ON THE JOHN-STRÖMBERG CHARACTERIZATION OF $B M O$ FOR NONDOUBLING MEASURES

$$
\begin{aligned}
& \text { Abstract } \\
& \text { A well known result proved by F. John for } 0<\lambda<1 / 2 \text { and by } \\
& \text { J.-O. Strömberg for } \lambda=1 / 2 \text { states that } \\
& \|f\|_{B M O(\omega)} \asymp \sup _{Q} \inf _{c \in \mathbb{R}} \inf \{\alpha>0: \omega\{x \in Q:|f(x)-c|>\alpha\}<\lambda \omega(Q)\}
\end{aligned}
$$

for any measure ω satisfying the doubling condition. In this note we extend this result to all absolutely continuous measures. In particular, we show that Strömberg's " $1 / 2$-phenomenon" still holds in the nondoubling case. An important role in our analysis is played by a weighted rearrangement inequality, relating any measurable function and its JohnStrömberg maximal function. This inequality was proved earlier by the author in the doubling case; here we show that actually it holds for all weights. Also we refine a result due to B. Jawerth and A. Torchinsky, concerning pointwise estimates for the John-Strömberg maximal function.

1 Introduction

Let ω be a weight; that is, non-negative, locally integrable function on \mathbb{R}^{n}. Given a measurable set E, let $\omega(E)=\int_{E} \omega(x) d x$. A weight (or measure) ω is doubling if there exists a constant c such that $\omega(2 Q) \leq c \omega(Q)$ for all cubes $Q \subset \mathbb{R}^{n}$. Throughout this work we shall only consider open cubes with sides parallel to the coordinate axes.

We say that f_{ω}^{*} is the weighted non-increasing rearrangement of a measurable function f with respect to ω if it is non-increasing on $\left(0, \omega\left(\mathbb{R}^{n}\right)\right)$ and ω-equimeasurable with $|f|$; i.e., for all $\alpha>0$,

$$
\left|\left\{t \in\left(0, \omega\left(\mathbb{R}^{n}\right)\right): f_{\omega}^{*}(t)>\alpha\right\}\right|=\omega\left\{x \in \mathbb{R}^{n}:|f(x)|>\alpha\right\}
$$

Key Words: $B M O$, nondoubling measures, rearrangements
Mathematical Reviews subject classification: 42B25, 46E30
Received by the editors February 10, 2003

We shall assume that the rearrangement is left-continuous. Then it is uniquely determined and can be defined by the equality

$$
f_{\omega}^{*}(t)=\sup _{\omega(E)=t} \inf _{x \in E}|f(x)|
$$

A function $f \in L_{l o c}^{1}(\omega)$ is said to belong to $\operatorname{BMO}(\omega)$ if

$$
\|f\|_{B M O(\omega)}=\sup _{Q} \frac{1}{\omega(Q)} \int_{Q}\left|f(x)-f_{Q, \omega}\right| \omega(x) d x<\infty
$$

where $f_{Q, \omega}=(\omega(Q))^{-1} \int_{Q} f \omega$ is the mean value of f over Q.
It is well known that if a weight ω is doubling, then any $f \in B M O(\omega)$ satisfies the John-Nirenberg inequality which says that for every cube Q we have (see $[4,7]$):

$$
\begin{equation*}
\left(\left(f-f_{Q, \omega}\right) \chi_{Q}\right)_{\omega}^{*}(t) \leq c\|f\|_{B M O(\omega)} \log \frac{2 \omega(Q)}{t} \quad(0<t<\omega(Q)) . \tag{1}
\end{equation*}
$$

(This inequality is usually formulated in terms of the distribution function but it will be a more convenient for us to use this equivalent "rearrangement" form.)
F. John [3] and J.-O. Strömberg [11] showed that a very weak condition

$$
\begin{equation*}
\sup _{Q} \inf _{c \in \mathbb{R}}\left((f-c) \chi_{Q}\right)_{\omega}^{*}(\lambda \omega(Q))<\infty(0<\lambda \leq 1 / 2) \tag{2}
\end{equation*}
$$

equivalent to $f \in B M O(\omega)$; so (2) implies (1). This result was obtained in the unweighted case but it can easily be extended to the case when ω is any doubling weight. In [11], the following so-called local sharp maximal function was introduced (or the John-Strömberg maximal function) which naturally connected with condition (2):

$$
M_{\lambda, \omega}^{\#} f(x)=\sup _{Q \ni x} \inf _{c \in \mathbb{R}}\left((f-c) \chi_{Q}\right)_{\omega}^{*}(\lambda \omega(Q)) \quad(0<\lambda \leq 1) .
$$

The John-Strömberg characterization states that for $0<\lambda \leq 1 / 2$,

$$
\begin{equation*}
\lambda\left\|M_{\lambda, \omega}^{\#} f\right\|_{\infty} \leq\|f\|_{B M O(\omega)} \leq c\left\|M_{\lambda, \omega}^{\#} f\right\|_{\infty} \tag{3}
\end{equation*}
$$

