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THE FUNDAMENTAL THEOREM OF
CALCULUS FOR GRk-TYPE INTEGRALS

Abstract

The GRk integral, a Stieltjes type integral, was introduced by the
authors. In this paper we introduce a GRk-type integral that admits
the fundamental theorem of calculus. Also, a convergence theorem is
proved using equi-integrability conditions.

1 Introduction

The Henstock-Stieltjes integral is well known [1]. Recently the GRk-integral
was introduced by the authors (see [3]). Some results on the GRk integral
were established in [3]. The GRk-integral is not covered by the Henstock-
Stieltjes type integrals in the literature. The GRk-integral was defined using
a different type of division called δk-fine division. For this division we had
a different type of partial division and the Saks-Henstock lemma where the
building blocks were point-division pairs rather than point-interval pairs as in
the usual case.

It is observed that pointwise tagging is not helpful in studying the GRk-
integral and so we introduce the concept of what we call “local tagging”.
Further the concept of “regulated δk-fine division” is introduced by means of
local tagging and using this type of divisions we introduced the GR∗k-integral.
It was shown that the new integral includes the GRk-integral provided the
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jump J(g;x) exists at every point. We verify some fundamental prperties of
GR∗k integrals and find that the primitive function for a GR∗k integral is also
not additive; rather it is, what we call, nearly additive. We also introduce the
concept of local gk variation which plays an important role in the development
of the integral. We obtain a fundamental theorem of calculus for the GR∗k
integral using the notion of ‘g-regularity’ of primitive functions. Further, we
prove the equi-integrability convergence theorem (see [2]) for the GR∗k integral.

2 Preliminaries

Let k be a fixed positive integer and δ be a positive function defined on [a, b].
We shall call a division D of [a, b] given by a = x0 < x1 < . . . < xn = b with
associated points {ξ0, ξ1, . . . , ξn−k} satisfying

ξi ∈ [xi, xi+k] ⊂ (ξi − δ(ξi), ξi + δ(ξi)) for i = 0, 1, . . . , n− k

a δk-fine division of [a, b]. For a given positive function δ, we denote a δk-fine
division D by {[xi, xi+k], ξi}i=0,1,...,n−k. Using compactness of [a, b] it is easy
to verify that such δk-fine divisions exist. Note that δ1fine divisions coincide
with the usual definition of δ-fine divisions.

Let g be a real-valued function defined on a closed interval [a, b]k+1 in
(k + 1)-dimensional space, and f a real-valued function defined on [a, b]. We
say that f is GRk-integrable with respect to g to I on [a, b] if for every ε > 0
there is a function δ(ξ) > 0 for ξ ∈ [a, b] such that for any δk-fine division
D = {[xi, xi+k], ξi}i=0,1,...,n−k we have∣∣∣∣ n−k∑

i=0

f(ξi)g(xi, . . . , xi+k)− I
∣∣∣∣ < ε.

We shall denote the above Riemann sum by s(f, g;D). If f is integrable with
respect to g in the above sense, we write (f, g) ∈ GRk[a, b] and denote the
integral by

∫ b
a
f dg.

Let x ∈ [xi, xi+k] where xi < xi+1 < . . . < xi+k. The jump of g at x,
denoted by J(g;x), is defined by J(g;x) = limxi→x,xi+k→x g(xi, . . . , xi+k), if
the limit exists finitely.

In [3] the following theorem was proved.

Theorem 2.1. Let (f, g) ∈ GRk[a, c] and (f, g) ∈ GRk[c, b]. If J(g; c) exists,
then (f, g) ∈ GRk[a, b] and∫ b

a

f dg =
∫ c

a

f dg +
∫ b

c

f dg + (k − 1)f(c)J(g; c).
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Remark 2.2. We note that if we define F (u, v) =
∫ v
u
f dg for [u, v] ⊂ [a, b],

then F is not an additive function on the closed subintervals of [a, b] for k > 1.
But for k = 1 it is additive because the extra term vanishes.

