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ON THE JOHN-STRÖMBERG
CHARACTERIZATION OF BMO FOR

NONDOUBLING MEASURES

Abstract

A well known result proved by F. John for 0 < λ < 1/2 and by
J.-O. Strömberg for λ = 1/2 states that

‖f‖BMO(ω) � sup
Q

inf
c∈R

inf{α > 0 : ω{x ∈ Q : |f(x)− c| > α} < λω(Q)}

for any measure ω satisfying the doubling condition. In this note we
extend this result to all absolutely continuous measures. In particular,
we show that Strömberg’s “1/2-phenomenon” still holds in the nondou-
bling case. An important role in our analysis is played by a weighted
rearrangement inequality, relating any measurable function and its John-
Strömberg maximal function. This inequality was proved earlier by the
author in the doubling case; here we show that actually it holds for all
weights. Also we refine a result due to B. Jawerth and A. Torchinsky,
concerning pointwise estimates for the John-Strömberg maximal func-
tion.

1 Introduction

Let ω be a weight; that is, non-negative, locally integrable function on Rn.
Given a measurable set E, let ω(E) =

∫
E
ω(x) dx. A weight (or measure) ω

is doubling if there exists a constant c such that ω(2Q) ≤ cω(Q) for all cubes
Q ⊂ Rn. Throughout this work we shall only consider open cubes with sides
parallel to the coordinate axes.

We say that f∗ω is the weighted non-increasing rearrangement of a mea-
surable function f with respect to ω if it is non-increasing on (0, ω(Rn)) and
ω-equimeasurable with |f |; i.e., for all α > 0,

|{t ∈ (0, ω(Rn)) : f∗ω(t) > α}| = ω{x ∈ Rn : |f(x)| > α}.
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We shall assume that the rearrangement is left-continuous. Then it is uniquely
determined and can be defined by the equality

f∗ω(t) = sup
ω(E)=t

inf
x∈E
|f(x)|.

A function f ∈ L1
loc(ω) is said to belong to BMO(ω) if

‖f‖BMO(ω) = sup
Q

1
ω(Q)

∫
Q

|f(x)− fQ,ω|ω(x) dx <∞,

where fQ,ω = (ω(Q))−1
∫
Q
fω is the mean value of f over Q.

It is well known that if a weight ω is doubling, then any f ∈ BMO(ω)
satisfies the John-Nirenberg inequality which says that for every cube Q we
have (see [4, 7]):

(
(f − fQ,ω)χQ

)∗
ω

(t) ≤ c‖f‖BMO(ω) log
2ω(Q)
t

(0 < t < ω(Q)). (1)

(This inequality is usually formulated in terms of the distribution function
but it will be a more convenient for us to use this equivalent “rearrangement”
form.)

F. John [3] and J.-O. Strömberg [11] showed that a very weak condition

sup
Q

inf
c∈R

(
(f − c)χQ

)∗
ω

(
λω(Q)

)
<∞ (0 < λ ≤ 1/2) (2)

equivalent to f ∈ BMO(ω); so (2) implies (1). This result was obtained in
the unweighted case but it can easily be extended to the case when ω is any
doubling weight. In [11], the following so-called local sharp maximal function
was introduced (or the John-Strömberg maximal function) which naturally
connected with condition (2):

M#
λ,ωf(x) = sup

Q3x
inf
c∈R

(
(f − c)χQ

)∗
ω

(
λω(Q)

)
(0 < λ ≤ 1).