Note that the left-hand side of (3) trivially holds, by Chebyshev's inequality, for all $0<\lambda \leq 1$. The right-hand side of (3) was proved by John [3] for $0<\lambda<1 / 2$, and a more difficult result that it also holds for $\lambda=1 / 2$ was proved by Strömberg [11]. A simple argument shows (see [11]) that this
inequality fails for $\lambda>1 / 2$. A key ingredient in proving the right-hand side of (3) is a somewhat stronger formulation of the John-Nirenberg inequality

$$
\begin{equation*}
\left(\left(f-m_{f, \omega}(Q)\right) \chi_{Q}\right)_{\omega}^{*}(t) \leq c\left\|M_{1 / 2, \omega}^{\#} f\right\|_{\infty} \log \frac{2 \omega(Q)}{t}(0<t<\omega(Q)) \tag{4}
\end{equation*}
$$

where $m_{f, \omega}(Q)$ is a weighted median value of f over Q; i.e., a, possibly nonunique, real number such that

$$
\omega\left\{x \in Q: f(x)>m_{f, \omega}(Q)\right\} \leq \omega(Q) / 2
$$

and

$$
\omega\left\{x \in Q: f(x)<m_{f, \omega}(Q)\right\} \leq \omega(Q) / 2
$$

In a recent work [6], it is shown that actually the John-Nirenberg inequality (1) holds for any (not necessarily doubling) weight ω and the corresponding constant c in (1) depends only on n. A natural question arises whether the John-Strömberg characterization of $B M O$ still holds for nondoubling measures. A closely related question is whether or not the " $1 / 2$-phenomenon" expressed in (4) holds in the general nondoubling case. It is known, for example, that for $B M O$ defined in terms of local polynomial approximation the corresponding John-Strömberg characterization fails when $\lambda=1 / 2$ (see [10]).

In this paper, using a covering argument presented in [6], we extend to nondoubling weights a weighted rearrangement inequality proved in [5] only in the doubling case. More precisely, we get the following theorem.

Theorem 1.1. Let ω be any weight. Then for any measurable function f and each cube $Q \subset \mathbb{R}^{n}$ we have

$$
\begin{equation*}
\left(f \chi_{Q}\right)_{\omega}^{*}(t) \leq 2\left(\left(M_{\lambda_{n}, \omega}^{\#} f\right) \chi_{Q}\right)_{\omega}^{*}(2 t)+\left(f \chi_{Q}\right)_{\omega}^{*}(2 t)\left(0<t \leq \lambda_{n} \omega(Q)\right) \tag{5}
\end{equation*}
$$

where a constant λ_{n} depends only on n.
It follows easily from this theorem that the nondoubling John-Strömberg characterization holds for $\lambda \leq \lambda_{n}$. Next, combining geometric arguments from [6] and [11], we show that $\left\|M_{\lambda_{n}, \omega}^{\#}\right\|_{\infty} \leq c_{n}\left\|M_{1 / 2, \omega}^{\#}\right\|_{\infty}$, which gives a positive answer to our question.

Theorem 1.2. Inequality (4) holds for any weight ω with a constant c depending only on n.

To state our next result, we recall that the weighted Hardy-Littlewood and Fefferman-Stein maximal functions are defined respectively by

$$
M_{\omega} f(x)=\sup _{Q \ni x} \frac{1}{\omega(Q)} \int_{Q}|f(y)| \omega(y) d y
$$

and

$$
f_{\omega}^{\#}(x)=\sup _{Q \ni x} \frac{1}{\omega(Q)} \int_{Q}\left|f(y)-f_{Q, \omega}\right| \omega(y) d y
$$

In [2], a more precise result than (3) was obtained for any doubling weight ω and $\lambda \leq \lambda(\omega, n)$; namely, for any $f \in L_{l o c}^{1}(\omega)$ and all $x \in \mathbb{R}^{n}$,

$$
\begin{equation*}
c_{\lambda, \omega} M_{\omega}\left(M_{\lambda, \omega}^{\#} f\right)(x) \leq f_{\omega}^{\#}(x) \leq c_{\omega} M_{\omega}\left(M_{\lambda, \omega}^{\#} f\right)(x)(0<\lambda \leq \lambda(\omega, n)) \tag{6}
\end{equation*}
$$

(This was proved only in the unweighted case but the proof easily works for any doubling weight.) Clearly, (6) implies (3) for $\lambda \leq \lambda(\omega, n)$. However, the method of proof shows that $\lambda(\omega, n)$ is essentially smaller than $1 / 2$ even in the case when ω is Lebesgue measure. We will present a different proof of (6) which yields a sharp bound for λ; namely, (6) holds for all $\lambda \leq 1 / 2$.

Theorem 1.3. Let ω satisfy the doubling condition. Then for any $f \in L_{l o c}^{1}(\omega)$ and all $x \in \mathbb{R}^{n}$

$$
c_{\omega}^{\prime} M_{\omega}\left(M_{1 / 2, \omega}^{\#} f\right)(x) \leq f_{\omega}^{\#}(x) \leq c_{\omega}^{\prime \prime} M_{\omega}\left(M_{1 / 2, \omega}^{\#} f\right)(x)
$$

We do not know whether this theorem holds for nondoubling weights.

2 Preliminaries

We will use the following covering lemma proved in [6].
Lemma 2.1. Let E be a subset of Q, and suppose that $\omega(E) \leq \rho \omega(Q)$ for $0<\rho<1$. Then there exists a sequence $\left\{Q_{i}\right\}$ of cubes contained in Q such that:
(i) $\omega\left(Q_{i} \cap E\right)=\rho \omega\left(Q_{i}\right)$;
(ii) $\bigcup_{i} Q_{i}=\bigcup_{k=1}^{B_{n}} \bigcup_{i \in F_{k}} Q_{i}$, where each of the family $\left\{Q_{i}\right\}_{i \in F_{k}}$ is formed by pairwise disjoint cubes and a constant B_{n} depends only on n; in other words, the family $\left\{Q_{i}\right\}$ is almost disjoint with constant B_{n};
(iii) $E^{\prime} \subset \cup_{i} Q_{i}$, where E^{\prime} is the set of ω-density points of E.