Let the domain of F be {[u, v] ⊂ [a, b]|u ≤ v}. We say F is nearly additive
if for a < c < b, F (a, b) = F (a, c) + F (c, c) + F (c, b). Further, F is called
g-nearly additive with respect to f if for all x ∈ (a, b) we have that F (x, x) =
(k− 1)f(x)J(g;x). So, the integral function F of the GRk-integral is g-nearly
additive with respect to f in [a, b].

In [3] the following δk-fine partial division of a special kind was introduced.
Let [ai, bi], i = 1, 2, . . . , p be pairwise non-overlapping, and ∪pi=1[ai, bi] ⊂ [a, b].
Then {Di}i=1,2,...,p is said to be a δk-fine partial division of [a, b] if each Di

is a δk-fine division of [ai, bi]. Its corresponding partial Riemann sum is given

by
p∑
i=1

s(f, g;Di).

With this notion of partial division an analogue of the Saks-Henstock
Lemma was proved (see [3]).

Theorem 2.3. (Saks-Henstock Lemma) If (f, g) ∈ GRk[a, b] and J(g; c) exists
for all c ∈ (a, b), then for every ε > 0 there exists a positive function δ on [a, b]
such that for any δk-fine division D of [a, b] and for any δk-fine partial division
{Di}i=1,2,...,p of [a, b]∣∣∣∣s(f, g;D)−

∫ b

a

f dg

∣∣∣∣ < ε and
∣∣∣∣ p∑
i=1

(
s(f, g;Di)−

∫ bi

ai

f dg
)∣∣∣∣ < (k + 1)ε

where Di is a δk-fine division of [ai, bi].

Remark 2.4. In view of the above definition of partial division and Saks-
Henstock lemma we observe that unlike the usual partial division in Henstock’s
theory we have to consider “point-division” pairs and also we see that these
are the building blocks of the GRk-integral. In other words, “a point” and “an
interval around that point” are not helpful for our purpose; rather “a point”
and “a δk-fine division in a neighbourhood of the point” are what we need.

Keeping this in mind we introduce the concept of local tagging which for
k = 1, reduces to usual “point-interval” tagging.

Definition 2.5. Given a function δ : [a, b] → R+ and a point x ∈ [a, b],
then a δk-fine division D of [u, v] ⊆ [a, b] is said to be locally tagged at x if
[u, v] ⊂ (x− δ(x), x+ δ(x)) with either u = x or v = x.
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It may be noted here that for local tagging at x we need δ to be defined
in a neighbourhood of x. But for simple presentation we considered δ to be
defined on [a, b].

Definition 2.6. A family of triplets {xi, Di, [ai, bi]}pi=1 is called a regulated
δk-fine division of [a, b] if each Di is a δk-fine division of [ai, bi] locally tagged
at xi where [ai, bi], i = 1, 2, . . . , p are non-overlapping with ∪[ai, bi] = [a, b].
Further, {xi, Di, [ai, bi]}pi=1 is called a regulated δk-fine partial division of [a, b]
if ∪[ai, bi] ⊆ [a, b].

3 GR∗
k-integral

We now introduce a GRk-type integral that admits the fundamental theorem
of calculus among other results. Also we will show that if J(g; c) exists for all
c ∈ (a, b), then the new integral contains the GRk integral. We denote the
new integral by GR∗k integral which is defined as follows.

Definition 3.1. Let f : [a, b] → R and g : [a, b]k+1 → R such that J(g; c)
exists for all c ∈ (a, b). We say that f is GR∗k integrable to A with respect to g
on [a, b] if for all ε > 0 there exists δ : [a, b]→ R+ such that for any regulated
δk-fine division {xi, Di, [ai, bi]}pi=1 of [a, b] we have∣∣∣∣ p∑

i=1

s(f, g;Di) +
p−1∑
i=1

(k − 1)f(bi)J(g; bi)−A
∣∣∣∣ < ε

We can easily verify that GR∗k integral is well defined.
If f is GR∗k integrable with respect to g, we write (f, g) ∈ GR∗k[a, b] and

denote the integral also by
∫ b
a
f dg.

