Michael J. Evans, Department of Mathematics, Washington and Lee University, Lexington, Virginia 24450. e-mail: mjevans@wlu.edu Paul D. Humke, Department of Mathematics, St. Olaf College, Northfield, Minnesota 45701. e-mail: humke@stolaf.edu

THE QUASICONTINUITY OF DELTA-FINE FUNCTIONS

1 Introduction

We wish to take advantage of the exploratory nature of the Inroads section to report on progress toward answering a question we posed with Richard O'Malley in [3]. There we noted the difficulty we were having trying to find an effective characterization of the class UPA of *universally polygonally approximable* functions. While several related subclasses of Baire one functions have aesthetically pleasing characterizations, UPA strikes us as more elusive.

One difficulty is that it is not closed in the sup metric [3]. Thus, if one is looking for a geometric characterization, one should perhaps look, instead, for a characterization of its closure, $\overline{\text{UPA}}$. In [3] we defined the class DF of delta-fine functions, which is closed, showed that UPA \subseteq DF, but were unable to determine if $\overline{\text{UPA}} = \text{DF}$.

Although the theorem presented in this paper doesn't decide this question, it does provide additional insight into the similarity of these two function classes. In [2] we showed that the set of points at which a UPA function fails to be quasicontinuous is very small in the sense of porosity; indeed, it was shown to be σ - $(1 - \epsilon)$ -symmetrically porous for every $\epsilon > 0$. (In [1] we examined how tantalizingly close this result is to being sharp.) Here we show that the same exceptional behavior is true for the class DF; that is, for every $\epsilon > 0$ the set of nonquasicontinuity points for a delta-fine function is σ - $(1 - \epsilon)$ -symmetrically porous.

Although there are obvious similarities between the proof presented here and the UPA case proved in [2], the proofs differ at critical points. The main

Key Words: universally polygonally approximable, delta-fine, quasicontinuity

Mathematical Reviews subject classification: 26A15, 26A21

Received by the editors November 6, 2000

^{*}Papers authored or co-authored by a member of the editorial board are managed by a Managing Editor or one of the other Contributing Editors.

⁵⁴³

point of this note then is to remark that one cannot distinguish these classes by the nature of their exceptional sets of quasicontinuity.

2 Definitions and Notation

Definition 1. Let $f : [0,1] \to \mathbb{R}$.

- a) We say that a function $h : [0,1] \to \mathbb{R}$ is a polygonal function for f if there is a partition $\tau = \{0 = a_0 < a_1 < a_2 < \cdots < a_m = 1\}$ such that h agrees with f at each partition point and is linear on the intervening closed intervals. We call a_0, a_1, \ldots, a_m the nodes of h and $(a_0, h(a_0)), (a_1, h(a_1)), \ldots, (a_m, h(a_m))$ the vertices of h. The maximum distance between adjacent nodes is called the mesh of h.
- b) We say that a sequence $\{h_n\}$ of polygonal functions for f polygonally approximates f provided both $\lim_{n\to\infty} h_n(x) = f(x)$ for every $x \in [0, 1]$ and $\lim_{n\to\infty} mesh(h_n) = 0$. In this case we say that f is polygonally approximable. Further, if all the nodes of the polygonal functions, other than 0 and 1, belong to the set of points of continuity, C(f), we say that $\{h_n\} C(f)$ -polygonally approximates f and that f is universally polygonally approximable. The collection of all universally polygonally approximable functions is UPA.

As noted in [3], if $f \in UPA$ in the above sense, then given any dense subset D in [0, 1], it is possible to construct a sequence $\{h_n\}$ of polygonal functions for f which polygonally approximates f and has the property that all nodes of each h_n lie in $D \cup \{0, 1\}$. This is the reason for using the word *universal*.

If $f: [0,1] \to \mathbb{R}$ and $\tau = \{a = a_0 < a_1 < a_2 < \cdots < a_n = b\}$ is a partition of [a, b], we let $P_{f,\tau,[a,b]}$ denote that function which agrees with f at each point of τ and is linear on the intervening intervals. We omit the subscripts f and [a, b] if the function f and interval [a, b] are understood.