We now make some remarks about the median value $m_{f, \omega}(Q)$. It is easy to see, by the definition of the rearrangement, that $\left|m_{f, \omega}(Q)\right| \leq\left(f \chi_{Q}\right)_{\omega}^{*}(\omega(Q) / 2)$. Moreover, when f is a non-negative function, one can take

$$
m_{f, \omega}(Q)=\left(f \chi_{Q}\right)_{\omega}^{*}(\omega(Q) / 2)
$$

Next, it is clear that $m_{f, \omega}(Q)-c=m_{f-c, \omega}(Q)$ for any constant c, and thus, $\left|m_{f, \omega}(Q)-c\right| \leq\left((f-c) \chi_{Q}\right)_{\omega}^{*}(\omega(Q) / 2)$, which in turn gives

$$
\begin{equation*}
\left(\left(f-m_{f, \omega}(Q)\right) \chi_{Q}\right)_{\omega}^{*}(\lambda \omega(Q)) \leq 2 \inf _{c}\left((f-c) \chi_{Q}\right)_{\omega}^{*}(\lambda \omega(Q)) \tag{7}
\end{equation*}
$$

for all $\lambda \leq 1 / 2$.
Proposition 2.2. Let $f \geq 0$ and let $\left\{Q_{\varepsilon}\right\}$ be a family of cubes, containing a cube Q, such that $Q_{\varepsilon} \subset Q_{\delta}$ when $\varepsilon<\delta$ and $Q_{\varepsilon} \rightarrow Q$ as $\varepsilon \rightarrow 0$. Then

$$
\limsup _{\varepsilon \rightarrow 0}\left|\left(f \chi_{Q}\right)_{\omega}^{*}(\omega(Q) / 2)-\left(f \chi_{Q_{\varepsilon}}\right)_{\omega}^{*}\left(\omega\left(Q_{\varepsilon}\right) / 2\right)\right| \leq 2 \inf _{x \in Q} M_{1 / 2, \omega}^{\#} f(x)
$$

Proof. By the above mentioned properties of the median value,

$$
\begin{aligned}
\mid\left(f \chi_{Q}\right)_{\omega}^{*} & (\omega(Q) / 2)-\left(f \chi_{Q_{\varepsilon}}\right)_{\omega}^{*}\left(\omega\left(Q_{\varepsilon}\right) / 2\right) \mid \\
& \leq\left(\left(f-\left(f \chi_{Q}\right)_{\omega}^{*}(\omega(Q) / 2)\right) \chi_{Q_{\varepsilon}}\right)_{\omega}^{*}\left(\omega\left(Q_{\varepsilon}\right) / 2\right) \\
& \leq\left(\left(f-\left(f \chi_{Q}\right)_{\omega}^{*}(\omega(Q) / 2)\right) \chi_{Q_{\varepsilon}}\right)_{\omega}^{*}(\omega(Q) / 2) .
\end{aligned}
$$

Since $\left|f_{k}\right| \downarrow|f| \operatorname{implies}\left(f_{k}\right)_{\omega}^{*}(t) \downarrow f_{\omega}^{*}(t)$ (see [1, p. 41]), we get

$$
\begin{aligned}
\limsup _{\varepsilon \rightarrow 0} \mid & \left(f \chi_{Q}\right)_{\omega}^{*}(\omega(Q) / 2)-\left(f \chi_{Q_{\varepsilon}}\right)_{\omega}^{*}\left(\omega\left(Q_{\varepsilon}\right) / 2\right) \mid \\
& \leq\left(\left(f-\left(f \chi_{Q}\right)_{\omega}^{*}(\omega(Q) / 2)\right) \chi_{Q}\right)_{\omega}^{*}(\omega(Q) / 2) .
\end{aligned}
$$

Now applying (7) completes the proof.

3 Proofs of the Main Results

3.1 A Weighted Rearrangement Inequality.

Here we prove Theorem 1.1, and its corollary, the nondoubling John-Strömberg characterization for $\lambda \leq \lambda_{n}$.

Proof of Theorem 1.1. The proof follows the same lines as the one of [5, Theorem 3.1], although with some modifications. It is easy to see that for any constant c,

$$
\begin{aligned}
|c| & \leq \inf _{x \in Q}(|f(x)-c|+|f(x)|) \leq\left((|f-c|+|f|) \chi_{Q}\right)_{\omega}^{*}(\omega(Q)) \\
& \leq\left((f-c) \chi_{Q}\right)_{\omega}^{*}(\lambda \omega(Q))+\left(f \chi_{Q}\right)_{\omega}^{*}((1-\lambda) \omega(Q)), \quad(0<\lambda<1)
\end{aligned}
$$

From this we get

$$
\begin{align*}
\left(f \chi_{Q}\right)_{\omega}^{*}(\lambda \omega(Q)) & \leq 2 \inf _{c}\left((f-c) \chi_{Q}\right)_{\omega}^{*}(\lambda \omega(Q))+\left(f \chi_{Q}\right)_{\omega}^{*}((1-\lambda) \omega(Q)) \\
& \leq 2 \inf _{x \in Q} M_{\lambda, \omega}^{\#} f(x)+\left(f \chi_{Q}\right)_{\omega}^{*}((1-\lambda) \omega(Q)) \tag{8}
\end{align*}
$$

