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THE QUASICONTINUITY OF DELTA-FINE
FUNCTIONS

1 Introduction

We wish to take advantage of the exploratory nature of the Inroads section
to report on progress toward answering a question we posed with Richard
O’Malley in [3]. There we noted the difficulty we were having trying to find
an effective characterization of the class UPA of universally polygonally ap-
proximable functions. While several related subclasses of Baire one functions
have aesthetically pleasing characterizations, UPA strikes us as more elusive.

One difficulty is that it is not closed in the sup metric [3]. Thus, if one
is looking for a geometric characterization, one should perhaps look, instead,
for a characterization of its closure, UPA. In [3] we defined the class DF of
delta-fine functions, which is closed, showed that UPA ⊆ DF, but were unable
to determine if UPA = DF.

Although the theorem presented in this paper doesn’t decide this question,
it does provide additional insight into the similarity of these two function
classes. In [2] we showed that the set of points at which a UPA function
fails to be quasicontinuous is very small in the sense of porosity; indeed, it
was shown to be σ-(1 − ε)-symmetrically porous for every ε > 0. (In [1]
we examined how tantalizingly close this result is to being sharp.) Here we
show that the same exceptional behavior is true for the class DF; that is, for
every ε > 0 the set of nonquasicontinuity points for a delta-fine function is
σ-(1− ε)-symmetrically porous.

Although there are obvious similarities between the proof presented here
and the UPA case proved in [2], the proofs differ at critical points. The main
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point of this note then is to remark that one cannot distinguish these classes
by the nature of their exceptional sets of quasicontinuity.

2 Definitions and Notation

Definition 1. Let f : [0, 1]→ R.

a) We say that a function h : [0, 1] → R is a polygonal function for f
if there is a partition τ = {0 = a0 < a1 < a2 < · · · < am = 1}
such that h agrees with f at each partition point and is linear on the
intervening closed intervals. We call a0, a1, . . . , am the nodes of h and
(a0, h(a0)), (a1, h(a1)), . . . , (am, h(am)) the vertices of h. The maximum
distance between adjacent nodes is called the mesh of h.

b) We say that a sequence {hn} of polygonal functions for f polygonally
approximates f provided both limn→∞ hn(x) = f(x) for every x ∈ [0, 1]
and limn→∞mesh(hn) = 0. In this case we say that f is polygonally
approximable. Further, if all the nodes of the polygonal functions, other
than 0 and 1, belong to the set of points of continuity, C(f), we say
that {hn} C(f)-polygonally approximates f and that f is universally
polygonally approximable. The collection of all universally polygonally
approximable functions is UPA.

As noted in [3], if f ∈ UPA in the above sense, then given any dense subset
D in [0, 1], it is possible to construct a sequence {hn} of polygonal functions
for f which polygonally approximates f and has the property that all nodes
of each hn lie in D ∪ {0, 1}. This is the reason for using the word universal.

If f : [0, 1]→ R and τ = {a = a0 < a1 < a2 < · · · < an = b} is a partition
of [a, b], we let Pf,τ,[a,b] denote that function which agrees with f at each point
of τ and is linear on the intervening intervals. We omit the subscripts f and
[a, b] if the function f and interval [a, b] are understood.

Definition 2. A function f : [0, 1]→ R is said to have the delta-fine property
if for each closed set W and each ε > 0, there are two points a < b in C(f)
such that [a, b]∩W 6= ∅ and such that for every δ > 0 there is a δ-fine partition
τ = {a = a0 < a1 < a2 < · · · < an = b} of [a, b] consisting of points in C(f)
such that |Pf,τ,[a,b](x)− f(x)| < ε for every x ∈ W ∩ [a, b]. We let DF denote
the class of all functions having the delta-fine property.

Definition 3. A function f : [0, 1] → R is quasi-continuous at x if every
neighborhood of (x, f(x)) contains a point of f |C(f). We let Q(f) denote the
set of points of quasi-continuity of f andNQ(f) = [0, 1]\Q(f). IfQ(f) = [0, 1],



The Quasicontinuity of Delta-Fine Functions 545

we say that f is a quasi-continuous function and we let QC denote the class
of all such functions.

3 The Result

Theorem 1. Let f ∈ DF . Then, for every ε > 0, NQ(f) =
⋃∞
i=1Ei where

each Ei is closed and (1− ε)-symmetrically porous.

Proof. Let ε > 0 be given and without loss of generality assume that ε <
1
2 . Throughout this proof the numbers s, t, r1, r2 are assumed to be rational.
Suppose s < t, set δ∗ = (t− s)/2, and define

Est = {xo ∈ NQ(f) : ∀x ∈ C(f) ∩ (xo − δ∗, xo + δ∗), f(x) ≥ t or f(x) ≤ s}.

