Vasile Ene^{*}, Lohmühlenweg 34a, 63571 Gelnhausen, Germany. e-mail: gabrielaene@hotmail.com[†]

ON THE T-INTEGRATION OF KARTÁK AND MAŘÌK

Abstract

General notions of integration have been introduced by Saks [25, p. 254], Karták [14, p. 482], Kubota [17, p. 389] and Sarkhel [28, p. 299]. Karták's *T*-integration was further studied by Karták and Mařì in [15], and by Kubota in [18].

In this paper, starting from Kartak and Maři's definition, we introduce another general integration (see Definition 3.2), that allows a very general theorem of dominated convergence (see Theorem 3.1). Then we present a general definition for primitives, and this definition contains many of the known nonabsolutely convergent integrals: the Denjoy^{*}integral, the α -Ridder integral, the wide Denjoy integral, the β -Ridder integral, the Foran integral, the AF integral, the Gordon integral. Using this integration and Theorem 3.1, we obtain a generalization of a result on differential equations, of Bullen and Vyborny [5].

We further give a Banach-Steinhaus type theorem, a categoricity theorem, Riesz type theorems (as a particular case we obtain the Alexiewicz Theorem [1]), and study the weak convergence for the T-integration.

1 Essentially Bounded Variation and the Bounded Slope Variation

We denote by m(A) Lebesgue measure of A, whenever $A \subseteq \mathbb{R}$ is Lebesgue measurable. For the definitions of VB, $AC AC^*G$ and Lusin's condition (N), see [25]. Let χ_E denote the characteristic function of the set E.

Key Words: Karták and Mařik's T-integration, nonabsolutely convergent integrals, VB, AC, essentially bounded variation, normed space.

Mathematical Reviews subject classification: 26A39, 26A45.

Received by the editors July 7, 1999

^{*}The author died on November 11, 1998; see Real. Anal. Exch. 24 1 (1989/99), 3.

 $^{^\}dagger {\rm The}$ author's wife wishes to thank the referee for the special attention he has taken in correcting all the details.

⁵¹⁵

Definition 1.1 (Preiss). ([24] or [8, p. 35]). Let $F : [a, b] \to \mathbb{R}$. F is said to be lower *internal*^{*}, if $F(x+) \ge F(x)$, whenever $x \in [a, b)$ and F(x+) exists, and $F(x-) \le F(x)$, whenever $x \in (a, b]$ and F(x-) exists. F is said to be upper *internal*^{*} if -F is lower *internal*^{*}. F is said to be *internal*^{*} if it is simultaneously upper and lower *internal*^{*}.

Definition 1.2. ([23]). Let $P \subset [a, b]$ be a set of positive measure, and let $f: P \to \overline{\mathbb{R}}$ be a measurable function, finite *a.e.*.

- f is said to be essentially upper bounded if there exists a real number M such that the set $\{x \in P : f(x) > M\}$ has measure zero.
- f is said to be essentially lower bounded if the function -f is essentially upper bounded.
- f is said to be essentially bounded if it is simultaneously essentially upper bounded and essentially lower bounded; i.e., there exists M > 0 such that the set $\{x \in P : |f(x)| > M\}$ is of measure zero.
- Let $\sup_{ess}(f; P) = \inf\{M : M \text{ is given by the fact that } f \text{ is essentially upper bounded}\}$ and $\sup_{ess}(f; P) = +\infty$ if f is not essentially upper bounded. Similarly we define $\inf_{ess}(f; P)$.
- Let $\mathcal{O}_{ess}(f; P) = \sup_{ess}(f; P) \inf_{ess}(f; P).$
- Let $\mathcal{O}_{ess}(f; X) = 0$, whenever X is a null subset of P.
- f is said to be of essentially bounded variation (short $f \in EVB$) on P, if there exists M > 0 such that $\sum_{i=1}^{n} \mathcal{O}_{ess}(f; [a_i, b_i] \cap P) < M$ whenever $[a_i, b_i], i = 1, 2, \ldots, n$ are nonoverlapping closed intervals with the endpoints in P.
- Let $EV(f; P) = \inf\{M : M \text{ is given by the fact that } f \in EVB \text{ on } P\}$, and let $EV(f; P) = +\infty$ if $f \notin EVB$ on P.
- Let $V(f; P) = \inf\{M : M \text{ is given by the fact that } f \in VB \text{ on } P\}$ and let $V(f; P) = +\infty$ if $f \notin VB$ on P.

Lemma 1.1. ([9]). Let $f : [a, b] \to \overline{\mathbb{R}}$ be a measurable function. The following assertions are equivalent:

- (i) $f \in EVB$ on [a, b],
- (ii) There exists $\tilde{f} : [a,b] \to \mathbb{R}$, such that $\tilde{f} \in VB$ and $\tilde{f} = f$ a.e. on [a,b]. Moreover $EV(f;[a,b]) \le V(\tilde{f};[a,b]) \le 2 \cdot EV(f;[a,b])$.

Lemma 1.2. Let P be a set of positive finite measure, and let $g : P \to \mathbb{R}$ be a measurable function, which is finite a.e. on P. If g is not essentially upper (respectively lower) bounded on P then there exists a function $f : P \to \mathbb{R}$ such that:

- (i) f is summable on P;
- (ii) $f \cdot g \ge 0$ on P;
- (iii) $f \cdot g$ is not summable on P.

PROOF. Suppose for example that g is not essentially upper bounded on P. For $\alpha, \beta \in \mathbb{R}$, we let $E_{\alpha}(g) = \{x \in P : g(x) \geq \alpha\}, E_{\alpha}^{\beta}(g) = \{x \in P : \alpha \leq g(x) < \beta\}$ and $E_{\infty}(g) = \{x \in P : |g(x)| = +\infty\}$. Clearly $|E_{\infty}(g)| = 0$. We show that there exists a strictly increasing sequence of positive integers $\{n_i\}_{i=1}^{\infty}$, such that

$$|E_{n_i}^{n_{i+1}}(g)| > 0, \quad i = 1, 2, \dots$$
 (1)

Let $n_1 = 1$. Then $E_{n_1}(g)$ has positive measure. Since

$$E_{n_1}(g) \setminus E_{\infty}(g) = \bigcup_{n=n_1+1}^{\infty} E_{n_1}^n(g)$$

it follows that there exists $n_2 > n_1$ such that $E_{n_1}^{n_2}(g)$ has positive measure and $|E_{n_2}(g)| > 0$ (because g is not essentially upper bounded on P). Continuing in this way, we obtain (1). Let $\alpha_i = |E_{n_i}^{n_i+1}(g)|$ and let β_i be such that $\alpha_i \cdot n_i \cdot \beta_i = 1/i, i = 1, 2, \ldots$. Let $f: P \to \mathbb{R}$,

$$f(x) = \begin{cases} \beta_i, & x \in E_{n_i}^{n_i+1}(g), \ i = 1, 2, \dots \\ 0, & \text{otherwise} \end{cases}$$

(i) We have

$$(\mathcal{L})\int_{P} f(t) dt = \sum_{i=1}^{\infty} \beta_i \cdot \alpha_i = \sum_{i=1}^{\infty} \frac{1}{n_i \cdot i} \le \sum_{i=1}^{\infty} \frac{1}{i^2} < +\infty.$$

Hence f is summable on P.