Set $\lambda_{n}=1 / 5 B_{n}$, where B_{n} is the constant from Lemma 2.1. Fix an arbitrary cube Q. Let E be an arbitrary set from Q with $\omega(E)=t$. Next, let $E_{1}=\left\{x \in Q:|f(x)|>\left(f \chi_{Q}\right)_{\omega}^{*}(2 t)\right\}$ and $\Omega=\left\{x \in Q: M_{\lambda_{n}, \omega}^{\#} f(x)>\right.$ $\left.\left(\left(M_{\lambda_{n}, \omega}^{\#} f\right) \chi_{Q}\right)_{\omega}^{*}(2 t)\right\}$. Observe that $\omega(\Omega) \leq 2 t$ and $\omega\left(E_{1}\right) \leq 2 t$. Applying Lemma 2.1 to the set E and λ_{n}, we get that there exists a sequence of almost disjoint cubes $\left\{Q_{i}\right\}$, covering E^{\prime} and such that $\omega\left(Q_{i} \cap E\right)=\lambda_{n} \omega\left(Q_{i}\right)$. Therefore,

$$
t \leq \sum_{k=1}^{B_{n}} \sum_{i \in F_{k}} \omega\left(Q_{i} \cap E\right)=\frac{1}{5 B_{n}} \sum_{k=1}^{B_{n}} \sum_{i \in F_{k}} \omega\left(Q_{i}\right)
$$

and thus there exists a family $\left\{Q_{i}\right\}_{i \in F_{k_{0}}}$ of pairwise disjoint cubes such that $\sum_{i \in F_{k_{0}}} \omega\left(Q_{i}\right) \geq 5 t$.

From $\left\{Q_{i}\right\}_{i \in F_{k_{0}}}$ select a subfamily of cubes $\left\{Q_{i}\right\}_{i \in F_{k_{0}}^{\prime}}$ each of which is not contained in Ω; that is, $Q_{i} \cap \Omega^{c} \neq \emptyset$ for any $i \in F_{k_{0}}^{\prime}$. Then $\sum_{i \in F_{k_{0}}^{\prime}} \omega\left(Q_{i}\right) \geq 3 t$, and

$$
\begin{equation*}
\inf _{x \in Q_{i}} M_{\lambda_{n}, \omega}^{\#} f(x) \leq\left(\left(M_{\lambda_{n}, \omega}^{\#} f\right) \chi_{Q}\right)_{\omega}^{*}(2 t) \tag{9}
\end{equation*}
$$

whenever $i \in F_{k_{0}}^{\prime}$. We now claim that among $\left\{Q_{i}\right\}_{i \in F_{k_{0}}^{\prime}}$ there is a cube $Q_{i_{0}}$ such that

$$
\begin{equation*}
\left(f \chi_{Q_{i_{0}}}\right)_{\omega}^{*}\left(\left(1-\lambda_{n}\right) \omega\left(Q_{i_{0}}\right)\right) \leq\left(f \chi_{Q}\right)_{\omega}^{*}(2 t) \tag{10}
\end{equation*}
$$

Suppose (10) does not hold for any $i \in F_{k_{0}}^{\prime}$. This means that $\omega\left(Q_{i} \cap E_{1}\right) \geq$ $\left(1-\lambda_{n}\right) \omega\left(Q_{i}\right)$, and hence $3 t \leq \sum_{i \in F_{k_{0}}^{\prime}} \omega\left(Q_{i}\right) \leq 2 t /\left(1-\lambda_{n}\right)$, which contradicts our choice of λ_{n}.

Combining (8) - (10), we obtain

$$
\begin{aligned}
\inf _{x \in E}|f(x)| & \leq \inf _{x \in E \cap Q_{i_{0}}}|f(x)| \leq\left(f \chi_{Q_{i_{0}}}\right)_{\omega}^{*}\left(\lambda_{n} \omega\left(Q_{i_{0}}\right)\right) \\
& \leq 2 \inf _{x \in Q_{i_{0}}} M_{\lambda_{n}, \omega}^{\#} f(x)+\left(f \chi_{Q_{i_{0}}}\right)_{\omega}^{*}\left(\left(1-\lambda_{n}\right) \omega\left(Q_{i_{0}}\right)\right) \\
& \leq 2\left(\left(M_{\lambda_{n}, \omega}^{\#} f\right) \chi_{Q}\right)_{\omega}^{*}(2 t)+\left(f \chi_{Q}\right)_{\omega}^{*}(2 t)
\end{aligned}
$$

Taking the upper bound over all sets $E \subset Q$ with $\omega(E)=t$ completes the proof.