The John-Strömberg characterization states that for 0 < λ ≤ 1/2,

λ‖M#
λ,ωf‖∞ ≤ ‖f‖BMO(ω) ≤ c‖M#

λ,ωf‖∞. (3)

Note that the left-hand side of (3) trivially holds, by Chebyshev’s inequality,
for all 0 < λ ≤ 1. The right-hand side of (3) was proved by John [3] for
0 < λ < 1/2, and a more difficult result that it also holds for λ = 1/2
was proved by Strömberg [11]. A simple argument shows (see [11]) that this
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inequality fails for λ > 1/2. A key ingredient in proving the right-hand side
of (3) is a somewhat stronger formulation of the John-Nirenberg inequality((

f −mf,ω(Q)
)
χ
Q

)∗
ω

(t) ≤ c‖M#
1/2,ωf‖∞ log

2ω(Q)
t

(0 < t < ω(Q)), (4)

where mf,ω(Q) is a weighted median value of f over Q; i.e., a, possibly
nonunique, real number such that

ω{x ∈ Q : f(x) > mf,ω(Q)} ≤ ω(Q)/2

and
ω{x ∈ Q : f(x) < mf,ω(Q)} ≤ ω(Q)/2.

In a recent work [6], it is shown that actually the John-Nirenberg inequal-
ity (1) holds for any (not necessarily doubling) weight ω and the corresponding
constant c in (1) depends only on n. A natural question arises whether the
John-Strömberg characterization of BMO still holds for nondoubling mea-
sures. A closely related question is whether or not the “1/2-phenomenon”
expressed in (4) holds in the general nondoubling case. It is known, for ex-
ample, that for BMO defined in terms of local polynomial approximation the
corresponding John-Strömberg characterization fails when λ = 1/2 (see [10]).

In this paper, using a covering argument presented in [6], we extend to
nondoubling weights a weighted rearrangement inequality proved in [5] only
in the doubling case. More precisely, we get the following theorem.

Theorem 1.1. Let ω be any weight. Then for any measurable function f and
each cube Q ⊂ Rn we have

(fχ
Q

)∗ω(t) ≤ 2
(
(M#

λn,ω
f)χ

Q

)∗
ω

(2t) + (fχ
Q

)∗ω(2t) (0 < t ≤ λnω(Q)), (5)

where a constant λn depends only on n.

It follows easily from this theorem that the nondoubling John-Strömberg
characterization holds for λ ≤ λn. Next, combining geometric arguments
from [6] and [11], we show that ‖M#

λn,ω
‖∞ ≤ cn‖M#

1/2,ω‖∞, which gives a
positive answer to our question.

Theorem 1.2. Inequality (4) holds for any weight ω with a constant c de-
pending only on n.

To state our next result, we recall that the weighted Hardy-Littlewood and
Fefferman-Stein maximal functions are defined respectively by

Mωf(x) = sup
Q3x

1
ω(Q)

∫
Q

|f(y)|ω(y) dy
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and
f#
ω (x) = sup

Q3x

1
ω(Q)

∫
Q

|f(y)− fQ,ω|ω(y) dy.

In [2], a more precise result than (3) was obtained for any doubling weight ω
and λ ≤ λ(ω, n); namely, for any f ∈ L1

loc(ω) and all x ∈ Rn,

cλ,ωMω(M#
λ,ωf)(x) ≤ f#

ω (x) ≤ cωMω(M#
λ,ωf)(x) (0 < λ ≤ λ(ω, n)). (6)

(This was proved only in the unweighted case but the proof easily works for
any doubling weight.) Clearly, (6) implies (3) for λ ≤ λ(ω, n). However, the
method of proof shows that λ(ω, n) is essentially smaller than 1/2 even in the
case when ω is Lebesgue measure. We will present a different proof of (6)
which yields a sharp bound for λ; namely, (6) holds for all λ ≤ 1/2.

Theorem 1.3. Let ω satisfy the doubling condition. Then for any f ∈ L1
loc(ω)

and all x ∈ Rn

c′ωMω(M#
1/2,ωf)(x) ≤ f#

ω (x) ≤ c′′ωMω(M#
1/2,ωf)(x).

We do not know whether this theorem holds for nondoubling weights.

2 Preliminaries

We will use the following covering lemma proved in [6].

