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A NEW CONSTRUCTION OF WAVELET
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Abstract

We show that the class of (dyadic) wavelet sets is in one-to-one cor-
respondence to a special class of Lebesgue measurable isomorphisms of
[0, 1) which we call wavelet induced maps. We then define two natural
classes of maps WI1 and WI2 which, in order to simplify their con-
struction, retain only part of the characterization properties of a wavelet
induced map. We prove that each wavelet induced map appears from
the Schröder-Cantor-Bernstein construction applied to some u ∈ WI1

and v ∈ WI2. Consequently, the construction of a wavelet set is basi-
cally equivalent to the easier construction of two maps u ∈ WI1 and
v ∈ WI2. Some older results on wavelet sets are recovered using this
new point of view. The connectivity result of Speegle ([20]) is recaptured
and the completeness in the natural metric of the class of wavelet sets
is reestablished. Although these ideas seem to generalize to more than
one dimension, specific examples are given only in the one dimensional
case.

1 Introduction

In [9] the authors introduced the notion of wavelet set which turned out to
be one of the building blocks of their approach to wavelet analysis from an
operator theory point of view. At the same time, and independently, the
notion of wavelet set appeared as the support set of so called MSF-wavelets
(minimally supported frequency) in a series of papers: [12], [14] and [15].

One easy way to fabricate a wavelet is to normalize the Fourier transform of
the characteristic function of a wavelet set. Wavelet sets have been generalized
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to n dimensions (see [10] and [11]). The important result of the existence of
wavelets for unitary systems having an expansive dilation matrix was based
on the existence of wavelet sets. These ideas were taken into the realm of
frame theory and the notion of wavelet set was generalized even further to
frame (tight frame or normalized tight frame) wavelet sets in [4], [5], [6]-[8].
In [3] the authors give an ingenious description of how one can construct a
wavelet set. The purpose of this paper is to consider a different approach to
the construction of (dyadic) wavelet sets which is purely set theoretic.

2 Preliminary Results

We denote by µ Lebesgue measure on R. The L2-space with respect to µ will
be written simply as L2(R). An orthonormal wavelet is (cf. [9]) a function
w ∈ L2(R) for which the family of functions {wj,k}j,k∈Z defined by

wj,k(s) = 2j/2w(2js− k), s ∈ R, j, k ∈ Z, (1)

is an orthonormal basis for L2(R).
We say that a measurable subsetW of R is a wavelet set if 1√

µ(W )
χ
W = ŵ,

where w is a wavelet in L2(R) and ŵ is the Fourier-Plancherel transform on
L2(R) of the function w and which for f ∈ L1(R) ∩ L2(R) is defined by

f̂(x) =
1√
2π

∫
R
e−itxf(t)dµ(t), x ∈ R.

One of the simplest examples of wavelet sets is the Littlewood-Paley wavelet
set E := [−2π,−π)∪ [π, 2π). A less obvious example is the following union of
eight intervals

S :=

[
−4π

3
,−5π

4

)
∪
[
−π,−2π

3

)
∪
[
−5π

8
,−π

2

)
∪
[
4π

7
,
2π

3

)
∪
[
3π

4
, π

)
∪
[
4π

3
,
11π

8

)
∪
[
4π,

32π

7

)
∪
[
11π

2
, 6π

)
.

(2)

The next result was announced independently in [12] and [9] and it is
definitely the first step in a better understanding of the notion of a wavelet
set. We refer the reader to [16] for a proof of this proposition. In order to
state the result let us introduce some notation. Let τ : R → E be the function
defined by τ(x) = x+2jπ, where j is the unique integer satisfying x+2jπ ∈ E
and let δ : R\{0} → E be the map defined by δ(x) = 2kx, where k is the unique
integer for which 2kx ∈ E.
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Proposition 2.1. The following conditions are equivalent for any measurable
subset W of R :

(i) W is a wavelet set,

(ii) there exists a set W ′ such that W ′ = W a.e., the family of sets {W ′ +
2kπ}k∈Z is a partition of R and, at the same time, the family {2kW ′}k∈Z
is a partition of R \ {0},

(iii) there exists a set W ′′ such that W ′′ =W a.e. and τ|W ′′ , δ|W ′′ :W ′′ → E
are measurable bijections.

In [16] a wavelet set having the property of W ′ in (ii) (or equivalently the
property of W ′′ in (iii)) was called regularized. Let us denote by WS the class
of all wavelet sets.

The classWS is very rich. In [18] it was shown that every point x0 ∈ R\{0}
contains a neighborhood which is a part of a wavelet set. In [20] it was proved
that WS is path-connected (in the norm topology on L2(R) when WS is
naturally imbedded in L2(R)). It was shown in [13] that WS becomes a
complete metric space (WS, d) with the metric

d(W1,W2) := µ(W1 ▽W2)
1
2 +

(∫
W2▽W1

1

|x|
dµ(x)

) 1
2

, (3)

where W1 ▽W2 = (W1 \W2) ∪ (W2 \W1). In spite of this richness, it is not
obvious how would one construct a wavelet set.