Corollary 3.1. Let ω be any weight. Then for any measurable function f and each cube $Q \subset \mathbb{R}^{n}$,

$$
\left(\left(f-m_{f, \omega}(Q)\right) \chi_{Q}\right)_{\omega}^{*}(t) \leq \frac{2}{\log 2}\left\|M_{\lambda_{n}, \omega}^{\#} f\right\|_{\infty} \log \frac{2 \omega(Q)}{t},(0<t<\omega(Q))
$$

Proof. Applying Theorem 1.1 to $f-m_{f, \omega}(Q)$, we get

$$
\begin{equation*}
\left(\left(f-m_{f, \omega}(Q)\right) \chi_{Q}\right)_{\omega}^{*}(t) \leq 2\left\|M_{\lambda_{n}, \omega}^{\#} f\right\|_{\infty}+\left(\left(f-m_{f, \omega}(Q)\right) \chi_{Q}\right)_{\omega}^{*}(2 t) \tag{11}
\end{equation*}
$$

whenever $0<t \leq \lambda_{n} \omega(Q)$. But it follows from (7) that for $t>\lambda_{n} \omega(Q)$,

$$
\left(\left(f-m_{f, \omega}(Q)\right) \chi_{Q}\right)_{\omega}^{*}(t) \leq\left(\left(f-m_{f, \omega}(Q)\right) \chi_{Q}\right)_{\omega}^{*}\left(\lambda_{n} \omega(Q)\right) \leq 2\left\|M_{\lambda_{n}, \omega}^{\#} f\right\|_{\infty}
$$

and so (11) holds for any $t>0$.
Suppose now that $\omega(Q) / 2^{k+1}<t \leq \omega(Q) / 2^{k}(k=0,1, \ldots)$. Iterating (11) k times yields

$$
\left(\left(f-m_{f, \omega}(Q)\right) \chi_{Q}\right)_{\omega}^{*}(t) \leq 2(k+1)\left\|M_{\lambda_{n}, \omega}^{\#} f\right\|_{\infty} \leq \frac{2}{\log 2}\left\|M_{\lambda_{n}, \omega}^{\#} f\right\|_{\infty} \log \frac{2 \omega(Q)}{t}
$$

as required. In the case $k=0,(11)$ implies this result immediately.)

3.2 Proof of Theorem 1.2.

In view of Corollary 3.1, to prove the theorem, it suffices to show that

$$
\begin{equation*}
\left\|M_{\lambda_{n}, \omega}^{\#}\right\|_{\infty} \leq c_{n}\left\|M_{1 / 2, \omega}^{\#}\right\|_{\infty} \tag{12}
\end{equation*}
$$

We will need the following construction from [6]. For each $x \in Q$ and for $r>0$ satisfying $r \leq \ell_{Q}$, where ℓ_{Q} denotes the sidelength of Q, define $\widetilde{Q}(x, r)$ as a unique cube with sidelength r, containing x, contained in Q and with center y closest to x. It is clear that if $\operatorname{dist}\left(x, Q^{c}\right)>r / 2$, then $\widetilde{Q}(x, r)$ will be the cube centered at x.

Note that the bases $\{\widetilde{Q}(x, r)\}_{0<r \leq \ell_{Q}}$ is a main tool in proving the covering Lemma 2.1. The Hardy-Littlewood maximal function with respect to this bases was considered in [8]. For our purposes it will be useful to consider the following maximal function which controls the median values of f over cubes from the bases $\{\widetilde{Q}(x, r)\}_{0<r \leq \ell_{Q}}$.

For a measurable function f and for $x \in Q$, define the maximal function $\widetilde{m}_{\omega} f$ by

$$
\widetilde{m}_{\omega} f(x)=\sup _{0<r \leq \ell_{Q}}\left(f \chi_{\widetilde{Q}(x, r)}\right)_{\omega}^{*}(\omega(\widetilde{Q}(x, r)) / 2)
$$

We mention several properties of $\widetilde{m}_{\omega} f$. First of all, for any point $x \in Q$ of approximate continuity of f (see $[9, \mathrm{p} .132])$ and for any $\varepsilon>0$ one can find a cube $\widetilde{Q}(x, r)$ and a set $E \subset \widetilde{Q}(x, r)$ such that $\omega(E) \geq \omega(\widetilde{Q}(x, r)) / 2$ and $|f(x)| \leq|f(y)|+\varepsilon$ for all $y \in E$. It follows from this that

$$
|f(x)| \leq\left(f \chi_{\widetilde{Q}(x, r)}\right)_{\omega}^{*}(\omega(\widetilde{Q}(x, r)) / 2)+\varepsilon \leq \widetilde{m}_{\omega} f(x)+\varepsilon
$$

which gives

$$
\begin{equation*}
|f(x)| \leq \widetilde{m}_{\omega} f(x) \quad \text { a.e. } \tag{13}
\end{equation*}
$$

The following lemma is a variant of Strömberg's Lemma 3.6 from [11].
Lemma 3.2. Let $f \geq 0$. For $\beta, \delta>0$, let

$$
\Omega=\left\{x \in Q: M_{1 / 2, \omega}^{\#} f(x)>\beta\right\} \text { and } E=\left\{x \in Q: \widetilde{m}_{\omega} f(x)>\delta\right\}
$$

Suppose that $\left(f \chi_{Q}\right)_{\omega}^{*}(\omega(Q) / 2) \leq \delta$ and $E \backslash \Omega \neq \emptyset$. Then there exists a sequence of cubes $\left\{Q_{i}\right\}$ from Q, covering $E \backslash \Omega$, that are almost disjoint with constant B_{n} such that for any $Q_{i}, \delta \leq\left(f \chi_{Q_{i}}\right)_{\omega}^{*}\left(\omega\left(Q_{i}\right) / 2\right) \leq \delta+2 \beta$.
Proof. For any $x \in E \backslash \Omega$ let

$$
r_{x}=\sup \left\{r \in\left(0, \ell_{Q}\right]:\left(f \chi_{\widetilde{Q}(x, r)}\right)_{\omega}^{*}(\omega(\widetilde{Q}(x, r)) / 2)>\delta\right\}
$$