Lemma 2.1. Let E be a subset of Q, and suppose that ω(E) ≤ ρω(Q) for
0 < ρ < 1. Then there exists a sequence {Qi} of cubes contained in Q such
that:

(i) ω(Qi ∩ E) = ρω(Qi);

(ii)
⋃
i

Qi =
Bn⋃
k=1

⋃
i∈Fk

Qi, where each of the family {Qi}i∈Fk
is formed by

pairwise disjoint cubes and a constant Bn depends only on n; in other
words, the family {Qi} is almost disjoint with constant Bn;

(iii) E′ ⊂ ∪iQi, where E′ is the set of ω-density points of E.

We now make some remarks about the median value mf,ω(Q). It is easy to
see, by the definition of the rearrangement, that |mf,ω(Q)| ≤

(
fχQ

)∗
ω

(
ω(Q)/2

)
.

Moreover, when f is a non-negative function, one can take

mf,ω(Q) =
(
fχQ

)∗
ω

(
ω(Q)/2

)
.
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Next, it is clear that mf,ω(Q)− c = mf−c,ω(Q) for any constant c, and thus,
|mf,ω(Q)− c| ≤

(
(f − c)χQ

)∗
ω

(
ω(Q)/2

)
, which in turn gives((

f −mf,ω(Q)
)
χ
Q

)∗
ω

(
λω(Q)

)
≤ 2 inf

c

(
(f − c)χQ

)∗
ω

(
λω(Q)

)
(7)

for all λ ≤ 1/2.

Proposition 2.2. Let f ≥ 0 and let {Qε} be a family of cubes, containing a
cube Q, such that Qε ⊂ Qδ when ε < δ and Qε → Q as ε→ 0. Then

lim sup
ε→0

|
(
fχQ

)∗
ω

(
ω(Q)/2

)
−
(
fχQε

)∗
ω

(
ω(Qε)/2

)
| ≤ 2 inf

x∈Q
M#

1/2,ωf(x).

Proof. By the above mentioned properties of the median value,

|
(
fχQ

)∗
ω

(
ω(Q)/2

)
−
(
fχQε

)∗
ω

(
ω(Qε)/2

)
|

≤
((
f −

(
fχQ

)∗
ω

(
ω(Q)/2

))
χ
Qε

)∗
ω

(
ω(Qε)/2

)
≤
((
f −

(
fχQ

)∗
ω

(
ω(Q)/2

))
χ
Qε

)∗
ω

(
ω(Q)/2

)
.

Since |fk| ↓ |f | implies (fk)∗ω(t) ↓ f∗ω(t) (see [1, p. 41]), we get

lim sup
ε→0

|
(
fχQ

)∗
ω

(
ω(Q)/2

)
−
(
fχQε

)∗
ω

(
ω(Qε)/2

)
|

≤
((
f −

(
fχQ

)∗
ω

(
ω(Q)/2

))
χ
Q

)∗
ω

(
ω(Q)/2

)
.

Now applying (7) completes the proof.

3 Proofs of the Main Results

3.1 A Weighted Rearrangement Inequality.

Here we prove Theorem 1.1, and its corollary, the nondoubling John-Strömberg
characterization for λ ≤ λn.

Proof of Theorem 1.1. The proof follows the same lines as the one of [5,
Theorem 3.1], although with some modifications. It is easy to see that for any
constant c,

|c| ≤ inf
x∈Q

(
|f(x)− c|+ |f(x)|

)
≤
(
(|f − c|+ |f |

)
χ
Q)∗ω(ω(Q))

≤
(
(f − c)χQ

)∗
ω

(
λω(Q)

)
+
(
fχQ

)∗
ω

(
(1− λ)ω(Q)

)
, (0 < λ < 1).
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From this we get(
fχQ

)∗
ω

(
λω(Q)

)
≤2 inf

c

(
(f − c)χQ

)∗
ω

(
λω(Q)

)
+
(
fχQ

)∗
ω

(
(1− λ)ω(Q)

)
≤2 inf

x∈Q
M#
λ,ωf(x) +

(
fχQ

)∗
ω

(
(1− λ)ω(Q)

)
.

