Mark L. Roberts, Department of Mathematics, University College London, Gower Street, London WC1E 6BT, England. e-mail:
m.l.roberts@ucl.ac.uk

DETERMINATION OF MEASURES

Abstract

This paper contains two results related to the question of when a measure on a metric space is determined by its value on certain subsets. The first is that two finite positive measures on a countable metric abelian group G which agree on all balls of some fixed non-zero radius agree on G. The second relates to measures on a compact metric space that agree on all intersections of pairs of balls.

1 Introduction

Let M denote a metric space and μ_{1}, μ_{2} two (positive Borel) measures on M. A natural question is: for a given subset T of the set $\mathcal{B}(M)$ of all Borel sets of M are the following statements (1) or (2) true?

$$
\begin{gather*}
\mu_{1}(S)=\mu_{2}(S) \forall S \in T \Rightarrow \mu_{1}=\mu_{2} \tag{1}\\
\mu_{1}(S)=\mu_{2}(S) \forall S \in T \Rightarrow \mu_{1}(M)=\mu_{2}(M) \tag{2}
\end{gather*}
$$

There are many results on this when T is the set O of all open balls, or the set of all balls of particular radii; see for example the survey by J.P.R. Christensen in [1]. Of course for any T, if the σ-class $\mathcal{D}(T)$ generated by T (i.e., the smallest subset of $\mathcal{B}(M)$ containing T and closed under complements and disjoint unions) is $\mathcal{B}(M)$, then (1) holds. In [3] Steve Jackson and R. Daniel Mauldin showed that if $M=\mathbb{R}^{n}$ with a metric induced from a norm, then $\mathcal{D}(O)=\mathcal{B}(M)$, and hence (1) holds. (This result was also shown for $M=\mathbb{R}^{n}$ with the Euclidean metric at about the same time by M. Zelený in [7].) However, T. Keleti and D. Preiss showed in [4] that if M is an arbitrary separable infinite-dimensional Hilbert space, then $\mathcal{D}(O) \neq \mathcal{B}(M)$, although D. Preiss and J. Tišer had previously shown in [6] that (1) nevertheless holds in this case (or in fact for M any separable Banach space).

[^0]In Section 2 it is shown that if M is a countable metric abelian group, the measures are finite, and T is the set of all balls of a given fixed non-zero radius, then (2) holds; i.e., the value of the measure on the whole space is determined by its value on closed balls of a fixed non-zero radius.

In the negative direction, a well-known example of R.O. Davies [2] shows that (1) does not hold in general if M is a compact metric space and T is the set of all balls. One can ask what happens if T is extended to the set of all intersections of pairs of closed balls of fixed radius. In Section 3 it is shown that if M is a finite metric space, then in this case (2) holds. This does not answer the question above, but shows that the method of construction used in [2] does not extend directly, since this is based on finding finite metric spaces where (2) fails.

2 Measures on a Countable Abelian Group

Definition 2.1. A metric d on an abelian group G is invariant if for all $x, y, g \in G, d(x+g, y+g)=d(x, y)$. A measure μ on a topological abelian group G is invariant if $\mu(S)=\mu(S+g)$ for any Borel set S and any $g \in G$.

If G is countable, then the unique invariant measure is (a multiple of) counting measure.

Definition 2.2. An abelian group G has a slowly growing measure if there exists an invariant metric d on G and an invariant measure ν such that

$$
\begin{equation*}
\forall k>1, \lim _{n \rightarrow \infty} \nu\left(B_{n}\right) / k^{n}=0 \tag{3}
\end{equation*}
$$

where $B_{n}=\{x \in G: d(0, x) \leq n\}$ is the closed ball of radius n.
Proposition 2.3. Any countable abelian group has a slowly growing measure.
Proof. The measure can be taken to be counting measure; so the claim is that there is an invariant metric on G such that the number of elements in balls of radius n grows fairly slowly, as specified by (3).

To define an invariant metric on G is equivalent to defining a function $f: G \rightarrow \mathbb{R}_{\geq 0}$ such that for all $x, y \in G$ (a) $f(x) \geq 0$, (b) $f(x)=f(-x)$, (c) $f(x+y) \leq f(x)+f(y)$.

First prove the existence of a map f with the required properties for $G=$ \mathbb{Z}^{∞}, the direct sum of countably many copies of \mathbb{Z}. If $x=\left(x_{i}\right) \in \mathbb{Z}^{\infty}$, let $r(x)=\max \left\{i: x_{i} \neq 0\right\}$ and $|x|=\max \left\{\left|x_{i}\right|\right\}$. Now let

$$
f(x)= \begin{cases}\max \left\{2^{r(x)-1},|x|\right\} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

Properties (a) and (b) are immediate and (c) clearly holds for $|x|$. Since $r(x+y) \leq \max \{r(x), r(y)\}$, (c) holds for any increasing function of $r(x)$, in particular for $2^{r(x)-1}$; hence (c) holds for f. Now using the metric defined by $f,\left|B_{n}\right|=(2 n+1)^{\log _{2} n+1}$, which satisfies (3) since $(\log n)^{2} \ll n$.