Note that the function $\varphi(r)=\left(f \chi_{\widetilde{Q}(x, r)}\right)_{\omega}^{*}(\omega(\widetilde{Q}(x, r)) / 2)$ is left-continuous since the rearrangement is. Hence, $\varphi\left(r_{x}\right) \geq \delta$. If $r_{x_{0}}=\ell_{Q}$ for some $x_{0} \in E \backslash \Omega$, then $\left(f \chi_{Q}\right)_{\omega}^{*}(\omega(Q) / 2)=\delta$ and we can take $Q_{j} \equiv Q$. So, this case is trivial. Suppose that $r_{x}<\ell_{Q}$ for any $x \in E \backslash \Omega$. Then, using Proposition 2.2, we get

$$
\delta \leq\left(f \chi_{\widetilde{Q}\left(x, r_{x}\right)}\right)_{\omega}^{*}\left(\omega\left(\widetilde{Q}\left(x, r_{x}\right)\right) / 2\right) \leq \delta+2 \inf _{\xi \in \widetilde{Q}\left(x, r_{x}\right)} M_{1 / 2, \omega}^{\#}(\xi) \leq \delta+2 \beta
$$

We now proceed as in the proof of Lemma 2.1 (cf. [6]). For any $\widetilde{Q}\left(x, r_{x}\right)$ define the rectangle $R_{x} \subset \mathbb{R}^{n}$ as the unique rectangle centered at x such that $R_{x} \cap Q=\widetilde{Q}\left(x, r_{x}\right)$. It is easy to see that the ratio of any two sidelengths of R_{x} is bounded by 2. Applying the Besicovitch Covering Theorem to the family $\left\{R_{x}\right\}_{x \in E \backslash \Omega}$ yields a countable collection of rectangles R_{j}, covering $E \backslash \Omega$ that are almost disjoint with constant B_{n}. Replacing each R_{j} by its corresponding cube Q_{j}, we get the required sequence.

Lemma 3.3. For any measurable function f and each cube Q,

$$
\left(\left(f-m_{f, \omega}(Q)\right) \chi_{Q}\right)_{\omega}^{*}\left(\lambda_{n} \omega(Q)\right) \leq c_{n}\left(\left(M_{1 / 2, \omega}^{\#} f\right) \chi_{Q}\right)_{\omega}^{*}\left(\lambda_{n} \omega(Q) / 2\right)
$$

Proof. Let $\beta=\left(\left(M_{1 / 2, \omega}^{\#} f\right) \chi_{Q}\right)_{\omega}^{*}\left(\lambda_{n} \omega(Q) / 2\right)$ and $\psi(x)=\left|f(x)-m_{f, \omega}(Q)\right|$. By (13), it suffices to show that

$$
\begin{equation*}
\left(\widetilde{m}_{\omega} \psi\right)_{\omega}^{*}\left(\lambda_{n} \omega(Q)\right) \leq c_{n} \beta . \tag{14}
\end{equation*}
$$

Set $\Omega=\left\{x \in Q: M_{1 / 2, \omega}^{\#} \psi(x)>\beta\right\}$. Observe that $M_{1 / 2, \omega}^{\#} \psi(x) \leq M_{1 / 2, \omega}^{\#} f(x)$ for all x, since $M_{1 / 2, \omega}^{\#}|f| \leq M_{1 / 2, \omega}^{\#} f$ and $M_{1 / 2, \omega}^{\#}(f-c)=M_{1 / 2, \omega}^{\#} f$. Thus,

$$
\omega(\Omega) \leq \omega\left\{x \in Q: M_{1 / 2, \omega}^{\#} f(x)>\beta\right\} \leq \lambda_{n} \omega(Q) / 2
$$

For $k=1, \ldots, k_{n}$, where k_{n} depends only on n and will be choosen later, we consider the sets $E_{k}=\left\{x \in Q: \widetilde{m}_{\omega} \psi(x)>7 k \beta\right\}$. If $E_{k}=\emptyset$ for some k, then (14) holds trivially with $c_{n}=7 k_{n}$. If $E_{k} \backslash \Omega=\emptyset$ for some k, we get $\omega\left(E_{k}\right) \leq \omega(\Omega) \leq \lambda_{n} \omega(Q) / 2$, and so $\left(\widetilde{m}_{\omega} \psi\right)_{\omega}^{*}\left(\left(\lambda_{n} / 2+\varepsilon\right) \omega(Q)\right) \leq 7 k \beta$, which also gives (14) with $c_{n}=7 k_{n}$.