Thus by part (iii) of this proposition, we can associate with everyW ∈ WS
a measurable bijection on E defined by

hW := τ|W ′′ ◦ (δ|W ′′)−1. (4)

By its definition, this map is essentially uniquely determined by W in the
sense that for two sets W ′ and W ′′ as in Proposition 2.1, the maps hW ′ , hW ′′

coincide almost everywhere [µ]. Thus we will denote this map simply by hW .

It turns out that the conjugation h̃W := ξ ◦ hW ◦ ξ−1 : [0, 1) → [0, 1) of hW ,
by the function ξ : E → [0, 1) defined by

ξ(x) =

{
x
2π x ∈ [π, 2π)
x
2π + 1 x ∈ [−2π,−π),

(5)

takes a simpler form than hW .

Definition 2.2. For every wavelet set W the map h̃W constructed as above
is called an wavelet induced isomorphisms of [0, 1).
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We have the following characterization of the class of wavelet sets in terms
of the corresponding maps h̃W .

Proposition 2.3. Let W ∈ WS and h̃W be defined as above. Then the map
h̃W has the following properties:

(i) h̃W is a measurable bijection of [0,1),

(ii) there exists a measurable partition {Ak}k∈Z of [ 12 , 1) and a measurable
partition {Bk}k∈Z of [0, 12 ), such that

h̃W (x) =

{
⌊2kx⌋ x ∈ Ak, k ∈ Z,
⌊2k(x− 1)⌋ x ∈ Bk, k ∈ Z,

(6)

where ⌊x⌋ denotes the fractional part of the real number x,

(iii) if h is a map satisfying (i) and (ii), then there exists a wavelet set W

such h = h̃W ,

(iv) for two wavelet sets W1 and W2 we have W1 ∩W2 = δ−1
|W1

◦ ξ−1(Ω) =

δ−1
|W2

◦ ξ−1(Ω), a.e. [µ], where Ω = {x ∈ [0, 1) : h̃W1(x) = h̃W2(x)}.

Proof. One can easily check that τ(t) = ξ−1(⌊ t
2π ⌋) for every t ∈ R. First,

let us observe that if x ∈ [ 12 , 1), then u = ξ−1(x) = 2πx and let us write
δ−1(u) = 2ku with k ∈ Z. Hence, using the formula mentioned above, we have

τ(2ku) = ξ−1(⌊ 2ku
2π ⌋) = ξ−1(⌊2kx⌋). Thus h̃W (x) = ξ(τ|W (2ku)) = ⌊2kx⌋. If

x ∈ [0, 1/2), then u = ξ−1(x) = 2π(x− 1) and if we write δ−1(u) = 2ku with

k ∈ Z, we get h̃W (x) = ξ(τ|W (2ku)) = ⌊ 2ku
2π ⌋ = ⌊2k(x− 1)⌋. This proves claim

(ii) of the proposition.
To prove claim (iii), let us consider that h has the properties (i) and (ii)

and we denote h1 = ξ−1 ◦ h ◦ ξ : E → E. Because of (6), we obtain that for
every x ∈ E there exist k(x), l(x) ∈ Z such that h1(x) = 2k(x)x+ 2l(x)π. By
the assumptions on h the maps x → k(x), x → l(x) are measurable. Then
we define ψ : E → R by ψ(x) = 2k(x)x, x ∈ E, and W := ψ(E). Clearly,
W is a measurable set, ψ is one-to-one and (δ|W )−1 = ψ. Finally we define
φ : W → E by φ(y) = y + 2l(ψ−1(y))π. Then one can check that h1 = φ ◦ ψ
and φ(y) = τ|W (y), y ∈W . Since h1 is one-to-one and ψ is onto, we conclude
that φ is one-to-one. Also, φ is onto since h1 is. By Proposition 2.1 it follows
that W is a wavelet set. According to (4) and using the above facts we see

that hW = h1 and so h̃W = h.
To prove (iv) let us show the equality in question by double inclusion. For

y ∈ W1 ∩W2 we have s := δ|W1
(y) = δ|W2

(y) = δ(y). Then y = δ−1
|W1

(s) =
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δ−1
|W2

(s). Let us denote ξ(s) by u. In other words s = ξ−1(u). This lets us

write y = δ−1
|W1

◦ξ−1(u) = δ−1
|W2

◦ξ−1(u). This means that we need to check that

u ∈ {x ∈ [0, 1) : h̃W1(x) = h̃W2(x)} or equivalently u ∈ {ξ(t) : t ∈ E, hW1(t) =
hW2(t)}. Since u = ξ(s) we need to see why is it true that hW1(s) = hW2(s).
Using (4) this last equality is the same as τ|W1

(y) = τ|W2
(y) which is true. This

argument shows that W1 ∩W2 ⊂ δ−1
|W1

◦ ξ−1(Ω) and W1 ∩W2 ⊂ δ−1
|W2

◦ ξ−1(Ω).