Definition 2. A function $f:[0,1] \to \mathbb{R}$ is said to have the *delta-fine property* if for each closed set W and each $\epsilon > 0$, there are two points a < b in C(f)such that $[a,b] \cap W \neq \emptyset$ and such that for every $\delta > 0$ there is a δ -fine partition $\tau = \{a = a_0 < a_1 < a_2 < \cdots < a_n = b\}$ of [a,b] consisting of points in C(f)such that $|P_{f,\tau,[a,b]}(x) - f(x)| < \epsilon$ for every $x \in W \cap [a,b]$. We let DF denote the class of all functions having the delta-fine property.

Definition 3. A function $f : [0,1] \to \mathbb{R}$ is quasi-continuous at x if every neighborhood of (x, f(x)) contains a point of f|C(f). We let Q(f) denote the set of points of quasi-continuity of f and $NQ(f) = [0,1] \setminus Q(f)$. If Q(f) = [0,1],

we say that f is a *quasi-continuous function* and we let QC denote the class of all such functions.

3 The Result

Theorem 1. Let $f \in DF$. Then, for every $\epsilon > 0$, $NQ(f) = \bigcup_{i=1}^{\infty} E_i$ where each E_i is closed and $(1 - \epsilon)$ -symmetrically porous.

PROOF. Let $\epsilon > 0$ be given and without loss of generality assume that $\epsilon < \frac{1}{2}$. Throughout this proof the numbers s, t, r_1, r_2 are assumed to be rational. Suppose s < t, set $\delta^* = (t - s)/2$, and define

$$E_{st} = \{x_o \in NQ(f) : \forall x \in C(f) \cap (x_o - \delta^*, x_o + \delta^*), \ f(x) \ge t \text{ or } f(x) \le s\}.$$

Then $E_{s,t}$ is closed for each s < t, and NQ(f) is clearly the union of the E_{st} 's. Now, fix s < t. Then for r_1 and r_2 satisfying

$$s < r_1 < r_2 < t$$
, and $r_2 - r_1 < \frac{\epsilon \cdot \min(r_1 - s, t - r_2)}{6}$

define $D_{r_1,r_2} = f^{-1}((r_1,r_2)) \cap E_{s,t}$. Then E_{st} can clearly be expressed as a countable union of the D_{r_1,r_2} 's. Fix such a pair r_1, r_2 . As f belongs to Baire Class 1 and $E_{s,t}$ is closed, $D_{r_1,r_2} = \bigcup_{i=1}^{\infty} F_i$ where each F_i is closed. Let F denote one of the F_i 's. As $f \in DF$, there is a portion, $(a,b) \cap F$, of F so that $\forall \delta > 0$, there is a partition, $\tau \equiv \tau_{\delta}$ of [a,b] such that

$$|P_{\tau}(x) - f(x)| < \frac{r_2 - r_1}{2},\tag{1}$$

whenever $x \in (a, b) \cap F$. Now, fix $0 < \delta < \delta^*$, suppose $x_0 \in F$, and let $y \equiv y_{\delta} < x_o < z_{\delta} \equiv z$ be the nodes of P_{τ} which span x_o . Then, $y, z \in C(f)$ so that $f(y), f(z) \notin (s, t)$. For definiteness, we suppose that $f(y) \leq s$ and $f(z) \geq t$. Since P_{τ} approximates f at x_o and $r_1 < f(x_o) < r_2$, the only other case is that where $f(z) \leq s$ and $f(y) \geq t$ which is similar to the case considered here. We also assume $t - r_2 \leq r_1 - s$. Let $t^* = t - 2(r_2 - r_1)$ and $s^* = 2P_{\tau}(x_o) - t^*$. Then,

$$s^* > 2(r_1 - \frac{r_2 - r_1}{2}) - t^* = 3r_1 - r_2 - t^*$$
$$= r_1 - (t - r_2) \ge r_1 - (r_1 - s) = s.$$

Also,

$$r_2 - r_1 < \frac{\epsilon(t - r_2)}{6} = \frac{\epsilon}{6} [(t^* - r_2) + 2(r_2 - r_1)]$$

and thus,

$$r_2 - r_1 < \frac{\frac{\epsilon}{6}}{1 - \frac{2\epsilon}{6}} (t^* - r_2) = \frac{\epsilon}{6 - 2\epsilon} (t^* - r_2) < \frac{\epsilon}{5} (t^* - r_2) \text{ since } \epsilon < \frac{1}{2}$$