(ii) We have $f(x) \cdot g(x) \ge \beta_i \cdot n_i$, if $x \in E_{n_i}^{n_i+1}$, $i = 1, 2, ..., \text{and } f(x) \cdot g(x) = 0$ otherwise.

(iii) We have

$$(\mathcal{L})\int_{P} f(t) \cdot g(t) \, dt \ge \sum_{i=1}^{\infty} \alpha_{i} \cdot n_{i} \cdot \beta_{i} = \sum_{i=1}^{\infty} \frac{1}{i} = +\infty.$$

Hence $f \cdot g$ is not summable on P.

Lemma 1.3 (Sargent). ([26]). Let $g : [a, b] \to \overline{\mathbb{R}}$ be an essentially bounded, measurable function. If $g \notin EVB$ on [a, b] then there exists $[\alpha, \beta] \subseteq [a, b]$ and a function $f : [\alpha, \beta] \to \mathbb{R}$ such that:

- f is Denjoy^{*}-integrable (short \mathcal{D}^* -integrable) on $[\alpha, \beta]$;
- either $f \cdot g$ is summable on $[\alpha, x]$ whenever $x \in (\alpha, \beta)$, but

$$\lim_{x \to \beta} (\mathcal{L}) \int_{\alpha}^{x} f(t)g(t) \, dt = +\infty.$$

or $f \cdot g$ is summable on $[x, \beta]$ whenever $x \in (\alpha, \beta)$, but

$$\lim_{x \to \alpha} (\mathcal{L}) \int_x^\beta f(t)g(t) \, dt = +\infty.$$

PROOF. Let $J_o = [a, b]$. Since $g \notin EVB$ on J_o , it follows that $g \notin EVB$ on at least one of the intervals, [a, (a + b)/2] or [(a + b)/2, b]. Denote this interval by $J_1 = [a_1, b_1]$. Continuing, we obtain a sequence of closed intervals $\{J_n\}_n$, $J_n = [a_n, b_n]$ such that $b_n - a_n = (b - a)/2^n$ and $g \in EVB$ on no J_n . Let $\{c\} = \bigcap_{n=1}^{\infty} J_n$, $J'_n = [a_n, c]$ and $J''_n = [c, b_n]$. Then there exist infinitely many subscripts n such that $g \notin EVB$ on J'_n for example. We may suppose without loss of generality that $g \in EVB$ on no J'_n , for no $n = 0, 1, \ldots$. Let $M = \sup_{ess}(g; [a, b])$ and $m = \inf_{ess}(g; [a, b])$. Because $g \notin EVB$ on [a, b], M - m > 0. Since $g \notin EVB$ on J'_o , there exists a partition π_o of J'_o such that $\sum_{I \in \pi_o} \mathcal{O}_{ess}(g; I) > 3(M - m)$. Let $\pi'_o = \pi_o \setminus \{c\}$. Then

$$\sum_{I \in \pi'_o} \mathcal{O}_{ess}(g; I) > 2(M - m) \,.$$

Let I'_o be the last interval of the partition π_o . Then I'_o contains an interval J'_{n_1} ; so $g \notin EVB$ on I'_o (because $g \notin EVB$ on J'_{n_1}). It follows that there exists a partition π_{n_1} of I'_o such that $\sum_{I \in \pi_{n_1}} \mathcal{O}_{ess}(g;I) > 3(M-m)$. Let I'_{n_1} be the last interval of the partition π_{n_1} . Let $\pi'_{n_1} = \pi_{n_1} \setminus \{c\}$. Then $\sum_{I \in \pi'_{n_1}} \mathcal{O}_{ess}(g;I) > 2(M-m)$. Continuing, we obtain a sequence of partitions $\{\pi'_{n_k}\}_k$ such that $\sum_{I \in \pi'_{n_k}} \mathcal{O}_{ess}(g;I) > 2(M-m)$, for each k. Let $x_1 < x_2 < x_3 < \ldots < c$ be the endpoints of all intervals contained in $\bigcup_{k=0}^{\infty} \pi'_{n_k}$. We obtain that $\sum_{n=1}^{\infty} \mathcal{O}_{ess}(g;[x_n,x_{n+1}]) = +\infty$. Let $[\alpha,\beta] = [x_1,c]$. Let $M_n = \sup_{ess}(g;[x_n,x_{n+1}])$ and $m_n = \inf_{ess}(g;[x_n,x_{n+1}])$. Now the proof continues as in [20, p. 78], (see also [6, p. 46]).

Corresponding to each n, there exist distinct measurable subsets X_n and Y_n of $[x_n, x_{n+1}]$ such that $|X_n| = |Y_n| = \delta_n > 0$, $g(x) \ge (3/4)M_n + (1/4)m_n$ for $x \in X_n$, and $g(x) \le (1/4)M_n + (3/4)m_n$ for $x \in Y_n$. Let

$$p_n = \frac{1}{\delta_n \cdot \sum_{i=1}^n (M_i - m_i)}$$

and

$$f(x) = \begin{cases} p_n & \text{for } x \in X_n, \ n = 1, 2, \dots \\ -p_n & \text{for } x \in Y_n, \ n = 1, 2, \dots \\ 0 & \text{elsewhere} \end{cases}$$

Clearly f is summable on each $[x_n, x_{n+1}]$ and $(\mathcal{L}) \int_{x_n}^{x_{n+1}} f(t) dt = 0$. For $u \in (x_n, x_{n+1}]$ we have

$$\left| (\mathcal{L}) \int_{x_n}^{u} f(t) \, dt \right| \le (\mathcal{L}) \int_{x_n}^{x_{n+1}} \left| f(t) \right| \, dt \le 2p_n \delta_n \to 0, \ n \to \infty.$$

Let

$$F(x) = \begin{cases} 0 & \text{for } x = \alpha \\ (\mathcal{L}) \int_{x_n}^x f(t) \, dt & \text{for } x \in [x_n, x_{n+1}], \, n = 1, 2, \dots \\ 0 & \text{for } x = \beta \end{cases}$$