In what follows we always assume that J(g;x) exists for all x ∈ (a, b).

Theorem 3.2. Let a < c < b. If (f, g) ∈ GR∗k[a, c] and (f, g) ∈ GR∗k[c, b],
then (f, g) ∈ GR∗k[a, b] and∫ b

a

f dg =
∫ c

a

f dg +
∫ b

c

f dg + (k − 1)f(c)J(g; c).

Proof. Since (f, g) ∈ GR∗k[a, c] ∩GR∗k[c, b], for ε > 0, there exists δ1(x) > 0
and δ2(x) > 0 defined on [a, c] and [c, b] respectively such that∣∣∣∣ p∑

i=1

s(f, g;Di) +
p−1∑
i=1

(k − 1)f(bi)J(g; bi)−
∫ c

a

f dg

∣∣∣∣ < ε,
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and ∣∣∣∣ q∑
j=1

s(f, g;Pj) +
q−1∑
j=1

(k − 1)f(dj)J(g; dj)−
∫ b

c

f dg

∣∣∣∣ < ε,

for every regulated δk1 -fine division {xi, Di, [ai, bi]}pi=1 of [a, c] and regulated
δk2 -fine division {yj , Pj , [cj , dj ]}qj=1 of [c, b] respectively. We define δ(x) =
min{δ1(x), c− x} when x ∈ [a, c), min{δ2(x), x− c} when x ∈ (c, b], and min
{δ1(c), δ2(c)} when x = c. For any δ-fine division D of [a, b], c is always an
associated point of D. Let {zl, Ql, [ul, vl]}rl=1 be a regulated δk-fine division
of [a, b]. So, c is one of ul or vl for some l = 1, 2, . . . , r. Then,∣∣∣∣ r∑

l=1

s(f, g;Ql) +
r−1∑
l=1

(k − 1)f(vl)J(g; vl)

−
{∫ c

a

f dg +
∫ b

c

f dg + (k − 1)f(c)J(g; c)
}∣∣∣∣

≤
∣∣∣∣∑

1

s(f, g;Ql) +
∑

1

(k − 1)f(vl)J(g; vl)−
∫ c

a

f dg

∣∣∣∣
+
∣∣∣∣∑

2

s(f, g;Ql) +
∑

2

(k − 1)f(vl)J(g; vl)−
∫ b

c

f dg

∣∣∣∣ < 2ε,

where
∑

1,
∑

2 denote respectively the partial sum and jumps over [a, c] and
[c, b] respectively. So, (f, g) ∈ GR∗k[a, b] and the result follows.

It is to be noted that Remark 2.2 still holds for GR∗k integral. Similar to
Theorem 2.3 [3] we can prove the following Cauchy condition for GR∗kintegral.

Theorem 3.3. (f, g) ∈ GR∗k[a, b] if and only if for every ε > 0 there ex-
ists a positive function δ on [a, b] such that for all regulated δk-fine divisions
{xi, Di, [ai, bi]}pi=1 and {yj , Pj , [cj , dj ]}qj=1 of [a, b] we have

∣∣∣∣( p∑
i=1

s(f, g;Di)+
p−1∑
i=1

(k − 1)f(bi)J(g; bi)
)

−
( q∑
j=1

s(f, g;Pj) +
q−1∑
j=1

(k − 1)f(dj)J(g; dj)
)∣∣∣∣ < ε.

Also similar to Theorem 2.4 of [3], we have the following result.

Theorem 3.4. If (f, g) ∈ GR∗k[a, b] and a ≤ c < d ≤ b, then (f, g) ∈ GR∗k[c, d].
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Next we come to the Saks-Henstock Lemma for the GR∗k integral.

Theorem 3.5. (Saks-Henstock Lemma) (f, g) ∈ GR∗k[a, b] if and only if there
exists a function F , g-nearly additive with respect to f , satisfying the condition
that for all ε > 0 there exists δ : [a, b]→ R+ such that for all regulated δk-fine
partial division {xi, Di, [ai, bi]}pi=1 of [a, b] we have∣∣∣∣ p∑

i=1

{s(f, g;Di)− F (ai, bi)}
∣∣∣∣ < ε.