Assume now that $E_{k} \backslash \Omega \neq \emptyset$ for all $k=1, \ldots, k_{n}$. Note that, in view of (7), $\left(\psi \chi_{Q}\right)_{\omega}^{*}(\omega(Q)) \leq 2 \beta$. Thus, we may apply Lemma 3.2 to get cubes Q_{j}^{k} almost disjoint with constant B_{n}, such that

$$
\begin{equation*}
7 k \beta \leq\left(\psi \chi_{Q_{j^{k}}}\right)_{\omega}^{*}\left(\omega\left(Q_{j}^{k}\right) / 2\right) \leq(7 k+2) \beta \tag{15}
\end{equation*}
$$

Set $A_{j}^{k}=\left\{x \in Q_{j}^{k}:\left|\psi(x)-\left(\psi \chi_{Q_{j^{k}}}\right)_{\omega}^{*}\left(\omega\left(Q_{j}^{k}\right) / 2\right)\right| \leq 2 \beta\right\}$ and $A_{k}=\bigcup_{j} A_{j}^{k}$. It follows from (15) that the sets A_{k} are pairwise disjoint sets. Next, by (7), $\omega\left(A_{j}^{k}\right) \geq \omega\left(Q_{j}^{k}\right) / 2$. Therefore,

$$
\sum_{k=1}^{k_{n}} \sum_{j} \omega\left(Q_{j}^{k}\right) \leq 2 \sum_{k=1}^{k_{n}} \sum_{j} \omega\left(A_{j}^{k}\right) \leq 2 B_{n} \sum_{k=1}^{k_{n}} \omega\left(A_{k}\right) \leq 2 B_{n} \omega(Q)
$$

Taking now $k_{n}=\left[5 B_{n} / \lambda_{n}\right]+1$, we get that there exists a natural $k_{0} \leq k_{n}$ such that $\sum_{j} \omega\left(Q_{j}^{k_{0}}\right) \leq \frac{2 \lambda_{n}}{5} \omega(Q)$. Thus,

$$
\omega\left(E_{k_{n}}\right) \leq \omega\left(E_{k_{0}} \backslash \Omega\right)+\omega(\Omega) \leq \sum_{j} \omega\left(Q_{j}^{k_{0}}\right)+\lambda_{n} \omega(Q) / 2<\lambda_{n} \omega(Q)
$$

Clearly, this lemma immediately implies (12), and therefore the proof of Theorem 1.2 is complete.

3.3 Proof of Theorem 1.3.

We prove only that $f_{\omega}^{\#}(x) \leq c_{\omega} M_{\omega}\left(M_{1 / 2, \omega}^{\#} f\right)(x)$, since the converse inequality can be proved exactly as in the unweighted case (see [2]). First of all, we mention the following simple corollary of Theorem 1.1.

Lemma 3.4. For any weight ω and any $f \in L_{\text {loc }}^{1}(\omega)$,

$$
\begin{equation*}
f_{\omega}^{\#}(x) \leq 8 M_{\omega}\left(M_{\lambda_{n}, \omega}^{\#} f\right)(x) \tag{16}
\end{equation*}
$$

Proof. Integrating (5) yields

$$
\begin{aligned}
\int_{Q}|f(x)| \omega(x) d x & =\int_{0}^{\lambda_{n} \omega(Q)}\left(f \chi_{Q}\right)_{\omega}^{*}(t) d t+\int_{\lambda_{n} \omega(Q)}^{\omega(Q)}\left(f \chi_{Q}\right)_{\omega}^{*}(t) d t \\
& \leq 2 \int_{0}^{2 \lambda_{n} \omega(Q)}\left(\left(M_{\lambda_{n}, \omega}^{\#} f\right) \chi_{Q}\right)_{\omega}^{*}(t) d t+2 \int_{\lambda_{n} \omega(Q)}^{\omega(Q)}\left(f \chi_{Q}\right)_{\omega}^{*}(t) d t \\
& \leq 2 \int_{Q} M_{\lambda_{n}, \omega}^{\#} f(x) \omega(x) d x+2 \omega(Q)\left(f \chi_{Q}\right)_{\omega}^{*}\left(\lambda_{n} \omega(Q)\right)
\end{aligned}
$$

Thus, for any constant c,

$$
\begin{aligned}
\int_{Q}\left|f(x)-f_{Q, \omega}\right| \omega(x) d x & \leq 2 \int_{Q}|f(x)-c| \omega(x) d x \\
\leq & 4 \int_{Q} M_{\lambda_{n}, \omega}^{\#} f(x) \omega(x) d x \\
& +4 \omega(Q)\left((f-c) \chi_{Q}\right)_{\omega}^{*}\left(\lambda_{n} \omega(Q)\right)
\end{aligned}
$$

Taking the infimum over all c, we obtain

$$
\begin{aligned}
& \int_{Q}\left|f(x)-f_{Q, \omega}\right| \omega(x) d x \\
& \leq 4 \int_{Q} M_{\lambda_{n}, \omega}^{\#} f(x) \omega(x) d x+4 \omega(Q) \inf _{c}\left((f-c) \chi_{Q}\right)_{\omega}^{*}\left(\lambda_{n} \omega(Q)\right) \\
& \leq 4 \int_{Q} M_{\lambda_{n}, \omega}^{\#} f(x) \omega(x) d x+4 \omega(Q) \inf _{x \in Q} M_{\lambda_{n}, \omega}^{\#} f(x) \\
& \leq 8 \int_{Q} M_{\lambda_{n}, \omega}^{\#} f(x) \omega(x) d x
\end{aligned}
$$

which proves (16).
We now define the maximal function $m_{\lambda, \omega} f$ by

$$
m_{\lambda, \omega} f(x)=\sup _{Q \ni x}\left(f \chi_{Q}\right)_{\omega}^{*}(\lambda \omega(Q)),(0<\lambda \leq 1)
$$

and note that Lemma 3.3 immediately implies

$$
\begin{equation*}
M_{\lambda_{n}, \omega}^{\#} f(x) \leq c_{n} m_{\lambda_{n} / 2, \omega}\left(M_{1 / 2, \omega}^{\#} f\right)(x) \tag{17}
\end{equation*}
$$