For the opposite inclusion let us start with y = δ−1
|W1

◦ ξ−1(u) where u

satisfies h̃W1(u) = h̃W2(u). As before we let s := ξ−1(u). This implies
hW1(s) = hW2(s) or τ|W1

◦ δ−1
|W1

(s) = τ|W2
◦ δ−1

|W2
(s). Taking into account

that τ(t1) = τ(t2) implies t1 = t2 + 2kπ for some k ∈ Z we obtain that
δ−1
|W1

(s) = δ−1
|W2

(s) + 2kπ, k ∈ Z. Let δ−1
|W1

(s) = 2ns and δ−1
|W2

(s) = 2ms, for

some m and n ∈ Z. If n ̸= m, then s = 2kπ
2n−2m . It is clear that the set

F =

{
2lπ

2i − 2j
: i, j, l ∈ Z, i ̸= j

}
(7)

is countable and so it has measure zero. Assuming that s ̸∈ F , we get n = m
and k = 0 which implies y = δ−1

|W1
◦ ξ−1(u) = δ−1

|W1
(s) = δ−1

|W2
(s) ∈ W1 ∩W2.

This argument proves that δ−1
|W1

◦ξ−1(Ω)\F ⊂W1∩W2 and δ
−1
|W2

◦ξ−1(Ω)\F ⊂
W1 ∩W2.

For the wavelet set S defined by (2), we computed the map h̃S and obtained

h̃S(x) =


⌊2−1(x− 1)⌋ on

[
0, 13

)
∪
[
3
8 ,

1
2

)
⌊22x⌋ on

[
1
2 ,

4
7

)
∪
[
11
16 ,

3
4

)
⌊2−1x⌋ on

[
4
7 ,

2
3

)
∪
[
3
4 , 1

)
⌊x⌋ on

[
1
3 ,

3
8

)
∪
[
2
3 ,

11
16

)
.

(8)

One can check that this map is a measurable bijection from [0, 1) into [0, 1).
The graph of it is on page 597.
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We denote the class of all wavelet induced isomorphisms by WI. The
wavelet induced map for and wavelet set played an important role in the series
of papers [1], [2] and [16]. One essential hypothesis that we needed in these
works was the existence of a measurable cross section for the isomorphism
(i.e., a measurable set which contains exactly one point from each orbit of the
isomorphism). This existence was partially solved in [1] but it is still an open
conjecture in the general situation. In this paper we have no need for such an
assumption. However, we obtain a similar of wavelets in Theorem 3.5 as in
[16]. By Proposition 2.3 every map in WI can be expressed as in (6).

3 The Schröder-Cantor-Bernstein Construction

Let WI1 be the class of all measurable functions f : [0, 1) → [0, 1) that are
defined by a measurable partition {Ak}k∈N of [ 12 , 1) and a measurable partition
{Bk}k∈N of [0, 12 ), such that

f(x) =

{
x
2k

x ∈ Ak, k ≥ 1,
x−1
2k

+ 1 x ∈ Bk, k ≥ 1.
(9)

The following is a simple consequence of the above definition.

Lemma 3.1. Every function f ∈ WI1 is one-to-one and µ(f(σ)) ≤ 1
2µ(σ)

for every measurable subset σ of [0, 1).
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Proof. Let x1, x2 ∈ [0, 1), x1 ̸= x2. We need to analyze essentially four
cases. If x1, x2 ∈ Ak or x1, x2 ∈ Bk for some k ≥ 1, clearly f(x1) ̸= f(x2).
If x1 ∈ Ak and x2 ∈ Bl for some k, l ≥ 1, then f(x2) = (x2 − 1)/2l + 1 ≥
1/2 > f(x1). Suppose now x1 ∈ Ak and x2 ∈ Al for k > l ≥ 1. In this case
x1, x2 ≥ 1/2 and so f(x2) = x2/2

l ≥ 1/2l+1 ≥ 1/2k > f(x1). Finally, if
x1 ∈ Bk and x2 ∈ Bl for some k > l ≥ 1, we have x1, x2 ∈ [0, 1/2). Hence,
f(x2) = (x2 − 1)/2l + 1 < 1− 1/2l+1 ≤ 1− 1/2k ≤ f(x1).

For the second part of this lemma let us observe that we can write σ as
a disjoint union σ =

∪
n≥1 σn ∪

∪
n≥1 σ

′
n where σn = σ ∩ An, σ

′
n = σ ∩ Bn,

n ∈ N. Clearly, µ(f(σn)) ≤ (1/2)µ(σn) and µ(f(σ′
n)) ≤ (1/2)µ(σ′

n) for all
n ∈ N. Adding up all these inequalities we obtain that µ(f(σ)) ≤ µ(σ) for
every measurable set σ.

Remark. Let us emphasize the fact that constructing a map f in WI1 is just
a simple matter of choosing two measurable partitions: one for [0, 1/2) and
one for [1/2, 1). The next figure shows the line segments of equations involved
in (9) and gives an idea of why Lemma 3.1 is true.

0
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0.4

0.6

0.8

1

y

0.2 0.4 0.6 0.8 1x

We introduce now the class WI2 of all measurable one-to-one maps g :
[0, 1) → [0, 1) so that for every x ∈ [0, 1) there exist k, l ∈ Z, k, l ≥ 0 such that

g(x) =
x+ l

2k
. We remind the reader the following fact from set theory known

as the Schröder-Cantor-Bernstein theorem.
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Proposition 3.2. (Schröder-Cantor-Bernstein) Let A and B two arbi-
trary sets, u : A → B and v : B → A be two one-to-one maps. Then the map
u ⋄ v : A→ B defined by

(u⋄v)(x) =


u(x) for x ∈

∞∪
k=0

(v ◦ u)k(A \ v(B)),

v−1(x) for x ∈
∞∪
k=0

(v ◦ u)k(v(B) \ (v ◦ u)(A)) ∪
∞∩
k=0

(v ◦ u)k(A),

(10)
is a bijection.