(8)

Set λn = 1/5Bn, where Bn is the constant from Lemma 2.1. Fix an ar-
bitrary cube Q. Let E be an arbitrary set from Q with ω(E) = t. Next,
let E1 = {x ∈ Q : |f(x)| > (fχQ)∗ω(2t)} and Ω = {x ∈ Q : M#

λn,ω
f(x) >(

(M#
λn,ω

f)χQ
)∗
ω

(2t)}. Observe that ω(Ω) ≤ 2t and ω(E1) ≤ 2t. Applying
Lemma 2.1 to the set E and λn, we get that there exists a sequence of al-
most disjoint cubes {Qi}, covering E′ and such that ω(Qi ∩ E) = λnω(Qi).
Therefore,

t ≤
Bn∑
k=1

∑
i∈Fk

ω(Qi ∩ E) =
1

5Bn

Bn∑
k=1

∑
i∈Fk

ω(Qi),

and thus there exists a family {Qi}i∈Fk0
of pairwise disjoint cubes such that∑

i∈Fk0
ω(Qi) ≥ 5t.

From {Qi}i∈Fk0
select a subfamily of cubes {Qi}i∈F ′k0

each of which is not
contained in Ω; that is, Qi∩Ωc 6= ∅ for any i ∈ F ′k0 . Then

∑
i∈F ′k0

ω(Qi) ≥ 3t,
and

inf
x∈Qi

M#
λn,ω

f(x) ≤
(
(M#

λn,ω
f)χQ

)∗
ω

(2t) (9)

whenever i ∈ F ′k0 . We now claim that among {Qi}i∈F ′k0
there is a cube Qi0

such that (
fχQi0

)∗
ω

(
(1− λn)ω(Qi0)

)
≤ (fχQ)∗ω(2t). (10)

Suppose (10) does not hold for any i ∈ F ′k0 . This means that ω(Qi ∩ E1) ≥
(1−λn)ω(Qi), and hence 3t ≤

∑
i∈F ′k0

ω(Qi) ≤ 2t/(1−λn), which contradicts
our choice of λn.

Combining (8) – (10), we obtain

inf
x∈E
|f(x)| ≤ inf

x∈E∩Qi0

|f(x)| ≤
(
fχQi0

)∗
ω

(
λnω(Qi0)

)
≤ 2 inf

x∈Qi0

M#
λn,ω

f(x) +
(
fχQi0

)∗
ω

(
(1− λn)ω(Qi0)

)
≤ 2
(
(M#

λn,ω
f)χQ

)∗
ω

(2t) + (fχQ)∗ω(2t).

Taking the upper bound over all sets E ⊂ Q with ω(E) = t completes the
proof.
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Corollary 3.1. Let ω be any weight. Then for any measurable function f and
each cube Q ⊂ Rn,

((
f −mf,ω(Q)

)
χ
Q

)∗
ω

(t) ≤ 2
log 2

‖M#
λn,ω

f‖∞ log
2ω(Q)
t

, (0 < t < ω(Q)).

Proof. Applying Theorem 1.1 to f −mf,ω(Q), we get(
(f −mf,ω(Q))χQ

)∗
ω

(t) ≤ 2‖M#
λn,ω

f‖∞ +
(
(f −mf,ω(Q))χQ

)∗
ω

(2t), (11)

whenever 0 < t ≤ λnω(Q). But it follows from (7) that for t > λnω(Q),(
(f −mf,ω(Q))χQ

)∗
ω

(t) ≤
(
(f −mf,ω(Q))χQ

)∗
ω

(
λnω(Q)

)
≤ 2‖M#

λn,ω
f‖∞,

and so (11) holds for any t > 0.
Suppose now that ω(Q)/2k+1 < t ≤ ω(Q)/2k (k = 0, 1, . . . ). Iterating (11)

k times yields

(
(f −mf,ω(Q))χQ

)∗
ω

(t) ≤ 2(k+ 1)‖M#
λn,ω

f‖∞ ≤
2

log 2
‖M#

λn,ω
f‖∞ log

2ω(Q)
t

,

as required. In the case k = 0, (11) implies this result immediately.)