Now if G is any countable abelian group, $G \cong \mathbb{Z}^{\infty} / I$ for some subgroup I of G. Let f be as above, and define $g: G \rightarrow \mathbb{R}_{\geq 0}$ by $g(y)=\min \{f(x)$: $x \in G, I+x=y\}$. Since the metric on \mathbb{Z}^{∞} is discrete and hence I is a closed subset of \mathbb{Z}^{∞}, this yields a well-defined invariant metric on G, and $\left|B_{n}(G)\right| \leq\left|B_{n}\left(\mathbb{Z}^{\infty}\right)\right|$ so counting measure has the required property with respect to this metric.

Theorem 2.4. Let G be a countable abelian group, μ_{1}, μ_{2} be two (finite, positive) measures on G. Suppose that for some non-empty subset S of G, $\mu_{1}(g+S)=\mu_{2}(g+S)$ for all $g \in G$. Then $\mu_{1}(G)=\mu_{2}(G)$.

Proof. Let $\mu=\mu_{1}-\mu_{2}$; so μ is a finite signed measure on G which is zero on all translates of S. Let d be the invariant metric on G so that the counting measure ν satisfies (3); all balls below are with respect to d, and B_{n} denotes the ball of radius n centre 0 . Since μ_{1} and μ_{2} are finite, so is $|\mu|$, say $|\mu|(G)=K$. Given any $\epsilon>0$, pick n such that $|\mu|\left(G-B_{n}\right)<\epsilon$.

Let $c_{m}=\sup _{g}\left\{\nu\left(S \cap\left(B_{m}+g\right)\right)\right\}$. This exists since $\nu\left(S \cap\left(B_{m}+g\right)\right) \leq \nu\left(B_{m}\right)$ and this latter quantity is finite by (3). Let $\delta=\min \{\epsilon / K, 1\}, \alpha=\frac{1}{2 n}$. If there do not exist arbitrarily large m such that $c_{m+n} \leq(1+\delta) c_{m-n}$, then there exists $J>0$ such that for large $m, \nu\left(B_{m}\right) \geq c_{m} \geq J(1+\delta)^{\alpha m}$, contradicting (3). Hence there exist arbitrarily large m such that $c_{m+n} \leq(1+\delta) c_{m-n}$; let m be such an integer $>n$.

Now let $p \in G$ be such that $\nu\left(S \cap\left(B_{m-n}+p\right)\right)=c_{m-n}$. Replacing S by $S-p$ we have that $c_{m-n}=\nu\left(S \cap B_{m-n}\right)$; i.e., 0 is the centre of one of the densest balls of radius $m-n$.

Now define $\omega: G \times G \rightarrow \mathbb{R}$ by $\omega(x, y)=\left\{\begin{array}{ll}\mu(y) & \text { if } x \in S \\ 0 & \text { otherwise }\end{array}\right.$. Let $D_{r}=\left\{(x, y) \in G \times G: y-x \in B_{r}\right\}$. While ω does not make sense as a signed measure on $G \times G$, it does on any $D_{r}(r>0)$, since $\sum_{(x, y) \in D_{r}}|\omega(x, y)|=$ $\sum_{g \in B_{r}} \sum_{x \in G}|\omega|(x, x+g)=\sum_{g \in B_{r}} \sum_{x \in S}|\mu|(x+g) \leq \sum_{g \in B_{r}}|\mu|(G)<\infty$. Now consider the following subsets of $D_{m}: R=B_{m-n} \times B_{n}, E=$ $\left\{(x, y) \in D_{m}: y \notin B_{n}\right\}, F=\left\{\left(B_{m+n}-B_{m-n}\right) \times B_{n}\right\} \cap D_{m}$. Since D_{m} is equal to the disjoint union of R, E and $F, \omega\left(D_{m}\right)=\omega(R)+\omega(E)+\omega(F)$ and hence $|\omega(R)| \leq|\omega(E)|+|\omega(F)|+\left|\omega\left(D_{m}\right)\right|$. Now

$$
\omega\left(D_{m}\right)=\sum_{g \in B_{m}} \sum_{x \in G} \omega(x, x+g)=\sum_{g \in B_{m}} \sum_{x \in S} \mu(x+g)=\sum_{g \in B_{m}} \mu(S+g)=0
$$

$$
\begin{aligned}
|\omega(E)| & \leq|\omega|(E)=\sum_{y \notin B_{n}}|\mu|(y) \nu\left(S \cap\left(B_{m}+y\right)\right) \leq|\mu|\left(G-B_{n}\right) c_{m} \leq \epsilon c_{m} \\
& \leq \epsilon c_{m+n} \leq \epsilon(1+\delta) c_{m-n} \leq 2 \epsilon c_{m-n}
\end{aligned}
$$