Clearly f is \mathcal{D}^* -integrable on $[\alpha, \beta]$. Since f is summable on $[x_n, x_{n+1}]$ and g is essentially bounded, it follows that $f \cdot g$ is summable on $[x_n, x_{n+1}]$ and

$$\begin{aligned} (\mathcal{L})\int_{x_n}^{x_{n+1}} f(t)g(t)\,dt &= (\mathcal{L})\int_{X_n} f(t)g(t)\,dt + (\mathcal{L})\int_{Y_n} f(t)g(t)\,dt \\ &= p_n \cdot (\mathcal{L})\int_{X_n} g(t)\,dt - p_n(\mathcal{L})\int_{Y_n} g(t)\,dt \\ &\geq \frac{p_n\delta_n}{2}(M_n - m_n) = \frac{1}{2} \cdot \frac{M_n - m_n}{\sum_{i=1}^n (M_i - m_i)} = r_n \end{aligned}$$

Since $\sum_{n=1}^{\infty} (M_n - m_n) = +\infty$, it follows that $\sum_{n=1}^{\infty} r_n = +\infty$ (see for example [20, p. 79]). We have

$$(\mathcal{L})\int_{x_n}^{x_{n+1}} \left| f(t)g(t) \right| dt \le (M-m) \cdot (\mathcal{L})\int_{x_n}^{x_{n+1}} \left| f(t) \right| dt$$
$$\le 2p_n \delta_n (M-m) \to 0.$$
(2)

Let $\gamma_n = (\mathcal{L}) \int_{x_n}^{x_{n+1}} f(t)g(t) dt$. Then

$$\sum_{n=1}^{\infty} \gamma_n \ge \sum_{n=1}^{\infty} r_n = +\infty.$$
(3)

Let $G : [\alpha, \beta) \to \mathbb{R}$,

$$G(x) = (\mathcal{L}) \int_{\alpha}^{x} f(t)g(t) dt, \ x \in [x_n, x_{n+1}], \ n = 1, 2, \dots$$

We observe that

$$G(x) = \sum_{i=1}^{n-1} \gamma_i + (\mathcal{L}) \int_{x_n}^x f(t)g(t) dt \text{ on } [x_n, x_{n+1}], n \ge 2.$$

By (2) and (3) it follows now that $\lim_{x\to\beta} G(x) = +\infty$.

Definition 1.3. ([9]). A function $F : [a, b] \to \mathbb{R}$ is said to be of bounded slope variation (short $F \in BSV$) on a subset P of [a, b], if there exists M > 0 such that

$$\sum_{i=1}^{n} \left| \frac{F(b_{2i}) - F(a_{2i})}{b_{2i} - a_{2i}} - \frac{F(b_{2i-1}) - F(a_{2i-1})}{b_{2i-1} - a_{2i-1}} \right| < M,$$

whenever $a_1 < b_1 \leq a_2 < b_2 \leq \ldots \leq a_{2n} < b_{2n}$ are points in *P*. Let $SV(F; P) = \inf\{M : M \text{ is given by the fact that } F \in BSV \text{ on } P\}$. If $F \notin BSV$ on *P*. let $SV(F; P) = +\infty$.

Theorem 1.1. ([9]). With the above notations we have the following results:

- (i) Let $f : [a,b] \to \mathbb{R}$, $f \in EVB$ and let $F(x) = (\mathcal{L}) \int_a^x f(t) dt$. Then $F \in BSV$ on [a,b] and $SV(F; [a,b]) \leq EV(f; [a,b])$.
- (ii) Let $F : [a, b] \to \mathbb{R}$, $F \in BSV$ and let

$$F^*(x) = \begin{cases} F'(x) & \text{where } F \text{ is derivable} \\ 0 & \text{elsewhere} \end{cases}$$

Then F satisfies the Lipschitz condition, $F^* \in EVB$ on [a, b], and $EV(F^*; [a, b]) \leq SV(F; [a, b])$.

Remark 1.1.

- (i) If f is essentially bounded on [a,b], then $F(x) = (\mathcal{L}) \int_a^x f(t) dt$ is a Lipschitz function on [a,b] and F' = f a.e..
- (ii) If $F : [a, b] \to \mathbb{R}$ is a Lipschitz function, then F^* is essentially bounded on [a, b] and $F(x) = (\mathcal{L}) \int_a^x F^*(t) dt$ (for F^* see Theorem 1.1).

520

2 The T-integration of Karták and Mařì

Definition 2.1 (Karták and Maři). ([15], [14], [18], [19]). Let T be a functional by which there corresponds to each closed interval $J \subset I$ a linear space $\mathcal{K}(T, J)$ of real valued measurable functions defined on J, and to each function f of $\mathcal{K}(T, J)$ a real number T(f, J). A functional T is called an integration (respectively a wide integration) on I if the following conditions are fulfilled:

- (a) The functional T(f, J) is linear on $\mathcal{K}(T, J)$.
- (b) If $f \in \mathcal{K}(T, J)$, $J' \subset J$, then $f \in \mathcal{K}(T, J')$.
- (c) If f is Lebesgue integrable (respectively f is Lebesgue integrable and essentially bounded) on J, then $f \in \mathcal{K}(T, J)$ and $T(f, J) = (\mathcal{L}) \int_{I} f$.
- (d) If J_1 and J_2 are abutting intervals and if $f \in \mathcal{K}(T, J_1) \cap \mathcal{K}(T, J_2)$, then $f \in \mathcal{K}(T, J_1 \cup J_2)$ and $T(f, J_1 \cup J_2) = T(f, J_1) + T(f, J_2)$.
- (e) If $f \in \mathcal{K}(T, J), f \ge 0$, then f is Lebesgue integrable on J.
- (f) If $f \in \mathcal{K}(T, J)$, $J = [\alpha, \beta]$, then $F(x) = T(f, [\alpha, x])$ is continuous on J, where $F(\alpha) = 0$.

Let T be an integration (respectively a wide integration) on I. A function f in $\mathcal{K}(T, J)$ is said to be T-integrable (respectively wide T-integrable) on J. Given two integrals (respectively wide integrals) T_1 and T_2 on I, T_2 includes T_1 , written $T_1 \subset T_2$, if $f \in \mathcal{K}(T_2, J)$ and $T_1(f, J) = T_2(f, J)$, whenever $f \in \mathcal{K}(T_1, J)$ and $J \subset I$.

Lemma 2.1 (Karták and Maři). ([15, p. 746]). There exist an integration T, a function $f \in \mathcal{K}(T, I)$ and $g \in AC$ on the closed interval I such that $f \cdot g \notin \mathcal{K}(T, I)$.

Lemma 2.1 leads us to the following definition.

Definition 2.2. Let T be a wide integration on I = [a, b], satisfying the following conditions:

- (i) $f \cdot g \in \mathcal{K}(T, I)$, whenever $f \in \mathcal{K}(T, I)$ and $g \in VB$,
- (ii) $T(f \cdot g, I) = F(b)g(b) (\mathcal{RS}) \int_a^b F(x) dg(x)$, where F(x) = T(f, [a, x]), $x \in [a, b], F(a) = 0$, whenever $f \in \mathcal{K}(T, I)$ and $g \in VB$ (here (\mathcal{RS}) denotes the Riemann Stieltjes integral). Let $\langle f|g \rangle = T(f \cdot g, I)$.