3.2 Proof of Theorem 1.2.

In view of Corollary 3.1, to prove the theorem, it suffices to show that

‖M#
λn,ω
‖∞ ≤ cn‖M#

1/2,ω‖∞. (12)

We will need the following construction from [6]. For each x ∈ Q and for
r > 0 satisfying r ≤ `Q, where `Q denotes the sidelength of Q, define Q̃(x, r)
as a unique cube with sidelength r, containing x, contained in Q and with
center y closest to x. It is clear that if dist (x,Qc) > r/2, then Q̃(x, r) will be
the cube centered at x.

Note that the bases {Q̃(x, r)}0<r≤`Q is a main tool in proving the covering
Lemma 2.1. The Hardy-Littlewood maximal function with respect to this
bases was considered in [8]. For our purposes it will be useful to consider the
following maximal function which controls the median values of f over cubes
from the bases {Q̃(x, r)}0<r≤`Q .

For a measurable function f and for x ∈ Q, define the maximal function
m̃ωf by

m̃ωf(x) = sup
0<r≤`Q

(
fχ eQ(x,r)

)∗
ω

(
ω
(
Q̃(x, r)

)
/2
)
.
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We mention several properties of m̃ωf . First of all, for any point x ∈ Q
of approximate continuity of f (see [9, p.132]) and for any ε > 0 one can find
a cube Q̃(x, r) and a set E ⊂ Q̃(x, r) such that ω(E) ≥ ω

(
Q̃(x, r)

)
/2 and

|f(x)| ≤ |f(y)|+ ε for all y ∈ E. It follows from this that

|f(x)| ≤
(
fχ eQ(x,r)

)∗
ω

(
ω
(
Q̃(x, r)

)
/2
)

+ ε ≤ m̃ωf(x) + ε,

which gives
|f(x)| ≤ m̃ωf(x) a.e. (13)

The following lemma is a variant of Strömberg’s Lemma 3.6 from [11].

Lemma 3.2. Let f ≥ 0. For β, δ > 0, let

Ω = {x ∈ Q : M#
1/2,ωf(x) > β} and E = {x ∈ Q : m̃ωf(x) > δ}.

Suppose that
(
fχQ

)∗
ω

(
ω(Q)/2

)
≤ δ and E\Ω 6= ∅. Then there exists a sequence

of cubes {Qi} from Q, covering E \ Ω, that are almost disjoint with constant
Bn such that for any Qi, δ ≤

(
fχQi

)∗
ω

(
ω(Qi)/2

)
≤ δ + 2β.

Proof. For any x ∈ E \ Ω let

rx = sup
{
r ∈ (0, `Q] :

(
fχ eQ(x,r)

)∗
ω

(
ω
(
Q̃(x, r)

)
/2
)
> δ
}
.

Note that the function ϕ(r) =
(
fχ eQ(x,r)

)∗
ω

(
ω
(
Q̃(x, r)

)
/2
)

is left-continuous
since the rearrangement is. Hence, ϕ(rx) ≥ δ. If rx0 = `Q for some x0 ∈ E \Ω,
then

(
fχQ

)∗
ω

(
ω(Q)/2

)
= δ and we can take Qj ≡ Q. So, this case is trivial.

Suppose that rx < `Q for any x ∈ E \ Ω. Then, using Proposition 2.2, we get

δ ≤
(
fχ eQ(x,rx)

)∗
ω

(
ω
(
Q̃(x, rx)

)
/2
)
≤ δ + 2 inf

ξ∈ eQ(x,rx)
M#

1/2,ω(ξ) ≤ δ + 2β.

We now proceed as in the proof of Lemma 2.1 (cf. [6]). For any Q̃(x, rx)
define the rectangle Rx ⊂ Rn as the unique rectangle centered at x such that
Rx∩Q = Q̃(x, rx). It is easy to see that the ratio of any two sidelengths of Rx
is bounded by 2. Applying the Besicovitch Covering Theorem to the family
{Rx}x∈E\Ω yields a countable collection of rectangles Rj , covering E \Ω that
are almost disjoint with constant Bn. Replacing each Rj by its corresponding
cube Qj , we get the required sequence.