and

$$
\begin{aligned}
|\omega(F)| & \leq|\omega|(F) \leq|\omega|\left(\left(B_{m+n}-B_{m-n}\right) \times B_{n}\right) \\
& =|\mu|\left(B_{n}\right) \nu\left(B_{m+n} \cap S-B_{m-n} \cap S\right) \leq K\left(c_{m+n}-c_{m-n}\right) \\
& \leq K\left[(1+\delta) c_{m-n}-c_{m-n}\right]=K \delta c_{m-n} \leq K \frac{\epsilon}{K} c_{m-n} \leq \epsilon c_{m-n}
\end{aligned}
$$

and

$$
|\omega(R)|=\nu\left(S \cap B_{m-n}\right)\left|\mu\left(B_{n}\right)\right|=c_{m-n}\left|\mu\left(B_{n}\right)\right| .
$$

Thus $\left|\mu\left(B_{n}\right)\right| \leq 3 \epsilon$ and hence $\mu(G) \leq\left|\mu\left(B_{n}\right)\right|+\left|\mu\left(G-B_{n}\right)\right| \leq 4 \epsilon$. Since this is true for arbitrary ϵ, we have $\mu(G)=0$; i.e., $\mu_{1}(G)=\mu_{2}(G)$.

The next results follows immediately by taking S to be the ball of radius r at the origin.

Corollary 2.5. Let G be a countable abelian group with invariant metric, and μ_{1}, μ_{2} be two (finite, positive) measures on G which agree on all balls of some fixed non-zero radius r. Then $\mu_{1}(G)=\mu_{2}(G)$.

3 Measures Agreeing on Intersections of Pairs of Balls

Here $B_{r}(x)$ denotes the closed ball of radius r, centre x.
Proposition 3.1. Let M be a finite metric space, $r>0$, and μ a signed measure on M such that $\mu\left(B_{r}(x) \cap B_{r}(y)\right)=0$ for all $x, y \in M$. Then $\mu(M)=$ 0 .

Proof. Write $M=\left\{x_{1}, \ldots, x_{n}\right\}, d_{i}=\mu\left(x_{i}\right)$ and define the symmetric matrix A and diagonal matrix D by $A_{i j}=\left\{\begin{array}{ll}1 & \text { if } d\left(x_{i}, x_{j}\right) \leq r \\ 0 & \text { otherwise }\end{array}, D_{i j}=\delta_{i j} d_{i}\right.$. Then $(A D A)_{i j}=\sum_{k} a_{i k} d_{k} a_{k j}=\sum_{k} a_{i k} a_{j k} d_{k}=\mu\left(B_{r}\left(x_{i}\right) \cap B_{r}\left(x_{j}\right)\right)=0$; so $(A D)^{2}=0$. Hence $\operatorname{tr}(A D)=0$; i.e., $\sum_{i} d_{i}=0$ and so $\mu(M)=0$.

It would be interesting to know if Proposition 3.1 holds for a countable metric space. The problem is that the statement

$$
\begin{equation*}
B^{2}=0 \Rightarrow \operatorname{tr}(B)=0 \tag{4}
\end{equation*}
$$

trivial for a finite matrix, does not in general hold for infinite matrices: a proof by A. M. Davie (see [5]) gives a random construction of a row-finite matrix B with square zero and non-zero trace. It is also noted in [5] that if the matrix B is row finite with $\sum_{i}\left(\max _{j}\left|b_{i j}\right|\right)^{2 / 3}<\infty$, then (4) does hold.

Acknowledgements. I am very grateful to David Preiss for many helpful comments.

References

[1] J. P. R. Christensen, A survey of small ball theorems and problems, Springer Lecture Notes in Mathematics, 794 (1980), 24-30.
[2] R. O. Davies, Measures not approximable or not specifiable by means of balls, Mathematika, 18 (1971), 157-160.
[3] S. Jackson and R. D. Mauldin, On the σ-class generated by open balls, Math. Proc. Cambridge Philos. Soc., 127 (1999), 99-108.
[4] T. Keleti and D. Preiss, The balls do not generate all Borel sets using complements and countable disjoint unions, Math. Proc. Cambridge Philos. Soc., 128 (2000), 539-547.
[5] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces I, Springer, (1977).
[6] D. Preiss and J. Tišer, Measures in Banach spaces are determined by their values on balls, Mathematika, 38 (1991), 391-397.
[7] M. Zelený, The Dynkin system generated by balls in \mathbb{R}^{d} contains all Borel sets, Proc. Amer. Math. Soc., 128 (2000), 432-437.

[^0]: Key Words: determination of measure, measures on balls
 Mathematical Reviews subject classification: 28C 10
 Received by the editors December 20, 2002