We shall not make distinction between f and g belonging to $\mathcal{K}(T, I)$ if $f = g \ a.e.$. We define the following real normed spaces:

- $(\mathcal{K}(T,I), \|\cdot\|)$, where $\|f\| = \|F\|_{\infty} = \sup\{|F(x)| : x \in [a,b]\};$
- $(VB, \|\cdot\|_{VB})$, where $\|g\|_{VB} = |g(b)| + V(g, [a, b])$. (This is in fact a Banach space).

Example 2.1. Some particular wide integrals which satisfy Definition 2.2 are:

- 1. the $S\mathcal{F}$ -integral (see [8, pp. 210-211]);
- 2. the Foran integral (see [10] or [8, p. 208]),
- 3. the Denjoy and Denjoy^{*} integrals (see [6, pp. 31-34]),
- 4. the Lebesgue integral (because the product of a VB function and a Lebesgue integrable function is still a Lebesgue integrable function),
- 5. the Lebesgue integral restricted to essentially bounded functions (because the product of a VB function and an essentially bounded function is still an essentially bounded function).

3 A General Notion of Integration

Definition 3.1 (Sarkhel). ([28]) By $f \succeq A \to \overline{\mathbb{R}}$ we mean a function with values in $\overline{\mathbb{R}}$, whose domain contains almost all points of the set A such that f is finite almost everywhere on A.

Let $\mathcal{L}_{comp} = \{f : \mathbb{R} \to \mathbb{R} : \operatorname{supp}(f) \text{ is compact and } f \text{ is Lebesgue integrable} \}.$ Starting from Definition 2.1, we introduce the following general integration.

Definition 3.2. Let $\mathcal{A} = \{(f, I) : I \text{ is a compact interval, } f \succeq I \to \mathbb{R}, f \text{ is measurable on } I\}$. A mapping $\mathcal{J} : \mathcal{A}_o \to \mathbb{R}, \mathcal{A}_o \subset \mathcal{A}$ is said to be an integral if the following conditions are fulfilled:

- (a) If $(f, I) \in \mathcal{A}$, f is Lebesgue integrable on I, $(g, I) \in \mathcal{A}_o$ and $\alpha, \beta \in \mathbb{R}$, then $(\alpha f + \beta g, I) \in \mathcal{A}_o$ and $\mathcal{J}(\alpha f + \beta g, I) = \alpha \cdot (\mathcal{L}) \int_I f(t) dt + \beta \cdot \mathcal{J}(g, I)$.
- (b) $(f, J) \in \mathcal{A}_o$ whenever $(f, I) \in \mathcal{A}_o$ and $J \subseteq I$.
- (c) If (f, I) and (g, I) belong to \mathcal{A}_o and $f \ge g$ a.e. on I then f g is Lebesgue integrable on [a, b].
- (d) If (f, [a, b]) and (f, [b, c]) belong to \mathcal{A}_o , then $(f, [a, c]) \in \mathcal{A}_o$ and $\mathcal{J}(f, [a, b]) + \mathcal{J}(f, [b, c]) = \mathcal{J}(f, [a, c])$.

Let \mathcal{J} be an integral. Then f is said to be \mathcal{J} -integrable on [a, b] if $(f, [a, b]) \in \mathcal{A}_o$. In this case the function $F : [a, b] \to \mathbb{R}$,

$$F(x) = \begin{cases} 0 & \text{if } x = a \\ \mathcal{J}(f, [a, x]) & \text{if } x = (a, b] \end{cases}$$

is called the indefinite \mathcal{J} -integral of f on [a, b]. Clearly F is well defined and $\mathcal{J}(f, [c, d]) = F(d) - F(c)$ whenever $[c, d] \subseteq [a, b]$ (see (b) and (d)). A function $G : [a, b] \to \mathbb{R}$ of the form $G(x) = F(x) + \alpha$, $\alpha \in \mathbb{R}$ is called a \mathcal{J} -primitive of f on [a, b]. Let $(\mathcal{J}) \int_a^x f(t) dt := \mathcal{J}(f; [a, x])$.

Lemma 3.1. Let $\mathcal{J} : \mathcal{A}_o \to \mathbb{R}$ be an integral as above. If $f \succeq [a, b] \to \mathbb{R}$ is Lebesgue integrable on [a, b], then $(f, [a, b]) \in \mathcal{A}_o$ and

$$(\mathcal{J})\int_{a}^{b} f(t) dt = (\mathcal{L})\int_{a}^{b} f(t) dt.$$

PROOF. Let $(g, [a, b]) \in \mathcal{A}_o$. By Definition 3.2, (a),

$$(\mathcal{J})\int_{a}^{b} (1f+0g)(t) \, dt = 1(\mathcal{L})\int_{a}^{b} f(t) \, dt + 0(\mathcal{J})\int_{a}^{b} g(t) \, dt.$$

Hence $(\mathcal{J}) \int_a^b f(t) dt = (\mathcal{L}) \int_a^b f(t) dt.$

Definition 3.3. ([22, p. 151]). Let $\mathcal{M} = \{f\}$ be a family of Lebesgue integrable functions defined on a set P. If for every $\epsilon > 0$ there exists a $\delta > 0$ such that $|(\mathcal{L}) \int_A f| < \epsilon$ for all $f \in \mathcal{M}$, whenever $A \subset P$, $m(A) < \delta$ then the functions of \mathcal{M} are said to have equi-absolutely continuous integrals.

Lemma 3.2. Let $\{f_n\}_n$ be a sequence of nonnegative Lebesgue integrable functions, converging in measure to a function f defined on a measurable set P. The following assertions are equivalent:

- (i) f is Lebesgue integrable and $\lim_{n\to\infty} (\mathcal{L}) \int_P f_n = (\mathcal{L}) \int_P f_n$
- (ii) The functions of the sequence $\{f_n\}_n$ have equi-absolutely continuous integrals.

PROOF. (i) \Rightarrow (ii) By Theorem 5 of [22, p. 157] we have $\lim_{n\to\infty} (\mathcal{L}) \int_A f_n = (\mathcal{L}) \int_A f$ whenever A is a measurable subset of P. Now (ii) follows by [22] (Corollary 1, p. 156 of Theorem 3, p. 153).

$$(ii) \Rightarrow (i)$$
 See Vitali's Theorem 2 of [22, p. 152].

Theorem 3.1. Let \mathcal{J} be an integral as in Definition 3.2.