Proof. Let (f, g) ∈ GR∗k[a, b]. Since (f, g) ∈ GR∗k[a, b], for ε > 0 there exists
δ(x) > 0 , x ∈ [a, b] such that for all regulated δk-fine division {zr, Qr, [ur, vr]}tr=1

of [a, b] we have∣∣∣∣ t∑
r=1

s(f, g;Qr) +
t−1∑
r=1

(k − 1)f(vr)J(g; vr)− F (a, b)
∣∣∣∣ < ε,

where F (u, v) =
∫ v
u
fdg. We define F (u, v) = (k − 1)f(u)J(g;u) when u =

v. Let {xi, Di, [ai, bi]}pi=1 be a regulated δk-fine partial division of [a, b], and
∪qj=1[cj , dj ] be the closure of the complements of ∪pi=1[ai, bi] in [a, b]. By
Theorem-3.4, (f, g) ∈ GR∗k[cj , dj ], j = 1, 2, . . . , q and so we can find δj(x) >
0, j = 1, 2, . . . , q defined on [cj , dj ] such that for all regulated δkj -fine division
{yjs, Djs, [cjs, djs]}

mj

s=1 of [cj , dj ], j = 1, 2, . . . , q we have

∣∣∣∣ mj∑
s=1

s(f, g;Djs) + (k − 1)
mj−1∑
s=1

f(djs)J(g; djs)− F (cjs, djs)
∣∣∣∣ < ε

q
.

We may assume that δj(x) ≤ δ(x) for x ∈ [cj , dj ], j = 1, 2, . . . , q.

Now {yjs, Djs, [cjs, djs]}
mj

s=1; j = 1, 2, . . . , q and {xi, Di, [ai, bi]}pi=1 is a reg-
ulated δk-fine division of [a, b].
Let Λ be the set of common end points of [ai, bi] and [cj , dj ].

Now,∣∣∣∣ q∑
j=1

mj∑
s=1

s(f, g;Djs)+
p∑
i=1

s(f, g;Di) + (k − 1)
q∑
j=1

mj−1∑
s=1

f(djs)J(g; djs)

+(k − 1)
∑
x∈Λ

f(x)J(g;x)− F (a, b)
∣∣∣∣ < ε.
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Also by Theorem 3.2,

F (a, b) =
p∑
i=1

F (ai, bi) + (k − 1)
∑
x∈Λ

f(x)J(g;x)

+
q∑
j=1

F (cj , dj)
∣∣∣∣ p∑
i=1

s(f, g;Di)−
p∑
i=1

F (ai, bi)
∣∣∣∣

≤
∣∣∣∣ q∑
j=1

mj∑
s=1

s(f, g;Djs)

+
p∑
i=1

s(f, g;Di) + (k − 1)
q∑
j=1

mj−1∑
s=1

f(djs)J(g; djs)

+ (k − 1)
∑
x∈Λ

f(x)J(g;x)− F (a, b)
∣∣∣∣

+
∣∣∣∣(k − 1)

q∑
j=1

mj−1∑
s=1

f(djs)J(g; djs)

+
q∑
j=1

mj∑
s=1

s(f, g;Djs)−
q∑
j=1

F (cj , dj)
∣∣∣∣ < 2ε.

Conversely, let there exist δ(x) > 0, for x ∈ [a, b] and a function F , g-
nearly additive with respect to f so that the given condition holds for any
regulated δk-fine division in [a, b]. Let {xi, Di, [ai, bi]}pi=1 be any regulated δk-

fine division of [a, b] such that
∣∣∣∣∑p

i=1 s(f, g;Di)−
∑p
i=1 F (ai, bi)

∣∣∣∣ < ε. Now F

being g-nearly additive, F (a, b) =
∑p
i=1 F (ai, bi) + (k − 1)

∑p−1
i=1 f(bi)J(g; bi).