Lemma 3.5. Let ω satisfy the doubling condition. Then for any $f \in L_{\text {loc }}^{1}(\omega)$ and all $x \in \mathbb{R}^{n}$,

$$
M_{\omega}\left(m_{\lambda, \omega} f\right)(x) \leq \frac{c_{\omega}}{\lambda} M_{\omega} f(x) \quad(0<\lambda \leq 1)
$$

Proof. It follows from the definition of the rearrangement that for all $\alpha>0$,

$$
\left\{x: m_{\lambda, \omega} f(x)>\alpha\right\} \subset\left\{x: M_{\omega} \chi_{\{|f|>\alpha\}}(x) \geq \lambda\right\}
$$

Hence, by the weak type $(1,1)$ property of M_{ω},

$$
\omega\left\{x: m_{\lambda, \omega} f(x)>\alpha\right\} \leq \frac{c_{\omega}}{\lambda} \omega\{x:|f(x)|>\alpha\}
$$

and so

$$
\begin{equation*}
\left\|m_{\lambda, \omega} f\right\|_{1, \omega} \leq \frac{c_{\omega}}{\lambda}\|f\|_{1, \omega} \tag{18}
\end{equation*}
$$

Let Q be any cube containing x. For all $y \in Q$ we get

$$
\begin{aligned}
m_{\lambda, \omega} f(y) & =\max \left(\sup _{\substack{Q^{\prime} \ni y, Q^{\prime} \neq 3 Q}}\left(f \chi_{Q^{\prime}}\right)_{\omega}^{*}\left(\lambda \omega\left(Q^{\prime}\right)\right), \sup _{\substack{Q^{\prime} \ni y, Q \subset 3 Q^{\prime}}}\left(f \chi_{Q^{\prime}}\right)_{\omega}^{*}\left(\lambda \omega\left(Q^{\prime}\right)\right)\right) \\
& \leq \max \left(m_{\lambda, \omega}\left(f \chi_{3 Q}\right)(y), m_{\lambda / c_{\omega}^{\prime}, \omega} f(x)\right) \\
& \leq m_{\lambda, \omega}\left(f \chi_{3 Q}\right)(y)+\frac{c_{\omega}^{\prime}}{\lambda} M_{\omega} f(x) .
\end{aligned}
$$

From this and (18) we obtain

$$
\begin{aligned}
& \frac{1}{\omega(Q)} \int_{Q} m_{\lambda, \omega} f(y) \omega(y) d y \leq \frac{1}{\omega(Q)}\left\|m_{\lambda, \omega}\left(f \chi_{3 Q}\right)\right\|_{1, \omega}+\frac{c_{\omega}^{\prime}}{\lambda} M_{\omega} f(x) \\
& \leq \frac{c_{\omega}}{\lambda \omega(Q)} \int_{3 Q}|f(y)| \omega(y) d y+\frac{c_{\omega}^{\prime}}{\lambda} M_{\omega} f(x) \leq \frac{c_{\omega}}{\lambda} M_{\omega} f(x)
\end{aligned}
$$

Combining (16), (17) and the last lemma yields

$$
\begin{aligned}
f_{\omega}^{\#}(x) & \leq 8 M_{\omega}\left(M_{\lambda_{n}, \omega}^{\#} f\right)(x) \\
& \leq 8 c_{n} M_{\omega}\left(m_{\lambda_{n} / 2, \omega}\left(M_{1 / 2, \omega}^{\#} f\right)\right)(x) \leq c_{n, \omega} M_{\omega}\left(M_{1 / 2, \omega}^{\#} f\right)(x)
\end{aligned}
$$

and therefore the theorem is proved.
Remark 3.1. We note that our main results, namely Theorems 1.1 and 1.2 hold under a more general assumption on the measure ω. As in $[6,8]$, we can assume only that $\omega(L)=0$ for every hyperplane L, orthogonal to one of the coordinate axes.

4 Acknowledgements

The author is grateful to the referee for several valuable remarks.

References

[1] C. Bennett and R. Sharpley, Interpolation of operators, Academic Press, New York, 1988.
[2] B. Jawerth and A. Torchinsky, Local sharp maximal functions, J. Approx. Theory, 43 (1985), 231-270.
[3] F. John, Quasi-isometric mappings, Seminari 1962-1963 di Analisi, Algebra, Geometria e Topologia, Rome, 1965.
[4] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math., 14 (1961), 415-426.
[5] A. K. Lerner, On weighted estimates of non-increasing rearrangements, East J. Approx., 4 (1998), 277-290.
[6] J. Mateu, P. Mattila, A. Nicolau and J. Orobitg, BMO for nondoubling measures, Duke Math. J., 102 (2000), 533-565.
[7] B. Muckenhoupt and R. L. Wheeden, Weighted bounded mean oscillation and the Hilbert transform, Studia Math., 55 (1976), 279-294.
[8] J. Orobitg and C. Pérez, A_{p} weights for nondoubling measures in R^{n} and applications, Trans. Amer. Math. Soc., 354 (2002), 2013-2033.
[9] S. Saks, Theory of the integral, Hafner, 1937
[10] Y. Sagher and P. Shvartsman, On the John-Strömberg-Torchinsky characterization of BMO, J. Fourier Anal. Appl., 4 (1998), 521-548.
[11] J.-O. Strömberg, Bounded mean oscillation with Orlicz norms and duality of Hardy spaces, Indiana Univ. Math. J., 28 (1979), 511-544.