Remark. It is easy to see that the inverse function of u ⋄ v given as in (10)
is in fact v ⋄ u. We are now ready for the main result of this note. This next
theorem has almost the flavor of a factorization theorem.

Theorem 3.3. Every wavelet induced isomorphism h is the result of the
Schröder-Cantor-Bernstein construction; i.e., h = u⋄v a.e. for some u ∈ WI1
and v ∈ WI2 where ⋄ is defined in (10). Conversely, every map u ⋄ v with
u ∈ WI1 and v ∈ WI2 is an wavelet induced isomorphism. (The writing
h = u ⋄ v is in general not unique.)

Proof. The last part of the theorem follows from the Proposition 2.2 and
the fact that u ⋄ v is by construction a measurable bijection of the form (ii) in
Proposition 2.2. To show the first part, let us start with h ∈ WI and define
D1 be the measurable set of all x ∈ [0, 1) for which the k in the definition
(6) is a negative integer. We let u(x) = h(x) for x ∈ D1 and extend u to
D2 = [0, 1)\D1 such that u ∈ WI1. This extension is not unique but it can be
easily constructed as observed in the remark following the Lemma 3.1. (For
instance, for the map given in (8) we can take

u(x) =

{
x−1
2 + 1 on

[
0, 12

)
x
2 on

[
1
2 , 1

)
,

(11)

in which case D1 =
[
0, 13

)
∪
[
3
8 ,

1
2

)
∪
[
4
7 ,

2
3

)
∪
[
3
4 , 1

)
.) To continue the proof, let

R1 := u(D1) and R2 := [0, 1) \ R1. Next we define v on R2 as v(x) = h−1(x)
(x ∈ R2). Let us observe that v is defined in accordance to the properties of
the maps in WI2. We will show next that v can be extended to [0, 1) in such
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a way that v ∈ WI2. (In the case of the map defined by (6) we take

v(x) =


x+3
4 on

[
0, 14

)
x+1
2 on

[
1
4 ,

1
2

)
∪
[
5
8 ,

3
4

)
x on

[
1
2 ,

5
8

)
∪
[
7
8 , 1

)
x
2 on

[
3
4 ,

7
8

)
,

(12)

which is just one of the various extentions from which one may choose.)
Getting back to the general situation, it turns out that independently of

what extensions one might consider for u and v, the map u ⋄ v constructed as
in (10) is the same as h a.e. The following lemma solves the existence of the
extension v.

Lemma 3.4. The map v : R2 → [0, 1) defined by v(x) = h−1(x) (x ∈ R2)
can be extended to a map in WI2.

Proof. Let us define the extension inductively in the following way. First
we just pick a bijection φ : N → {(k, l) : k, l ∈ N ∪ {0}}. For n ∈ N we
denote by φ1(n) [resp. φ2(n)] the first component [resp. second component]
of φ(n). Then the initial step is to extend v to E1 := R2 ∪ F1 where F1 :=
{x ∈ [0, 1) \ R2 : (x + φ1(1))/2

φ2(1) ∈ [0, 1) \ v(R2)}. (Clearly F1 may be
empty.) In any case we define v1(x) = (x + φ1(1))/2

φ2(1) for all x ∈ F1 and
v1(x) = v(x) for x ∈ R2. Suppose we defined vn on En := En−1 ∪ Fn as an
extension of vn−1. Let vn+1 be the extension of vn to En+1 := En ∪ Fn+1

where Fn+1 := {x ∈ [0, 1) \ En : (x + φ1(n + 1))/2φ2(n+1) ∈ [0, 1) \ vn(En)}
defined as vn+1(x) = (x + φ1(n + 1))/2φ2(n+1) for all x ∈ Fn+1. By the way
these extensions are constructed it is easy to see that each vn is a one-to-one
map. If for some n ∈ N we have En = [0, 1) a.e., then the proof is finished
since vn would be the extension we were looking for.

We may assume then that µ([0, 1) \ En) > 0 for every n ∈ N. In this case
we let E∞ = ∪∞

n=1En and define the extension ṽ of v to E∞ in the usual way;
ṽ(x) = vn(x) if x ∈ En. Because vn+1 is an extension of vn the map ṽ is well
defined. We claim that E∞ = [0, 1) a.e. in which case then ṽ ∈ WI2 is the
extension we want.