So,
∣∣∣∣∑p

i=1 s(f, g;Di)+(k−1)
∑p−1
i=1 f(bi)J(g; bi)−F (a, b)

∣∣∣∣ < ε. Hence , (f, g) ∈

GR∗k[a, b].

Remark 3.6. In view of the above lemma, it follows that if J(g; c) exists for
all c ∈ (a, b), then (f, g) ∈ GRk[a, b] implies that (f, g) ∈ GR∗k[a, b]. Also,when
(f, g) is GRk[a, b] ∩GR∗k[a, b] , the respective integrals are equal.

In [3] we used the concept of bounded variation of kth order of g. We now
introduce the notion of local bounded variation of kth order.
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For X ⊂ [a, b], we define

LV kg (X) = infδ sup
{ p∑
i=1

|s(1, g;Di)|
}
,

where the sup is taken over all regulated δk-fine partial division {xi, Di, [ai, bi]}pi=1

of [a, b] such that xi ∈ X. Then X ⊂ [a, b] is said to be of Lgk-variation zero
if LV kg (X) = 0.

For example, let X be countable. LV kg (X) = 0 if and only if J(g;x) = 0
at every x ∈ X. A function g is said to be LBV k(X) if LV kg (X) is finite.

Also g is said to be LBV kG(X) if X = ∪∞j=1Xj such that g is LBV k(Xj)
for each j.

We can easily show that, g ∈ BV k[a, b] implies that g ∈ LBV k[a, b]
A property is said to hold Lgk a.e. if it holds everywhere in [a, b] except

on a set of Lgk-variation zero. It is easy to verify the following result.

Theorem 3.7. If f1 or f2 is GR∗k integrable with respect to g on [a, b] and
f1 = f2, Lgk a.e. in [a, b], then the other is also integrable and

∫ b
a
f1 dg =∫ b

a
f2 dg.

4 Some Results

Definition 4.1. Let F be a function g-nearly additive with respect to f on
[a, b]. F is said to be g-regular with respect to f at x ∈ [a, b] if for all ε > 0,
there exists a function δ(x) > 0, defined on [a, b] such that for all δk-fine
divisions D = {[xi, xi+k]; ξi}i=0,1,2...,n−k of [u, v] ⊂ [a, b] locally tagged at x
we have

|(D)
∑

f(ξi)g(xi, . . . , xi+k)− F (u, v)| < ε(D)
∑
|g(xi, . . . , xi+k)|.

Definition 4.2. Let f : [a, b]→ R, g : [a, b]k+1→R and F be g-nearly additive
with respect to f in [a, b]. Given ε > 0 and a function δ : [a, b]→R+, we define
Γε,δ =

{
(x,D) : D = {[xi, xi+k]; ξi}n−ki=0 is a δk-fine division of [u, v] locally

tagged at x ∈ [a, b] such that

|(D)
∑

f(ξi)g(xi, . . . , xi+k)− F (u, v)| ≥ ε(D)
∑
|g(xi, . . . , xi+k)|

}
.

Theorem 4.3. Let F be g-nearly additive function defined on [a, b] and
g ∈ LBV kG[a, b]. If F is g-regular at all x ∈ [a, b], then (f, g) ∈ GR∗k[a, b] with
primitive F.
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Proof. Since g ∈ LBV kG[a, b], there exists non-overlapping Ej , j = 1, 2, . . .
such that [a, b] = ∪Ej and g ∈ LBV k(Ej) for all j. So, there exists δ1j(x) >
0, j = 1, 2, . . . defined on [a, b] and Mj > 0 such that

∑pj

i=1 |s(1, g;Dij)| < Mj

for all regulated δk1j-fine division {xij , Dij , [aij , bij ]}
pj

i=1, xij ∈ Ej . F being g-
regular at all x ∈ [a, b], for ε > 0 and j = 1, 2, . . . there exists δ2j(x) > 0, for
x ∈ [a, b] such that for all δk2j-fine division D = {[xi, xi+k]; ξi} of [u, v] locally
tagged at x ∈ [a, b] we have

|F (u, v)− (D)
∑

f(ξi)g(xi, . . . , xi+k)| < ε

2jMj
(D)

∑
|g(xi, . . . , xi+k|.