Lemma 3.3. For any measurable function f and each cube Q,((
f −mf,ω(Q)

)
χ
Q

)∗
ω

(
λnω(Q)

)
≤ cn

(
(M#

1/2,ωf)χQ
)∗
ω

(
λnω(Q)/2

)
.
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Proof. Let β =
(
(M#

1/2,ωf)χQ
)∗
ω

(
λnω(Q)/2

)
and ψ(x) = |f(x) −mf,ω(Q)|.

By (13), it suffices to show that(
m̃ωψ)∗ω

(
λnω(Q)

)
≤ cnβ. (14)

Set Ω = {x ∈ Q : M#
1/2,ωψ(x) > β}. Observe that M#

1/2,ωψ(x) ≤ M#
1/2,ωf(x)

for all x, since M#
1/2,ω|f | ≤M

#
1/2,ωf and M#

1/2,ω(f − c) = M#
1/2,ωf . Thus,

ω(Ω) ≤ ω{x ∈ Q : M#
1/2,ωf(x) > β} ≤ λnω(Q)/2.

For k = 1, . . . , kn, where kn depends only on n and will be choosen later,
we consider the sets Ek = {x ∈ Q : m̃ωψ(x) > 7kβ}. If Ek = ∅ for some k,
then (14) holds trivially with cn = 7kn. If Ek \ Ω = ∅ for some k, we get
ω(Ek) ≤ ω(Ω) ≤ λnω(Q)/2, and so

(
m̃ωψ)∗ω

(
(λn/2 + ε)ω(Q)

)
≤ 7kβ, which

also gives (14) with cn = 7kn.
Assume now that Ek \ Ω 6= ∅ for all k = 1, . . . , kn. Note that, in view of

(7),
(
ψχQ

)∗
ω

(
ω(Q)

)
≤ 2β. Thus, we may apply Lemma 3.2 to get cubes Qkj

almost disjoint with constant Bn, such that

7kβ ≤
(
ψχQ

jk

)∗
ω

(
ω(Qkj )/2

)
≤ (7k + 2)β. (15)

Set Akj = {x ∈ Qkj : |ψ(x) −
(
ψχQ

jk

)∗
ω

(
ω(Qkj )/2

)
| ≤ 2β} and Ak =

⋃
j A

k
j .

It follows from (15) that the sets Ak are pairwise disjoint sets. Next, by (7),
ω(Akj ) ≥ ω(Qkj )/2. Therefore,

kn∑
k=1

∑
j

ω(Qkj ) ≤ 2
kn∑
k=1

∑
j

ω(Akj ) ≤ 2Bn
kn∑
k=1

ω(Ak) ≤ 2Bnω(Q).

Taking now kn = [5Bn/λn] + 1, we get that there exists a natural k0 ≤ kn
such that

∑
j ω(Qk0j ) ≤ 2λn

5 ω(Q). Thus,

ω(Ekn
) ≤ ω(Ek0 \ Ω) + ω(Ω) ≤

∑
j

ω(Qk0j ) + λnω(Q)/2 < λnω(Q).

Clearly, this lemma immediately implies (12), and therefore the proof of
Theorem 1.2 is complete.

3.3 Proof of Theorem 1.3.

We prove only that f#
ω (x) ≤ cωMω(M#

1/2,ωf)(x), since the converse inequality
can be proved exactly as in the unweighted case (see [2]). First of all, we
mention the following simple corollary of Theorem 1.1.
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Lemma 3.4. For any weight ω and any f ∈ L1
loc(ω),

f#
ω (x) ≤ 8Mω(M#

λn,ω
f)(x). (16)

Proof. Integrating (5) yields∫
Q

|f(x)|ω(x) dx =
∫ λnω(Q)

0

(fχQ)∗ω(t) dt+
∫ ω(Q)

λnω(Q)

(fχQ)∗ω(t) dt

≤2
∫ 2λnω(Q)

0

(
(M#

λn,ω
f)χQ

)∗
ω

(t) dt+ 2
∫ ω(Q)

λnω(Q)

(fχQ)∗ω(t) dt

≤2
∫
Q

M#
λn,ω

f(x)ω(x) dx+ 2ω(Q)(fχQ)∗ω(λnω(Q)).