In order to prove this claim we proceed by way of contradiction and assume
that µ(U) > 0 where U := [0, 1) \ E∞. One can easily show, using similar
arguments to those in the proof of Lemma 3.1, that µ(ṽ(E∞)) ≤ µ(E∞). This
shows that µ(V ) > 0 where V := [0, 1) \ ṽ(E∞). Obviously, U and V are
measurable sets. It is known (see [19]) that the transformation T (x) = ⌊2x⌋ is
an ergodic transformation on [0, 1) with respect to an invariant measure which
is equivalent to Lebesgue measure. This implies that µ(T k(V ) ∩ U) > 0 for
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some k ∈ N. Equivalently we have µ((2kV − l)∩U) > 0 for some l ∈ N∪ {0}.
Let us write Ũ for the set (2kV − l) ∩ U . We have (x + l)/2k ∈ V for every

x ∈ Ũ . If we let n := φ−1(k, l), it follows that Ũ ⊂ En ∩ U which contradicts
the fact that En ∩ U = ∅ (En ⊂ E∞ = [0, 1) \ U).

Returning to the proof of the Theorem 3.3 let u ∈ WI1 and v ∈ WI2
be the maps constructed as above. We need to show that u ⋄ v = h almost
everywhere. Since R1 := u(D1) and u|D1

= h|D1
it follows that h−1(R1) = D1

and h−1(R2) = D2 since h is one-to-one. Hence, v(R2) = h−1(R2) = D2.
Since u and v are one-to-one maps, it follows that u(D2) ⊂ R2 and v(R1) ⊂
D1. Let S = [0, 1) \ v([0, 1)). Clearly S ⊂ D1. Thus, u(S) ⊂ R1 and then
(v◦u)(S) ⊂ D1. Inductively it follows that all the sets (v◦u)k(S), k ∈ N∪{0},
are contained in D1. Therefore for x ∈

∪
k≥0(v ◦ u)k(S) according to (10) we

have u ◦ v(x) = u(x) = h(x).
Let N = v([0, 1))\(v◦u)([0, 1)). Clearly N ⊂ R2 and inductively it follows

that all the sets (v ◦ u)k(N ) ⊂ R2. Thus, for x ∈
∪

k≥0(v ◦ u)k(N ) we have

u ⋄ v(x) = v−1(x) = (h−1)−1(x) = h(x).
Using Lemma 3.1 we observe that the set

∩
k≥0(v ◦ u)k([0, 1)) must have

Lebesgue measure zero. Hence u ⋄ v = h almost everywhere.

Remark. If v = id then u ⋄ v = id. We will use this fact to obtain as a
corollary Speegle’s result in [20]. The convergence seems to be in a stronger
metric but in fact the two metrics are equivalent on the class of wavelets.

Theorem 3.5. For every two wavelet sets W0 and W1 one can find a chain
of wavelet sets {Wt}t∈[0,1] connecting them and such that d(Wt,Ws) → 0 if
t→ s where the metric d is given by (3).

Proof. It is obvious that we just need to consider the case W1 = E (the
Littlewood-Paley wavelet set). Denote W0 simply by W and let h := hW be
the wavelet induced isomorphism of W . According to the Theorem 3.3 we can
find u ∈ WI1 and v ∈ WI2 such that u ⋄ v = h almost everywhere. The idea
of our proof is to connect v with id by a continuous chain of maps in WI2 and
then use the second part of Theorem 3.3 to construct ht = u ⋄ vt. Then we
just take Wt the corresponding wavelet set to ht.

Lemma 3.6. There exist a chain {vt}t∈[0,1] such that v0 = v, v1 = id and
µ({x : vt(x) ̸= vs(x)}) → 0 as t→ s.

Proof. We may assume without loss of generality that v is not the iden-
tity function. Hence there must exist a measurable set U ⊂ [0, 1) such that
µ(v(U)) < µ(U). Since µ(v(L)) ≤ µ(L) for every measurable subset of [0, 1),
we see that the set V = [0, 1) \ v([0, 1)) has positive Lebesgue measure. We
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define what is going to be the first part of our chain by v1t (x) = v(x) if
x < t and x ∈ [0, 1) \ V or x ≥ t and v1t (x) = x if x < t and x ∈ V .
Clearly if 0 ≤ t < s ≤ 1, then {x : v1t (x) ̸= v1s(x)} ⊂ [t, s] and therefore
µ({x : v1t (x) ̸= v1s(x)} → 0 as t → s. Note that the maps v1t are by construc-
tion one-to-one and then automatically v1t ∈ WI2 for all t. The map v11 is
id on V and v everywhere else. Notice that [0, 1) \ (v11([0, 1)) = v(V ). Let
us denote by Z the set of fixed points of v. We have clearly V ∩ Z = ∅ and
therefore vk(V ) ∩ Z = ∅ for all k ∈ N. We observe that [0, 1) can be parti-
tioned as [0, 1) =

∪
k≥0 v

k(V ) ∪
∩

k≥0 v
k([0, 1)). Using the above observations

Z ⊂
∩

k≥0 v
k([0, 1)) and since µ(v(L)) ≤ µ(L)

2
for every measurable set con-

tained in [0, 1)\Z, we conclude that
∩

k≥0 v
k([0, 1))\Z has Lebesgue measure

zero. Hence to finish the proof we will extend the chain v1t with a chain v2t
which will connect v11 to the v21 which is id on V ∪ v(V ). So, the next chain is
defined by v2t (x) = v11(x) if x < t and x ∈ [0, 1) \ v(V ) or x ≥ t and v2t (x) = x
if x < t and x ∈ v(V ). Observe that maps v2t are one-to-one and so they are
in WI2. As before the continuity of {v2t }t is insured. The map v21 is id on
V ∪ v(V ) and v everywhere else. Then we continue inductively constructing
v3t , v

4
t , . . . , in a similar manner. To end the proof we put these countably

many chains together in an obvious way to form the required chain. More
precisely, we scale and glue the chains {v1t }, {v2t }, {v3t }, . . . to create the final
chain {vt} where v1 = id (we allocate an interval of length 1/2 for {v1t }, an
interval of length 1/4 for {v2t } and so on). It is easy to see that the continuity
claim still holds, i.e., that µ({x : vt(x) ̸= vs(x)}) → 0 as t→ s.