We define δ(x) = min {δ1j(x), δ2j(x)}, x ∈ Ej . Let {xi, Di, [ai, bi]}pi=1 be any
regulated δk-fine partial division of [a, b].∣∣∣∣ p∑

i=1

{s(f, g;Di)− F (ai, bi)}
∣∣∣∣ ≤ p∑

i=1

∣∣∣∣s(f, g;Di)− F (ai, bi)
∣∣∣∣

=
∞∑
j=1

∑
xi∈Ej

∣∣∣∣s(f, g;Di)− F (ai, bi)
∣∣∣∣

≤
∞∑
j=1

ε

2jMj

∑
x∈Ej

∣∣∣∣s(1, g;Di)
∣∣∣∣ < ε.

So (f, g) ∈ GR∗k[a, b] with primitive F .

Theorem 4.4. Let F be a function g-nearly additive with respect to f on [a, b]
and g ∈ LBV kG[a, b]. Then (f, g) ∈ GR∗k[a, b] with primitive F if for all ε > 0
there exists δ : [a, b] → R+ such that for all regulated δk-fine partial division
{xi, Di, [ai, bi]}pi=1 of [a, b], where (xi, Di) ∈ Γε,δ, i = 1, 2, . . . , p we have

p∑
i=1

|s(f, g;Di)| < ε and
p∑
i=1

|F (ai, bi)| < ε.

The converse also holds if [a, b] = ∪∞l=1Xl is such that for each l there ex-
ists a δl : [a, b] → R+ and Ml > 0 so that for any δk-fine division D =
{[xi, xi+k]; ξi}n−ki=0 of [u, v] locally tagged at x ∈ Xl, we have∣∣∣∣ n−k∑

i=0

f(ξi)g(xi, . . . , xi+k)
∣∣∣∣ ≤Ml

n−k∑
i=0

∣∣∣∣g(xi, . . . , xi+k)
∣∣∣∣.

Proof. Let the given conditions hold. Since, g ∈ LBV kG[a, b], there exists
non-overlapping Ej , j = 1, 2, . . . with [a, b] = ∪∞j=1Ej such that g ∈ LBV k(Ej).
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So, we can find δ1j(x) > 0, x ∈ [a, b] and Mj > 0 such that for all reg-
ulated δk1j-fine partial division {xi, Di, [ai, bi]}pi=1 of [a, b], xi ∈ Ej we have∑p
i=1 |s(1, g;Di)| < Mj . For x ∈ X ′(ε) ∩ Ej , there exists δ2j(x) > 0 defined

on [a, b] such that for all δk2j-fine division D = {[xi, xi+k]; ξi} of [u, v] locally
tagged at x, we have

|(D)
n−k∑
i=1

f(ξi)g(xi, . . . , xi+k)− F (u, v)| < ε

2jMj

n−k∑
i=1

|g(xi, . . . , xi+k)|.

Let δ(x) =min{δ1j(x), δ2j(x)}, x ∈ Ej and {xi, Di, [ai, bi]}pi=1 be a regulated
δk-fine partial division of [a, b]. Then

|
p∑
i=1

{s(f, g;Di)− F (ai, bi)}| ≤
∑

xi∈X(ε)

|s(f, g;Di)|+
∑

xi∈X(ε)

|F (ai, bi)|

+
∑

xi∈X′(ε)

|s(f, g;Di)− F (ai, bi)|

<2ε+
∞∑
j=1

∑
xi∈X′(ε)∩Ej

|s(f, g;Di)− F (ai, bi)|

<2ε+
∞∑
j=1

∑
xi∈X′(ε)∩Ej

ε

2jMj
|s(1, g;Di)|

=2ε+
∞∑
j=1

ε

2jMj
Mj = 3ε.