Moreover,

$$\begin{aligned} r_1 - s^* &> r_1 - (2(r_2 + \frac{r_2 - r_1}{2}) - t^*) = (t^* - r_2) - 2(r_2 - r_1) \\ &> \frac{5}{\epsilon}(r_2 - r_1) - 2(r_2 - r_1) = (\frac{5 - 2\epsilon}{\epsilon})(r_2 - r_1) > \frac{4}{\epsilon}(r_2 - r_1), \end{aligned}$$

again using the fact that $\epsilon < \frac{1}{2}$. Hence,

$$r_2 - r_1 < \frac{\epsilon}{4} \min\left(t^* - r_2, r_1 - s^*\right).$$
 (2)

Now, set $y' = P_{\tau}^{-1}(2r_1 - r_2)$ and suppose $x \in (y, y')$. Then, $P_{\tau}(x) = L_{yz}(x) < 2r_1 - r_2$. But if $x \in F$, $|P_{\tau}(x) - f(x)| < \frac{r_2 - r_1}{2}$ (using (1)) and as $P_{\tau}(x) < 2r_1 - r_2$,

$$f(x) \le P_{\tau}(x) + |f(x) - P_{\tau}(x)| < 2r_2 - r_1 + \frac{r_2 - r_1}{2} < r_1.$$

This, however, contradicts the fact that $F \subseteq D_{r_1r_2}$. Hence, $x \notin F$ and it follows that $F \cap (y, y') = \emptyset$. In a completely analogous manner, one shows that $F \cap (z', z) = \emptyset$ where $z' = P_{\tau}^{-1}(2r_2 - r_1)$. The remainder of the proof is devoted to using the intervals (y, y') and (z', z) to compute a symmetric porosity ratio at x_o .

To this end, set $y_o = P_{\tau}^{-1}(s^*)$ and $z_o = P_{\tau}^{-1}(t^*)$. Then $(y_o, y') \subseteq (y, y')$, $(z', z_o) \subseteq (z', z)$, and the intervals (y_o, y') and (z', z_o) are symmetric about x_o . Using similar triangles, we note that

$$\frac{y'-y_o}{x_o-y_o} = \frac{P_{\tau}(y') - P_{\tau}(y_o)}{P_{\tau}(x_o) - P_{\tau}(y_o)} = \frac{2r_1 - r_2 - s^*}{P_{\tau}(x_o) - s^*} > \frac{2r_1 - r_2 - s^*}{r_2 + \frac{r_1 + r_2}{2} - s^*}$$
$$= \frac{1 - \frac{r_2 - r_1}{r_1 - s^*}}{1 + \frac{3}{2}\frac{r_2 - r_1}{r_1 - s^*}} > \frac{1 - \frac{\epsilon}{4}}{1 + \frac{3\epsilon}{8}} \text{ using (2)}$$
$$> 1 - \frac{5\epsilon}{8} > 1 - \epsilon.$$

Since this holds for all sufficiently small δ , it follows that the symmetric porosity of F at x_o , $sp(F, x_o)$, is at least $1 - \epsilon$ and since x_o was an arbitrary point in $(a, b) \cap F$, we have that for all $x \in (a, b) \cap F$, $sp(F, x) \ge 1 - \epsilon$.

546

As a consequence, we can conclude that there is a dense open set $U \cap F$ of F having the property that for each $x \in U \cap F$, $sp(F, x) \geq 1 - \epsilon$. Set $G^1 = U \cap F$ and $F^1 = F \setminus G^1$. As $f \in DF$, we can repeat the argument above with F replaced by F^1 to find a relatively open set $G^2 = U^2 \cap F^1$ and a closed set $F^2 = F^1 \setminus G^2$. Continuing in this manner we construct a descending (possibly transfinite) sequence of closed sets, $\{F^n\}$, each of which is $(1 - \epsilon)$ symmetrically porous. As any such decreasing sequence is at most countable, the theorem obtains.

References

- M. J. Evans and P. D. Humke, Exceptional sets for universally polygonally approximable functions, J. Appl. Analysis, 7 (2001), 175–190.
- [2] M. J. Evans, P. D. Humke, and R. J. O'Malley, Universally polygonally approximable functions, J. Appl. Analysis, 6 (2000), 25–45.
- [3] M. J. Evans, P. D. Humke, and R. J. O'Malley, A perplexing collection of Baire one functions, R. Anal. Exch., 25 (1999/00), 727–742.