- (i) If f is measurable and $(|f|, I) \in \mathcal{A}_o$, then $f \in \mathcal{L}_{comp}$.
- (ii) If $(f, I) \in \mathcal{A}_o$ and g = f a.e. then $(g, I) \in \mathcal{A}_o$ and $(\mathcal{J}) \int_I f = (\mathcal{J}) \int_I g$.
- (iii) If $(f, I), (g, I) \in \mathcal{A}_o$ and $f \leq g$ a.e., then $(\mathcal{J}) \int_I f \leq (\mathcal{J}) \int_I g$.
- (iv) If $(g, I), (h, I) \in \mathcal{A}_o, \{f_n\}_n$ is a sequence of measurable functions on R, $g \leq f_n \leq h$, a.e. and $f_n \to f$ (f_n converges in measure to f), then $(f_n, I), (f, I) \in \mathcal{A}_o$ and $(\mathcal{J}) \int_I f = \lim_{n \to \infty} (\mathcal{J}) \int_I f_n$.
- (v) If $(f, I) \in \mathcal{A}_o$, $g \in \mathcal{L}_{comp}$ and $f \ge g$ a.e., then $f \in \mathcal{L}_{comp}$ and $(\mathcal{J}) \int_I f = (\mathcal{L}) \int_I f$.
- (vi) Let $\{f_n\}_n$ be a sequence of functions on I having the following properties:
 - (1) $(f_n, I) \in \mathcal{A}_o$ for each n,
 - (2) there exists g, with $(g, I) \in \mathcal{A}_o$, such that $f_n \geq g$ a.e. for each n,
 - (3) $\{f_n\}$ converges in measure to f.

Then

- (a) each $f_n g \in \mathcal{L}_{comp}$ and $(\mathcal{L}) \int_I (f_n g) + (\mathcal{J}) \int_I g = (\mathcal{J}) \int_I f_n$;
- (b) $(f, I) \in \mathcal{A}_o$ if and only if $f g \in \mathcal{L}_{comp}$;
- (c) $(f, I) \in \mathcal{A}_o$ and $\lim_{n\to\infty} (\mathcal{J}) \int_I f_n = (\mathcal{J}) \int_I f$ if and only if the functions of the sequence $\{f_n - g\}_n$ have equi-absolutely continuous integrals.
- (vii) Let $\{(f_n, I)\}_n \subset \mathcal{A}_o, f_1 \leq f_2 \leq \ldots \leq f_n \leq \ldots \text{ a.e. }, \text{ and } f_n \to f \text{ a.e. }.$ Then $(f, I) \in \mathcal{A}_o$ if and only if $\lim_{n \to \infty} (\mathcal{J}) \int_I f_n \neq +\infty$. In this case we have $\lim_{n \to \infty} (\mathcal{J}) \int_I f_n = (\mathcal{J}) \int_I f$.
- (viii) Let g be a measurable function on I. If $(fg, I) \in A_o$ whenever f is a Lebesgue integrable function on I, then g is essentially bounded on I.
- (ix) Suppose that $F(x) = (\mathcal{J}) \int_{\alpha}^{x} f(t) dt$ is internal^{*} on J, whenever $(f, J) \in \mathcal{A}_{o}$ and $J = [\alpha, \beta]$. Let g be a measurable function on I. If the \mathcal{J} -integral contains the \mathcal{D}^{*} -integral and $(f \cdot g, I) \in \mathcal{A}_{o}$ whenever $f \in \mathcal{D}^{*}$, then g equals a VB function a.e. on I.

PROOF. (i) By Definition 3.2, (a), $(0, I) \in \mathcal{A}_o$. Since $|f| \ge 0$ a.e. on I, by Definition 3.2, (c), |f| is Lebesgue integrable on I. Therefore so is f.

(ii) Since g - f = 0 a.e., it follows that g - f is Lebesgue integrable on I. Because g = (g - f) + f and by Definition 3.2, (a) we obtain that $(g, I) \in \mathcal{A}_o$ and $(\mathcal{L}) \int_I (g - f) + (\mathcal{J}) \int_I f = (\mathcal{J}) \int_I g$. Therefore $(\mathcal{J}) \int_I f = (\mathcal{J}) \int_I g$. (iii) By Definition 3.2, (c), we have that g - f is Lebesgue integrable on I and by Definition 3.2, (a), $(\mathcal{L}) \int_{I} (g - f) + (\mathcal{J}) \int_{I} f = (\mathcal{J}) \int_{I} g$. But $(\mathcal{L}) \int_{I} (g - f) \ge 0$. Hence $(\mathcal{J}) \int_{I} f \le (\mathcal{J}) \int_{I} g$.

(iv) By Definition 3.2, (c) we have that h - g is Lebesgue integrable on I. But $0 \leq f_n - g \leq h - g$ a.e. and each f_n is measurable. It follows that each $f_n - g$ is Lebesgue integrable and $f_n - g \to f - g$ (convergence in measure). By the Lebesgue Dominated Convergence Theorem, f - g is Lebesgue integrable and $\lim_{n\to\infty} (\mathcal{L}) \int_I (f_n - g) = (\mathcal{L}) \int_I (f - g)$. Because f = (f - g) + g and by Definition 3.2, (a) we obtain that $(f, I) \in \mathcal{A}_o$,

$$(\mathcal{L})\int_{I}(f_{n}-g)+(\mathcal{J})\int_{I}g=(\mathcal{J})\int_{I}f_{n}$$

and

$$(\mathcal{L})\int_{I} (f-g) + (\mathcal{J})\int_{I} g = (\mathcal{J})\int_{i} f, I.$$

Therefore $\lim_{n\to\infty} (\mathcal{J}) \int_I f_n = (\mathcal{J}) \int_I f$.

(v) By Definition 3.2, (a), $(g, I) \in \mathcal{A}_o$, and by Definition 3.2, (c), f - g is Lebesgue integrable on I. It follows that f = (f - g) + g is Lebesgue integrable on I and by Lemma 3.1, $(\mathcal{J}) \int_I f = (\mathcal{L}) \int_I f$.

(vi) (a) This follows by Definition 3.2, (c), (a).

b) Since $f_n \ge g$ a.e. it follows that $f \ge g$ a.e. . The assertion follows by Definition 3.2, (a), (c).

c) By (vi), (b) and (a) it follows that the statement $(f, I) \in \mathcal{A}_o$ and $\lim_{n\to\infty} (\mathcal{J}) \int_I f_n = (\mathcal{J}) \int_I f$ is equivalent to f - g is Lebesgue integrable and $\lim_{n\to\infty} (\mathcal{L}) \int_I (f_n - g) = (\mathcal{L}) \int_I (f - g)$. Now Lemma 3.2 completes the proof.