Returning to the proof of Theorem 3.5 we want to establish next the equiv-
alent of the distance given by (3) at the level of WI.

Lemma 3.7. Let h1 and h2 be the wavelet induced isomorphisms associated
with two wavelet sets W1 and W2. Then the metric given by (3) satisfies

d(W1,W2) = (4πµ(ω′))1/2 + (2ν(ω)}))1/2, (13)

where the measure ν on [0, 1) is given by dν(x) =
1

1− x
χ
[0,1/2)(x) dµ(x) +

1

x
χ
[1/2,1)(x) dµ(x) and ω′ := {x ∈ [0, 1) : h−1

1 (x) ̸= h−1
2 (x)} and ω := {x ∈

[0, 1) : h1(x) ̸= h2(x)}.

Proof. In order to establish (13) we observe that the property (iv) in Propo-
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sition 2.3 implies that

W1 ▽W2 =
(
δ−1
|W1

◦ ξ−1([0, 1)) \ δ−1
|W1

◦ ξ−1(Ω)
)

∪(
δ−1
|W2

◦ ξ−1([0, 1)) \ δ−1
|W1

◦ ξ−1(Ω)
)

(disjoint union). Hence

µ(W1 ▽W2) = µ
(
δ−1
|W1

◦ ξ−1([0, 1) \ Ω)
)
+ µ

(
δ−1
|W2

◦ ξ−1([0, 1)) \ Ω
)

= µ
(
δ−1
|W1

◦ ξ−1(ω)
)
+ µ

(
δ−1
|W2

◦ ξ−1(ω)
)
.

Taking in account that µ is invariant under translations and homogeneous
under dilations; i.e., µ(tU) = tµ(U) for every measurable set U and every
positive real number t, we obtain

µ(W1 ▽W2) = µ
(
τ|W1

◦ δ−1
|W1

◦ ξ−1(ω)
)
+ µ

(
τ|W2

◦ δ−1
|W2

◦ ξ−1(ω)
)

= 2πµ
(
ξ ◦ τ|W1

◦ δ−1
|W1

◦ ξ−1(ω)
)
+ 2πµ

(
ξ ◦ τ|W2

◦ δ−1
|W2

◦ ξ−1(ω)
)

= 2πµ (h1(ω)) + 2πµ (h2(ω)) .

(14)

Let us observe that h1(ω) = h2(ω) = ω′ and so h−1(ω′) = h−1(ω′) = ω.
Indeed, h1(ω) = h1([0, 1) \ Ω) = [0, 1) \ h1(Ω) and one can easily check that
h1(Ω) = Ω′ where Ω′ = {x : h−1

1 (x) = h−1
2 (x)}, where for the convenience of

the reader we recall that Ω = {x ∈ [0, 1) : h1(x) = h2(x)}. As a result, (14)
becomes

µ(W1 ▽W2) = 4πµ (ω′) . (15)

This equality allows us to get the first term in (13). In order to obtain the
second part of (13) we begin by considering the measure on R \ {0} defined as
dλ(x) = 1

|x| dµ(x). As before we have

λ(W1 ▽W2) = λ
(
δ−1
|W1

◦ ξ−1(ω)
)
+ λ

(
δ−1
|W2

◦ ξ−1(ω)
)
.

But λ is invariant under dilations. Hence the above changes into

λ(W1 ▽W2) = 2λ
(
ξ−1(ω)

)
. (16)

One can easily check that λ ◦ ξ−1 = ν. Putting (15), (16), and (3) together
we obtain (13).
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Returning now to the proof of Theorem 3.5 let us define {ht}t∈[0,1] by
ht := u ⋄ vt, with vt given by Lemma 3.6. According to Theorem 3.3 and
Proposition 2.3 each ht is an wavelet induced isomorphism which corresponds
to some wavelet Wt. Because h0 = u ⋄ v and h1 = u ⋄ id we have W0 = W
and W1 = E. We need to introduce one more notation: for two maps f and g
having the same domain of definition let ω(f, g) be defined by

ω(f, g) = {x : f(x) ̸= g(x)}). (17)

By the way {vt} was constructed if 0 ≤ t < s ≤ 1 then ω(vt, vs) is contained in
an interval of length less than s−t. By the definition (10) we see that ω(ht, hs)
is contained in a set of Lebesgue measure less than 2[(t − s)/2 + (t − s)/4 +
...+ (t− s)/2k + ...] = 2(t− s) because u is “measure contractive” is the sense
of Lemma 3.1. Therefore µ(ω(ht, hs)) → 0 as t → s or s → t. To finish the
proof we observe that ν is equivalent with the Lebesgue measure on [0, 1) and
h−1
t = vt ◦u. Using the same arguments as above we have µ(ω(h−1

t , h−1
s )) → 0

as t→ s or s→ t. Finally we use Lemma 3.7 to end the proof.