Thus, for any constant c,∫
Q

|f(x)− fQ,ω|ω(x) dx ≤2
∫
Q

|f(x)− c|ω(x) dx

≤4
∫
Q

M#
λn,ω

f(x)ω(x) dx

+ 4ω(Q)
(
(f − c)χQ

)∗
ω

(λnω(Q)).

Taking the infimum over all c, we obtain∫
Q

|f(x)− fQ,ω|ω(x) dx

≤ 4
∫
Q

M#
λn,ω

f(x)ω(x) dx+ 4ω(Q) inf
c

(
(f − c)χQ

)∗
ω

(λnω(Q))

≤ 4
∫
Q

M#
λn,ω

f(x)ω(x) dx+ 4ω(Q) inf
x∈Q

M#
λn,ω

f(x)

≤ 8
∫
Q

M#
λn,ω

f(x)ω(x) dx,

which proves (16).

We now define the maximal function mλ,ωf by

mλ,ωf(x) = sup
Q3x

(
fχQ

)∗
ω

(
λω(Q)

)
, (0 < λ ≤ 1),

and note that Lemma 3.3 immediately implies

M#
λn,ω

f(x) ≤ cnmλn/2,ω(M#
1/2,ωf)(x). (17)
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Lemma 3.5. Let ω satisfy the doubling condition. Then for any f ∈ L1
loc(ω)

and all x ∈ Rn,

Mω(mλ,ωf)(x) ≤ cω
λ
Mωf(x) (0 < λ ≤ 1).

Proof. It follows from the definition of the rearrangement that for all α > 0,

{x : mλ,ωf(x) > α} ⊂ {x : Mω
χ{|f |>α}(x) ≥ λ}.

Hence, by the weak type (1, 1) property of Mω,

ω{x : mλ,ωf(x) > α} ≤ cω
λ
ω{x : |f(x)| > α},

and so
‖mλ,ωf‖1,ω ≤

cω
λ
‖f‖1,ω. (18)

Let Q be any cube containing x. For all y ∈ Q we get

mλ,ωf(y) = max
(

sup
Q′3y,

Q′⊂3Q

(
fχQ′

)∗
ω

(
λω(Q′)

)
, sup

Q′3y,
Q⊂3Q′

(
fχQ′

)∗
ω

(
λω(Q′)

))
≤max

(
mλ,ω(fχ3Q)(y),mλ/c′ω,ω

f(x)
)

≤mλ,ω(fχ3Q)(y) +
c′ω
λ
Mωf(x).

From this and (18) we obtain

1
ω(Q)

∫
Q

mλ,ωf(y)ω(y) dy ≤ 1
ω(Q)

‖mλ,ω(fχ3Q)‖1,ω +
c′ω
λ
Mωf(x)

≤ cω
λω(Q)

∫
3Q

|f(y)|ω(y) dy +
c′ω
λ
Mωf(x) ≤ cω

λ
Mωf(x).

Combining (16), (17) and the last lemma yields

f#
ω (x) ≤8Mω(M#

λn,ω
f)(x)

≤8cnMω

(
mλn/2,ω(M#

1/2,ωf)
)
(x) ≤ cn,ωMω(M#

1/2,ωf)(x),

and therefore the theorem is proved.

Remark 3.1. We note that our main results, namely Theorems 1.1 and 1.2
hold under a more general assumption on the measure ω. As in [6, 8], we can
assume only that ω(L) = 0 for every hyperplane L, orthogonal to one of the
coordinate axes.
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