(vii) By (iii), $(\mathcal{J}) \int_I f_n \leq (\mathcal{J}) \int_I f_{n+1}$ for each n. Then $\lim_{n\to\infty} (\mathcal{J}) \int_I f_n$ exists (finite or infinite). By Definition 3.2, (c), (a), each $f_n - f_1$ is Lebesgue integrable on I and

$$(\mathcal{J})\int_{I}f_{n} = (\mathcal{L})\int_{I}(f_{n} - f_{1}) + (\mathcal{J})\int_{I}f_{1}.$$

By the Beppo-Levi Theorem it follows that

$$\lim_{n \to \infty} (\mathcal{J}) \int_I f_n = (\mathcal{L}) \int_I (f - f_1) + (\mathcal{J}) \int_I f_1 dx$$

Therefore $f - f_1$ is Lebesgue integrable if and only if $\lim_{n\to\infty} (\mathcal{L}) \int_I (f_n - f_1)$ is finite, and since $f = (f - f_1) + f_1$, it follows that $(f, I) \in \mathcal{A}_o$ and

$$\lim_{n \to \infty} (\mathcal{J}) \int_I f_n = (\mathcal{J}) \int_I f \, .$$

If $\lim_{n\to\infty} (\mathcal{J}) \int_I f_n = +\infty$ then $f - f_1$ is not Lebesgue integrable on I. But $f - f_1 \geq 0$ a.e.; so by Definition 3.2, (a), (c), $(f, I) \notin \mathcal{A}_o$.

(viii) Suppose on the contrary that g is not essentially bounded on I. By Lemma 1.2 there exists a function $f: I \to \mathbb{R}$ such that f is Lebesgue integrable, $fg \geq 0$ and fg is not Lebesgue integrable on I. Since $fg \geq 0$, by (v), it follows that fg is Lebesgue integrable, a contradiction.

(ix) By (viii), g is essentially bounded. Suppose on the contrary that $g \notin EVB$ on [a, b] (see Lemma 1.1). Then, by Lemma 1.3, there exist $[\alpha, \beta] \subseteq [a, b]$ and a function $f : [\alpha, \beta] \to \mathbb{R}$ such that f is \mathcal{D}^* -integrable on $[\alpha, \beta]$, fg is Lebesgue integrable on $[\alpha, x]$ for example, whenever $x \in (\alpha, \beta)$, and

$$\lim_{x \nearrow \beta} (\mathcal{L}) \int_{\alpha}^{x} fg = +\infty$$

By Definition 3.2, (c), we obtain that $\lim_{x \nearrow \beta} \mathcal{J}(fg, [\alpha, x]) = +\infty$ (see Lemma 3.1). This contradicts the hypothesis.

Remark 3.1. Theorem 3.1, (viii) extends Theorem 12.8 of [20].

4 A Riesz Type Representation Theorem for T-integration

Lemma 4.1. In the conditions of Definition 2.2, let $g \in VB$ be fixed. Let $L : \mathcal{K}(T, I) \to \mathbb{R}, L(f) = \langle f | g \rangle$. Then:

- (i) $\langle \cdot | g \rangle$ is linear.
- (ii) $|\langle f|g\rangle| \leq ||f|| \cdot ||g||_{VB}$.
- (iii) L is a continuous linear functional and $||L|| \leq ||g||_{VB}$.

PROOF. (i) This follows by Definition 2.1, (a) and Definition 2.2, (i).(ii) We have

$$\begin{aligned} \left| \langle f|g \rangle \right| &= \left| T(f \cdot g, [a, b]) \right| = \left| F(b)g(b) - (\mathcal{RS}) \int_{a}^{b} F(x) \, dg(x) \right| \\ &\leq \left| F(b) \right| \cdot \left| g(b) \right| + \|F\|_{\infty} \cdot V(g, [a, b]) \\ &\leq \|F\|_{\infty} \cdot \left(|g(b)| + V(g, [a, b]) = \|f\| \cdot \|g\|_{VB} \, . \end{aligned}$$

(iii) This follows by (i) and (ii).

Lemma 4.2. Let $(X, \|\cdot\|_1)$ and $(Y, \|\cdot\|_2)$ be normed real spaces and let $\langle \cdot | \cdot \rangle : X \times Y \to \mathbb{R}$ be such that:

(1) $\langle \cdot | y \rangle$ is linear in the first variable, for each $y \in Y$,

(2) $|\langle x|y\rangle| \leq ||x||_1 \cdot ||y||_2$, whenever $x \in X$, $y \in Y$.

If $f : X \to \mathbb{R}$ is a continuous linear functional and if there exist $y_o \in Y$ and a dense subset X_o of X such that $f(x) = \langle x | y_o \rangle$ for each $x \in X_o$, then $f(x) = \langle x | y_o \rangle$ on X and $||f|| \leq ||y_o||_2$.

PROOF. Since $\overline{X}_o = X$, for $x \in X$ there exists a sequence $\{x_n\}_n \subset X_o$ such that $||x_n - x||_1 \to 0$, for $n \to \infty$. But $|\langle x_n | y_o \rangle - \langle x | y_o \rangle| = |\langle x_n - x | y_o \rangle| \le ||x_n - x||_1 \cdot ||y_o||_2$. Since f is continuous, $f(x_o) = \lim_{n \to \infty} \langle x_n | y_o \rangle = \langle x | y_o \rangle$. Hence $f(x) = \langle x | y_o \rangle$, for each $x \in X$ and $||f|| \le ||y_o||_2$.

Theorem 4.1. In the conditions of Definition 2.2, let $L : \mathcal{K}(T, I) \to \mathbb{R}$ be a continuous linear functional. Then there exists $g \in VB$ such that

$$L(f) = \langle f|g \rangle = T(fg, I) \text{ and}$$
(4)

$$EV(g; I) \le ||L|| \le ||g||_{VB}.$$
 (5)

PROOF. Let

 $\mathcal{S}(I) = \left\{ s : [a, b] \to \mathbb{R} : s \text{ is a step function of the form} \right.$ $s(t) = \sum_{i=1}^{n-1} \alpha_i \chi_{[t_{i-1}, t_i]} + \alpha_n \chi_{[t_{n-1}, t_n]} \text{ for some positive integer } n,$ where each $\alpha_i \in \mathbb{R}, a = t_0 < t_1 < \ldots < t_n = b] \right\}.$

We show that $\overline{\mathcal{S}(I)} = \mathcal{K}(T, I)$. Let $f \in \mathcal{K}(T, I)$. Then F(x) = T(f, [a, x]) is continuous on [a, b]. Let $a = x_0 < x_1 < \ldots < x_n = b, x_i - x_{i-1} = (b-a)/n$ for each $i = 1, 2, \ldots, n$. Let $F_n(x_i) = F(x_i), i = 0, 1, \ldots, n$ and let F_n be linear on each closed interval $[x_{i-1}, x_i]$. Then $F_n \to F$ [unif] on [a, b]. Let

$$s_n(x) = \begin{cases} \frac{F(x_i) - F(x_{i-1})}{x_i - x_{i-1}} & \text{for } x \in [x_{i-1}, x_i), i = 1, 2, \dots, n-1 \\ \frac{F(x_n) - F(x_{n-1})}{x_n - x_{n-1}} & \text{for } \in [x_{n-1}, x_n] \end{cases}$$