Remark. The Theorem 3.5 has the advantage of being a more constructive
result than the one in [20]. We observe also that by construction Wt ⊂W ∪E
for every t. This construction is in some sense very similar to the one given in
[16] where only a partial result was obtained.

Theorem 3.8 (Garrigos-Speegle[13]). The class WS is complete in the metric
given by (3).

Proof. Let us start with a sequence of wavelet set {Wn} which is Cauchy
in the metric in (3). Let us consider their corresponding wavelet induced
isomorphisms {hn}n∈N. According to Lemma 3.7, we have µ(ω(hn, hm)) → 0

and µ(ω(h−1
n , h−1

m )) → 0 as m,n → ∞. Since
∫ 1

0
|hn(x) − hm(x)|2dµ(x) ≤

µ(ω(hn, hm)) and
∫ 1

0
|h−1

n (x) − h−1
m (x)|2dµ(x) ≤ µ(ω(h−1

n , h−1
m )), it follows

that hn and h−1
n are Cauchy sequences in L2([0, 1)). Let f , g be their limits

in L2([0, 1)). Passing to a subsequence we may assume that these sequences
are pointwise convergent a.e.([µ]). For each n let [0, 1) := Un ∪ Vn be the
decomposition (partition) which corresponds to the way we defined the maps
un and vn as in the Theorem 3.3 for the wavelet induced map hn. In other
words, un(x) = hn(x) for x ∈ Un and vn(y) = h−1

n (y) for y ∈ h(Vn). We
remind the reader that un and vn can be extended in order that un ∈ WI1
and vn ∈ WI2.

For m > n we observe that (Un ▽ Um) \ F ⊂ ω(hn, hm) where F was
defined by (7) in the proof of Proposition 2.3. Indeed, for instance if x ∈
(Un \ Um) \ F = Un ∩ Vm it follows that hn(x) = un(x) and hm(x) = v−1

m (x).
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Since x ̸∈ F , we see that hn(x) ̸= hm(x). Hence µ(Un▽Um) → 0 asm,n→ ∞.
Passing again to a subsequence if necessary we may assume without loss of
generality that χUn

→ χ
U pointwise for some measurable subset U of [0, 1).

It follows then that µ(Un▽U) → 0, µ(Vn▽V ) → 0 as n→ ∞ and χVn → χ
V

pointwise where V = [0, 1) \U . It is clear that U may be empty in which case
we will show that f = g = id. If µ(U) > 0, then χ

Un(x) → χ
U (x) = 1 for

almost every x ∈ U . For such an x ∈ U we deduce that for some n0(x) ∈ N if
n ≥ n0(x), it follows that x ∈ Un. Hence hn(x) = un(x) = ⌊x/2k(x,n)⌋ → f(x)
or hn(x) = un(x) = ⌊(x−1)/2k(x,n)⌋ → f(x) with k(x, n) ∈ N. There are only
two possibilities: k(n, x) → ∞ or k(n, x) is eventually constant. We claim
that for almost every x ∈ U the sequence k(x, n) is eventually constant.

Indeed, suppose that for some subset of U of positive measure, say Υ, we
have k(x, n) → ∞ for all x ∈ Υ. Then if we fix n but keep it arbitrary, it is
clear from our assumption on Υ that Υ =

∪
m{x ∈ Υ : k(x,m) > k(x, n)}.

Using the continuity of the Lebesgue measure we may replace Υ with Υm,n =
{x ∈ Υ : k(x,m) > k(x, n)} for somem such that µ(Υm,n) > µ(Υ)/2. Then it
easy to see that Υm,n ⊂ ω(hn, hm) which implies 0 < µ(Υ)/2 < µ(ω(hn, hm)).
This contradicts the fact µ(ω(hn, hm)) → 0 and our claim is proved.

We proved that for almost every x ∈ U it follows that k(x, n) is an even-
tually constant sequence. For such an x we let k(x) = lim

n→∞
k(x, n) ∈ N. Then

f(x) = limhn(x) = un(x) = ⌊x/2k(x)⌋ or f(x) = ⌊(x − 1)/2k(x)⌋ depending
upon x ∈ [1/2, 1) or x ∈ [0, 1/2). By Lemma 3.1, f is automatically one-to-
one on U and agrees with the characterization of an wavelet induced map in
Proposition 2.3.