So,(f, g) ∈ GR∗k[a, b].
Conversely, let (f, g) ∈ GR∗k[a, b] with primitive F and f satisfies the given

condition. We may assume that Xl are disjoint. So, there exists Ml > 1 and
δ1l(x) > 0, for x ∈ [a, b] such that

|(D)
∑

f(ξi)g(xi, . . . , xi+k)| ≤Ml

∑
|g(xi, . . . , xi+k)|,

for any δk1l-fine division D = {[xi, xi+k]; ξi} of [u, v] locally tagged at x ∈ Xl.
By the Henstock Lemma, there exists δ2l(x) > 0 on [a, b] such that for every
regulated δk2l-fine partial division {xi, Di, [ai, bi]}pi=1 of [a, b] we have

∣∣∣ p∑
i=1

{s(f, g;Di)− F (ai, bi)}
∣∣∣ < ε2

2l+1Ml
.
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We define δ(x) = min{δ1l(x), δ2l(x)}, x ∈ Xl. Let {xi, Di, [ai, bi]}pi=1 be a
regulated δk-fine partial division of [a, b], where (xi, Di) ∈ Γε,δ. Then,

p∑
i=1

|s(f, g;Di)| ≤
∞∑
l=1

∑
xi∈Xl

|s(f, g;Di) ≤
∞∑
l=1

Ml

∑
xi∈Xl

|s(1, g;Di)|

≤
∞∑
l=1

Ml

ε

∑
xi∈Xl

|s(f, g;Di)− F (ai, bi)| ≤
∞∑
l=1

Ml2ε2

ε2l+1Ml
= ε.

Furthermore, δ may be chosen such that

p∑
i=1

∣∣∣∣F (ai, bi)
∣∣∣∣ ≤ p∑

i=1

∣∣∣∣s(f, g;Di)− F (ai, bi)
∣∣∣∣+

p∑
i=1

∣∣∣∣s(f, g;Di)
∣∣∣∣ < ε.

We note that in this part we do not need g ∈ LBV kG[a, b].

Corollary 4.5. If f satisfies the condition of the second part of the above
Theorem, and F be a function g-nearly additive with respect to f on [a, b] and
g ∈ LBV kG[a, b], then (f, g) ∈ GR∗k[a, b] with primitive F if and only if for
all ε > 0 there exists δ : [a, b] → R+ such that for all regulated δk-fine partial
division {xi, Di, [ai, bi]}pi=1 of [a, b], where (xi, Di) ∈ Γε,δ we have

p∑
i=1

|s(1, g;Di)| < ε and
p∑
i=1

|F (ai, bi)| < ε.

Proof. If (f, g) ∈ GR∗k[a, b] with primitive F , then the above inequalities are
satisfied which can be easily seen from the proof of the first part of Theorem-
4.4.

Conversely, let the above conditions hold. We define Xl as in the above
theorem. Let ε > 0. Then for every εl =

ε

Ml2l+1
, there exists δl(x) > 0 such

that
∑p
i=1 |s(1, g;Di)| < εl and

∑p
i=1 |F (ai, bi)| < εl, whenever {xi, Di, [ai, bi]}

is a regulated δkl -fine partial division of [a, b], where (xi, Di) ∈ Γεl,δl
. Now let δ

be so that δ(x) ≤ δl(x), x ∈ Xl. Then for any regulated δk-fine partial division
{xi, Di, [ai, bi]}pi=1 of [a, b], where (xi, Di) ∈ Γε,δ ⊂ ∩∞l=1Γεl,δl

,

p∑
i=1

|s(f, g;Di)| ≤
∞∑
l=1

∑
xi∈Xl

|s(1, g;Di)| < ε.

The proof is complete by Theorem 4.4.
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5 Convergence Theorem

Definition 5.1. Let (fn, g) ∈ GR∗k[a, b]. {(fn, g)} is said to be equi-GR∗k-
integrable on [a, b] if for all ε > 0 there exists δ(x) > 0, x ∈ [a, b], independent
of n, such that

∣∣∣ p∑
i=1

s(fn, g;Di) + (k − 1)
p−1∑
i=1

fn(bi)J(g; bi)−
∫ b

a

fndg
∣∣∣ < ε,

for all n, whenever {xi, Di, [ai, bi]}pi=1 is a regulated δk-fine division of [a, b].