Then $s_n \in \mathcal{S}(I)$ and $||s_n - f|| = ||F_n - F||_{\infty} \to 0$ (because $F_n \to F$ [unif]). Let $G(t) = L(\chi_{[a,t]})$ and let $a \leq a_1 < b_1 \leq a_2 < b_2 \leq \ldots \leq a_{2n} < b_{2n} \leq b$. Since L is linear and continuous, we have

$$\sum_{i=1}^{n} \left| \frac{G(b_{2i}) - G(a_{2i})}{b_{2i} - a_{2i}} - \frac{G(b_{2i-1}) - G(a_{2i-1})}{b_{2i-1} - a_{2i-1}} \right|$$
$$= \sum_{i=1}^{n} \left| L(\varphi_i) \right| = \sum_{i=1}^{n} \epsilon_i L(\varphi_i) = L\left(\sum_{i=1}^{n} \epsilon \varphi_i\right) \le \|L\| \cdot \left\| \sum_{i=1}^{n} \epsilon_i \varphi_i \right\|_1 \le \|L\|$$

where $\epsilon_i = \operatorname{sign} L(\varphi_i)$ and

$$\varphi_i = \frac{1}{b_{2i} - a_{2i}} \cdot \chi_{(a_{2i}, b_{2i}]} - \frac{1}{b_{2i-1} - a_{2i-1}} \cdot \chi_{(a_{2i-1}, b_{2i-1}]}$$

It follows that $G \in BSV$ and

$$SV(G; [a, b]) \le \|L\|. \tag{6}$$

By Theorem 1.1, (ii) there exists $g = G^* \in EVB$ and

$$EV(g, [a, b]) \le SV(G; [a, b]).$$
(7)

Clearly

$$G(t) = (\mathcal{L}) \int_{a}^{t} g(x) \, dx = (\mathcal{L}) \int_{a}^{b} \chi_{[a,t]}(x) g(x) \, dx = L(\chi_{[a,t]}) \, .$$

Since *L* is linear it follows that $L(s) = \langle s|g \rangle$ whenever $s \in \mathcal{S}(I)$. Then $L(f) = \langle f|g \rangle$ for every $f \in \mathcal{K}(T, I)$ and $||L|| \leq ||g||_{VB}$ (see Lemma 4.2). By (7) and (6), $EV(g; [a, b]) \leq ||L||$, hence $EV(g; [a, b]) \leq ||L|| \leq ||g||_{VB}$.

Remark 4.1. Particularly, if in Theorem 4.1, T stands for the \mathcal{D}^* -integral, then we obtain the Alexiewicz Theorem (see [20, Theorem 12.7]; see also [1]).

5 Banach-Steinhaus Type Theorems for T-integration

Definition 5.1. ([20, p. 67]).

- A sequence $\{X_n\}_n$ of sets in a normed real linear space X is said to be an α -sequence if $0 \in X_1$ and if for every n, x + y and x - y belong to X_{n+1} , whenever $x, y \in X_n$.
- X is called an α -space if $X = \bigcup_{n=1}^{\infty} X_n$. where $\{X_n\}_n$ is an α -sequence of closed sets each of which being nowhere dense in X.
- A normed real space is said to be a Sargent space or a β-space if it is not an α-space.

Lemma 5.1. ([20, p. 70]). A normed real linear space X is a Sargent space if and only if for every representation of the form $X = \bigcup_{n=1}^{\infty} X_n$, where $\{X_n\}_n$ is an α -sequence, there is an X_n for some n which is dense in a ball B of X.

528

Lemma 5.2. Let T be a wide integration on I = [a, b] as in Definition 2.2 satisfying the Cauchy property

$$Iff \in \mathcal{K}(T, [\alpha, \beta]) for every interval[\alpha, \beta] with a \le c < \alpha < \beta < d \le b$$

and
$$\lim_{\substack{\alpha \to c \\ \beta \to d}} T(f, [\alpha, \beta]) = A, then f \in \mathcal{K}(T, [c, d]) and T(f, [c, d]) = A.$$
 (C)

Then $(\mathcal{K}(T, I), \|\cdot\|)$ is a Sargent space.

PROOF. The proof is similar to that of Example 11.3 of [20, pp. 68-69]. Condition (C) is necessary to show the convergence of the sequence $\{X_n\}_n$ in the proof of Example 11.3.

Theorem 5.1. (A Banach-Steinhaus type theorem for a Sargent space, [20, Theorem 11.6]). Let T_n be a sequence of continuous linear operators from a Sargent space X into a normed linear space Y. If $\sup_{n=1}^{\infty} ||T_n(x)|| < +\infty$ for every $x \in X$, then $\sup_{n=1}^{\infty} ||T_n|| < +\infty$.

Theorem 5.2. (A Banach-Steinhaus type theorem for the *T*-integral). Let *T* be an integration as in Lemma 5.2, containing the \mathcal{D}^* -integral. The following assertions are equivalent:

- (i) For every $f \in \mathcal{K}(T, [a, b])$ there exists a constant M(f) such that for all n we have $|T(fg_n, [a, b])| \leq M(f)$;.
- (ii) There exists c > 0 such that $\sup_{ess} |g_n| < c$ and $EV(g_n, [a, b]) < c$ for all n.

PROOF. (i) \Rightarrow (ii) Each function g_n equals a VB function a.e. (see Theorem 3.1, (ix)). and is therefore essentially bounded. Let $L_n(f) = T(fg_n, [a, b])$ for $f \in \mathcal{K}(T, [a, b])$. If f is Lebesgue integrable, then fg_n is also Lebesgue integrable. Hence $L_n(f) = (\mathcal{L}) \int_a^b fg_n$ (see Definition 2.1, (c)). By the Banach-Steinhaus Theorem (see [6, p. 45]) it follows that for some $M_1 > 0$ we have $\sup_{ess} |g_n| < M_1$, for all $n = 1, 2, \ldots$. By Theorem 5.1 and Lemma 5.2, there exists $M_2 > 0$ such that $||L_n|| \leq M_2$ for all $n = 1, 2, \ldots$ and by Theorem 4.1, $EV(g_n, [a, b]) \leq ||L_n||$. Therefore $EV(g_n; [a, b]) < M_2$, for all $n = 1, 2, \ldots$.

(ii) \Rightarrow (i) For this implication, condition (C) is not needed. By Lemma 1.1, there exists $G_n : [a, b] \to \mathbb{R}$, $G_n \in VB$ such that $G_n = g_n$ a.e. and

$$V(G_n, [a, b]) \le 6V(G_n, A) \le 12EV(G_n, [a, b]) < 12c$$

(where A is defined in the proof of Lemma 1.1). Since $\sup_{ess} |g_n| < c$, it follows that $\sup |G_n| < 13c$. By Theorem 3.1, (ii) we have that

$$T(fg_n, [a, b]) = T(fG_n, [a, b]).$$

Now the proof follows applying Definition 2.2.