Then Es,t is closed for each s < t, and NQ(f) is clearly the union of the Est’s.
Now, fix s < t. Then for r1 and r2 satisfying

s < r1 < r2 < t, and r2 − r1 <
ε ·min (r1 − s, t− r2)

6

define Dr1,r2 = f−1((r1, r2)) ∩ Es,t. Then Est can clearly be expressed as a
countable union of the Dr1,r2 ’s. Fix such a pair r1, r2. As f belongs to Baire
Class 1 and Es,t is closed, Dr1,r2 =

⋃∞
i=1 Fi where each Fi is closed. Let F

denote one of the Fi’s. As f ∈ DF , there is a portion, (a, b)∩ F , of F so that
∀δ > 0, there is a partition, τ ≡ τδ of [a, b] such that

|Pτ (x)− f(x)| < r2 − r1
2

, (1)

whenever x ∈ (a, b) ∩ F . Now, fix 0 < δ < δ∗, suppose x0 ∈ F , and let y ≡
yδ < xo < zδ ≡ z be the nodes of Pτ which span xo. Then, y, z ∈ C(f) so that
f(y), f(z) 6∈ (s, t). For definiteness, we suppose that f(y) ≤ s and f(z) ≥ t.
Since Pτ approximates f at xo and r1 < f(xo) < r2, the only other case is
that where f(z) ≤ s and f(y) ≥ t which is similar to the case considered here.
We also assume t− r2 ≤ r1− s. Let t∗ = t− 2(r2− r1) and s∗ = 2Pτ (xo)− t∗.
Then,

s∗ > 2(r1 −
r2 − r1

2
)− t∗ = 3r1 − r2 − t∗

= r1 − (t− r2) ≥ r1 − (r1 − s) = s.

Also,

r2 − r1 <
ε(t− r2)

6
=
ε

6
[(t∗ − r2) + 2(r2 − r1)]
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and thus,

r2 − r1 <
ε
6

1− 2ε
6

(t∗ − r2) =
ε

6− 2ε
(t∗ − r2) <

ε

5
(t∗ − r2) since ε <

1
2
.

Moreover,

r1 − s∗ > r1 − (2(r2 +
r2 − r1

2
)− t∗) = (t∗ − r2)− 2(r2 − r1)

>
5
ε

(r2 − r1)− 2(r2 − r1) = (
5− 2ε
ε

)(r2 − r1) >
4
ε

(r2 − r1),

again using the fact that ε < 1
2 . Hence,

r2 − r1 <
ε

4
min (t∗ − r2, r1 − s∗). (2)

Now, set y′ = P−1
τ (2r1− r2) and suppose x ∈ (y, y′). Then, Pτ (x) = Lyz(x) <

2r1 − r2. But if x ∈ F , |Pτ (x) − f(x)| < r2−r1
2 (using (1)) and as Pτ (x) <

2r1 − r2,

f(x) ≤ Pτ (x) + |f(x)− Pτ (x)| < 2r2 − r1 +
r2 − r1

2
< r1.

This, however, contradicts the fact that F ⊆ Dr1r2 . Hence, x 6∈ F and it
follows that F ∩ (y, y′) = ∅. In a completely analogous manner, one shows
that F ∩ (z′, z) = ∅ where z′ = P−1

τ (2r2 − r1). The remainder of the proof
is devoted to using the intervals (y, y′) and (z′, z) to compute a symmetric
porosity ratio at xo.

To this end, set yo = P−1
τ (s∗)and zo = P−1

τ (t∗). Then (yo, y′) ⊆ (y, y′),
(z′, zo) ⊆ (z′, z), and the intervals (yo, y′) and (z′, zo) are symmetric about xo.
Using similar triangles, we note that

y′ − yo
xo − yo

=
Pτ (y′)− Pτ (yo)
Pτ (xo)− Pτ (yo)

=
2r1 − r2 − s∗

Pτ (xo)− s∗
>

2r1 − r2 − s∗

r2 + r1+r2
2 − s∗

=
1− r2−r1

r1−s∗

1 + 3
2
r2−r1
r1−s∗

>
1− ε

4

1 + 3ε
8

using (2)

> 1− 5ε
8
> 1− ε.

Since this holds for all sufficiently small δ, it follows that the symmetric poros-
ity of F at xo, sp(F, xo), is at least 1− ε and since xo was an arbitrary point
in (a, b) ∩ F , we have that for all x ∈ (a, b) ∩ F , sp(F, x) ≥ 1− ε.
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As a consequence, we can conclude that there is a dense open set U ∩ F
of F having the property that for each x ∈ U ∩ F , sp(F, x) ≥ 1 − ε. Set
G1 = U ∩ F and F 1 = F\G1. As f ∈ DF , we can repeat the argument
above with F replaced by F 1 to find a relatively open set G2 = U2∩F 1 and a
closed set F 2 = F 1\G2. Continuing in this manner we construct a descending
(possibly transfinite) sequence of closed sets, {Fn}, each of which is (1 − ε)-
symmetrically porous. As any such decreasing sequence is at most countable,
the theorem obtains.
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