Theorem 5.2. Let g ∈ LBV k[a, b]. If (i) {(fn, g)}is equi-GR∗k-integrable,
(ii)fn(x)→ f(x) as n→∞ for all x ∈ [a, b], then (f, g) ∈ GR∗k[a, b] and

∫ b

a

fdg = lim
n→∞

∫ b

a

fndg.

Proof. Since {(fn, g)} is equi-GR∗k-integrable, for every ε > 0, there exists
δ0(x) > 0, for x ∈ [a, b] independent of n such that

∣∣∣∣ p∑
i=1

s(fn, g;Di) + (k − 1)
p−1∑
i=1

fn(bi)J(g; bi)−An
∣∣∣∣ < ε,

for all regulated δk-fine division {(xi, Di, [ai, bi])} of [a, b] where An =
∫ b
a
fndg.

Now g ∈ LBV k[a, b] implies that there exists δ1(x) > 0, x ∈ [a, b] and
M > 0 such that

∑p
i=1 |s(1, g;Di)| < M for all regulated δk1 -fine division

{(xi, Di, [ai, bi])} of [a, b]. Let δ(x) = min {δ0(x), δ1(x)}, x ∈ [a, b]. Since
fn(x) → f(x) as n → ∞, for all x ∈ [a, b] and since there are finite number
of associated points in regulated δk-fine partial division {(xi, Di, [ai, bi])}pi=1

we can find N1 such that |fn(ξ) − f(ξ)| < ε
M for all n > N1 and for all

ξ ∈ Λ = the set of associated points of Di. So, for all n > N1 we have∑p
i=1 |s(fn, g;Di) − s(f, g;Di)| < ε. Also there exists N2 > N1 such that for

all n > N2,

∣∣∣∣(k − 1)
p−1∑
i=1

fn(bi)J(g; bi)− (k − 1)
p−1∑
i=1

f(bi)J(g; bi)
∣∣∣∣ < ε.
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Now, for n,m > N2

|An −Am| ≤
∣∣∣∣ p∑
i=1

s(fm, g;Di) + (k − 1)
p−1∑
i=1

fm(bi)J(g; bi)−Am
∣∣∣∣

+
∣∣∣∣ p∑
i=1

s(fn, g;Di) + (k − 1)
p−1∑
i=1

fn(bi)J(g; bi)−An
∣∣∣∣

+
∣∣∣∣ p∑
i=1

s(fm, g;Di)−
p∑
i=1

s(fn, g;Di)
∣∣∣∣

+
∣∣∣∣(k − 1)

p−1∑
i=1

fn(bi)J(g; bi)− (k − 1)
p−1∑
i=1

fm(bi)J(g; bi)
∣∣∣∣ < 4ε.

So {An} is a Cauchy sequence. Let A = limn→∞An and for n > N > N2 let∣∣∣ ∫ ba fndg −A∣∣∣ < ε. For fixed n > N , we have

∣∣∣∣ p∑
i=1

s(f, g;Di)+(k − 1)
p−1∑
i=1

f(bi)J(g; bi)−A
∣∣∣∣

≤
∣∣∣∣ p∑
i=1

s(fn, g;Di) + (k − 1)
p−1∑
i=1

fn(bi)J(g; bi)−An
∣∣∣∣

+
∣∣∣∣(k − 1)

p−1∑
i=1

fn(bi)J(g; bi)− (k − 1)
p−1∑
i=1

f(bi)J(g; bi)
∣∣∣∣

+
∣∣∣∣ p∑
i=1

s(fn, g;Di)−
p∑
i=1

s(f, g;Di)
∣∣∣∣+
∣∣∣∣An −A∣∣∣∣ < 4ε.

So, (f, g) ∈ GR∗k[a, b] and
∫ b
a
fdg = limn→∞

∫ b
a
fndg.
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