We consider U ′
n = hn(Un) and V ′

n = hn(Vn). Since [0, 1) = Un ∪ Vn, we
get [0, 1) = U ′

n ∪ V ′
n. As before for m > n we observe that (V ′

n ▽ V ′
m) \ F ⊂

ω(h−1
n , h−1

m ). Then without loss of generality we may assume that χV ′
n
→ χ

V ′

pointwise for some measurable subset V ′ of [0, 1). As a result χU ′
n
→ χ

U ′

pointwise a.e. where U ′ = [0, 1) \ V ′. For a.e. x ∈ U we proved that there
exist an n1(x) ∈ N such that if n > n1(x) we have f(x) = hn(x) and x ∈ Un.
Since hn(x) ∈ hn(Un) = U ′

n, we get χU ′
n
(f(x)) = 1. Then letting n → ∞ we

get χU ′(f(x)) = 1. This shows that f(U) = U ′ almost everywhere. Therefore
if µ(V ′) = 0, then it must be true that f(U) = [0, 1) a.e. ([µ]). But this is not
possible because f is strictly contractive in the sense of measure.

Thus, it must be true that µ(V ′) > 0. As before let us take an y ∈ V ′ such
that χV ′

n
(y) → χ

V ′(y) = 1. Thus there exists an n2(y) ∈ N such that y ∈ V ′
n if

n > n2(y). By Proposition 2.3 and the construction of uv, vn in Theorem 3.3
we have h−1

n (y) = vn(y) = (y + k(y, n))/2l(y,n) for some integer k(y, n) and
l(y, n) ∈ N ∪ {0}. We now claim that for almost every y ∈ V ′ the sequence
l(y, n) is eventually constant on a subsequence.
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Indeed, assuming that for some measurable subset of V ′, say Θ, with
µ(Θ) > 0, for y ∈ Θ the sequence l(y, n) → ∞. Then we make the argument
as above that for fixed n but arbitrary Θ =

∪
m{y ∈ Θ : l(y,m) > l(y, n)}.

Hence, there exists Θm,n := {x ∈ Υ : k(x,m) > k(x, n)} for some m
such that µ(Θm,n) > µ(Θ)/2. One can check similarly that Θm,n \ F ⊂
ω(h−1

n , h−1
m ) which implies 0 < µ(Θ)/2 < µ(ω(h−1

n , h−1
m )). This contradicts

the fact µ(ω(h−1
n , h−1

m )) → 0 and our claim is proved.
Using this claim and the fact that h−1

n (y) is convergent for almost every
y to g(y) we see that the sequence k(y, n) must be eventually constant for a
subsequence on which l(y, n) is eventually constant. Letting n→ ∞ we obtain
that g(y) = (y + k(y))/2l(y) for some k(y), l(y) ∈ N ∪ {0}. This shows that g
is in WI2. As we argued before g(V ′) = V . If µ(U) = 0, then µ(U ′) = 0 and
then g must be the identity since it is contractive in the sense of measure.

To finish the proof we extend f from U to [0, 1) and g from V to [0, 1) so

that the new maps f̃ and g̃ satisfy f̃ ∈ WI1 and g̃ ∈ WI2. Let h = f̃ ⋄ g̃.
Finally an argument based on the continuity of Lebesgue measure and the
relation (10) shows that hn converges to h.

Remark. The proof of Theorem 3.8 although quite lengthy reveals what con-
vergence in the distance (3) means at the level of wavelet sets and equivalently
on WI.

4 Examples

Consider the Journe wavelet set J :=

[
−32π

7
,−4π

)
∪
[
−π,−4π

7

)
∪
[
4π

7
, π

)
∪[

4π,
32π

7

)
. Then its wavelet induced function denoted by h̃J can be described

by

h̃J (x) =


⌊2−1(x− 1)⌋ on

[
0, 37

)
⌊22x⌋ on

[
3
7 ,

4
7

)
⌊2−1x⌋ on

[
4
7 , 1

)
.

(18)

In this case one can choose u ∈ WI1 defined by

u(x) =

{
⌊2−1(x− 1)⌋ on

[
0, 12

)
⌊2−1x⌋ on

[
1
2 , 1

) (19)

and v ∈ WI2

v(x) =

{
x+2
4 on

[
0, 12

)
x+1
4 on

[
1
2 , 1

) (20)
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such that h̃J = u ⋄ v.
Let us go the other way in our construction. Arguably, the simplest map

u ∈ WI1 that one can take is given in (19) and we pick one of the simplest
maps v ∈ WI2 defined by v(x) = x/2 for all x ∈ [0, 1). Then the wavelet
induced map, h = u ⋄ v, that is obtained by the Schröder-Cantor-Bernstein
construction is defined by

h(x) =


x
2 on

[
1
2 , 1

)
2x on

[
1
3 ,

1
2

)
x+1
2 on A

2x on
[
0, 13

)
\A,

(21)

where A =
∞∪

n=1

[zn, xn+1) and the sequences {zn}n≥1, {xn}n≥1 are given by the

formulae zn =
1

3

(
1− 5

2× 4n

)
, xn =

1

3

(
1− 1

4n−1

)
. This will give rise to a

wavelet set containing infinitely many intervals W :=
[π
2
, π

)
∪
[
−8π

3
,−2π

)
∪

(πA − π) ∪
(
[−4π,

−8π

3
) \ (4πA− 4π)

)
. It is interesting to mention that if

one modifies v, as in the proof of Theorem 3.5, to v(x) = x/2 for x ∈ [0, 2/7)
and v(x) = x if x ∈ [2/7, 1), then the wavelet set constructed from u and the
new v has only six intervals.
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