right]\end{cases}
$$

Note that

$$
g(\bar{\alpha})-\delta<g\left(x_{0}\right)=h_{2}\left(x_{0}\right) \leq h\left(x_{0}\right)=\max \left\{h_{1}\left(x_{0}\right), g\left(x_{0}\right)\right\}<g(\bar{\alpha})+\delta
$$

So, $h \subset U$ and the function h proves $\bar{\alpha} \in S$.
Finally if $h_{1}\left(x_{1}\right)<h_{0}\left(x_{1}\right)$ and $h_{1}\left(x_{0}\right)>h_{0}\left(x_{0}\right)$, then $h_{1}\left(x_{2}\right)=h_{0}\left(x_{2}\right)$ for some $x_{2} \in\left(x_{1}, x_{0}\right)$. Let

$$
h=h_{0} \upharpoonright\left[\bar{\alpha}, x_{2}\right] \cup h_{1} \upharpoonright\left[x_{2}, \beta\right] .
$$

Clearly the function h proves $\bar{\alpha} \in S$.
Claim 2. $\bar{\alpha}=\alpha$.
Indeed, suppose that $\bar{\alpha}>\alpha$. Let $h_{1} \subset U$ correspond to $\bar{\alpha} \in S$. (Cf. Claim 1.) Let $\delta \in(0, \bar{\alpha}-\alpha)$ be such that

$$
((\bar{\alpha}-\delta, \bar{\alpha}+\delta) \times(g(\bar{\alpha})-\delta, g(\bar{\alpha})+\delta)) \subset U
$$

Since g is Darboux, there is an $x_{0} \in(\bar{\alpha}-\delta, \bar{\alpha})$ such that $\left|g\left(x_{0}\right)-g(\bar{\alpha})\right|<\delta$. Let

$$
h(x)= \begin{cases}h_{1}(x) & \text { if } x \in[\bar{\alpha}, \beta] \\ g\left(x_{0}\right) & \text { if } x=x_{0} \\ \text { linear } & \text { on }\left[x_{0}, \bar{\alpha}\right]\end{cases}
$$

Then the function h proves $x_{0} \in S$. But $x_{0}<\bar{\alpha}=\inf S$, an impossibility. \triangleleft
By Claim 2, the restriction $g \upharpoonright[\alpha, \beta]$ is almost continuous. Since $\alpha<\beta$ were arbitrary, the function g is almost continuous as well.

Corollary 4. The family \mathcal{M} coincides with the family of all Darboux upper semicontinuous functions.

Proof. The inclusion ' \supset ' follows by Theorem 2.
To prove the opposite inclusion let $g \in \mathcal{M}$. Then by Theorem 3, the function g is almost continuous. So, by the results of [3], the function g is both Darboux and upper semicontinuous.

Acknowledgement. I would like to thank Prof. D. Preiss for Theorem 3, which contains a solution of a natural problem and which helped me to shorten the proof of Corollary 4.

References

[1] J. B. Brown, Almost Continuous Darboux Functions and Reed's Pointwise Convergence Criteria, Fund. Math., 86 (1974), 1-7.
[2] J. Farková, About the Maximum and the Minimum of Darboux Functions, Mat. Časopis Sloven. Akad. Vied, 21(2) (1971), 110-116.
[3] J. M. Jastrzȩbski, J. M. Jȩdrzejewski and T. Natkaniec, On Some Subclasses of Darboux Functions, Fund. Math., 138 (1991), 165-173.
[4] K. R. Kellum, Sums and Limits of Almost Continuous Functions, Colloq. Math., 31 (1974), 125-128.
[5] T. Natkaniec, On Lattices Generated by Darboux Functions, Bull. Polish Acad. Sci. Math., 35(9-10) (1987), 549-552.
[6] T. Natkaniec, Almost Continuity, Real Anal. Exchange, 17(2) (1991-92), 462-520.
[7] J. Stallings, Fixed Point Theorems for Connectivity Maps, Fund. Math., 47 (1959), 249-263.

[^0]: Key Words: Darboux property, almost continuity, maximum of functions.
 Mathematical Reviews subject classification: Primary: 26A21, 54C30; Secondary: 26A15, 54C08

 Received by the editors February 12, 2006
 Communicated by: Udayan B. Darji