Remark 5.1. Theorem 5.2 is an extension of Theorem 12.10 of [20] or of a lemma of [6, p. 47].

6 The Categoricity of $\mathcal{K}(\mathbf{T}; [\mathbf{a}, \mathbf{b}])$ for Wide T-integration

Theorem 6.1. ([14, p. 511]). There exist an integration T (as in Definition 2.1) and a function $f \in \mathcal{K}(T, [a, b])$ such that the identity F' = f a.e. does not hold, where F(x) = T(f, [a, x]).

Lemma 6.1. ([12, p. 49]). Let (X, τ) be a topological space and let X_o be a dense subset of X. Let $\tau_o = \tau_{/X_o}$. If X_o is of the second category in (X, τ_o) , then X_o is of the second category in (X, τ) .

Lemma 6.2 (Jarnik). ([4, p. 213]). Let $(C([a, b]), ||||_{\infty})$ and let $\mathcal{A} = \{f : [a, b] \to \mathbb{R} : f \text{ is continuous and } f \text{ has every extended real number as a derived number at every point}\}$. Then $C([a, b]) \setminus \mathcal{A}$ is of the first category in C([a, b]).

Remark 6.1. For a wide *T*-integration let $\tilde{\mathcal{K}}(T, [a, b]) = \{F : [a, b] \to \mathbb{R} :$ there exists $f \in \mathcal{K}(T, [a, b])$ such that $F(x) = T(f, [a, x]), \forall x \in [a, b]\}$ endowed with the norm $\|\cdot\|_{\infty}$. Then $\mathcal{K}(T, [a, b])$ with the norm $\|\cdot\|$ given by Definition 2.2 is isomorphic to $(\tilde{\mathcal{K}}(T, [a, b]), \|\cdot\|_{\infty})$.

Let $C([a, b]) = \{f : [a, b] \to \mathbb{R} : f \text{ is continuous on } [a, b]\}$. Clearly $(\tilde{\mathcal{K}}(T, [a, b]), \|\cdot\|_{\infty}) \subset (C([a, b]), \|\cdot\|_{\infty})$ (see Definition 2.1, (f)). Since each polynomial on [a, b] is a Lipschitz function, and because by the Weierstrass theorem, each function $f \in C([a, b])$ is the uniform limit of a sequence of polynomials, it follows that $\tilde{\mathcal{K}}(T, [a, b])$ is dense in $(C([a, b]), \|\cdot\|_{\infty})$. Therefore the completion of $(\mathcal{K}(T, [a, b]), \|\cdot\|)$ is the Banach space $(C([a, b]), \|\cdot\|_{\infty})$.

Theorem 6.2. Let T be a wide integration on [a, b] which satisfies the hypotheses of Lemma 5.2. If for each $f \in \mathcal{K}(T, [a, b])$ the equality F'(x) = f(x) holds on a set of positive measure, where $F(x) = T(f; [a, x]), x \in [a, b])$, then $(\mathcal{K}(T, [a, b]), \|\cdot\|)$ is of the first category on itself.

PROOF. Suppose on the contrary that $(\mathcal{K}(T, [a, b]), \|\cdot\|)$ is of the second category on itself. Since $\overline{\mathcal{K}(T, [a, b])} = \overline{\tilde{\mathcal{K}}(T, [a, b])} = C([a, b])$, by Lemma 6.1 it follows that $(\tilde{\mathcal{K}}(T, [a, b]), \|\cdot\|)$ is of the second category in $(C([a, b]), \|\cdot\|_{\infty})$. By Lemma 6.2, $\tilde{\mathcal{K}}(T, [a, b])$ is of the first category. This contradicts the fact that $(C([a, b]), \|\cdot\|_{\infty})$ is a Banach space. **Theorem 6.3.** For a wide T integration on [a, b] let $L : (\tilde{\mathcal{K}}(T, [a, b]), \|\cdot\|_{\infty}) \to \mathbb{R}$ be a continuous linear functional. Then there exists $g \in VB$ on [a, b] such that $L(F) = (\mathcal{RS}) \int_a^b F(t) dg(t)$, whenever $F \in \tilde{\mathcal{K}}(T, [a, b])$.

PROOF. For $F \in \mathcal{K}(T, [a, b])$ there exists $f \in \mathcal{K}(T, [a, b])$ such that F(x) = T(f; [a, x]). Let $L^*(f) = L(F)$. Since $||f|| = ||F||_{\infty}$ and L is a continuous linear functional, by Theorem 4.1, there exists $G \in VB$ such that

$$L^*(f) = F(b) \cdot G(b) - (\mathcal{RS}) \int_a^b F(t) \, dG(t) = (\mathcal{RS}) \int_a^b F(t) \, dg(t) \,,$$

where $g(x) = -G(x), x \in [a, b)$ and g(b) = 0. So $L(F) = (\mathcal{RS}) \int_a^b F(t) dg(t)$.

Corollary 6.1. (The Riesz representation theorem, [20, Theorem 12.12]). Let $L: (C([a, b]), \|\cdot\|_{\infty}) \to \mathbb{R}$ be a continuous linear functional. Then there exists $g \in VB$ on [a, b] such that $L(F) = (\mathcal{RS}) \int_a^b F(t) dg(t)$ whenever $F \in C([a, b])$

PROOF. Since $\tilde{\mathcal{K}}(T, [a, b])$ is dense in C([a, b]), it follows that for each F in C([a, b]) there exists a sequence $\{F_n\}_n \subset \tilde{\mathcal{K}}(T, [a, b])$ such that $F_n \to F$ [unif] on [a, b]. Applying the uniform convergence theorem for the (\mathcal{RS}) -integral we obtain

$$L(F) = \lim_{n \to \infty} L(F_n) = \lim_{n \to \infty} (\mathcal{RS}) \int_a^b F_n(t) \, dg(t) = (\mathcal{RS}) \int_a^b F(t) \, dg(t). \qquad \Box$$

7 Weak Convergence in $\mathcal{K}(\mathbf{T}, [\mathbf{a}, \mathbf{b}])$ for Wide T-integration

Theorem 7.1. ([16, p. 259]). Let $f, f_n : [a, b] \to \mathbb{R}$, n = 1, 2, ... be such that f, f_n are continuous and $|f_n(x)| < M$ for some M, for every $x \in [a, b]$ and each n = 1, 2, ... Let $g: [a, b] \to \mathbb{R}$, $g \in VB$. If $f_n \to f$ on [a, b], then

$$(\mathcal{RS})\int_{a}^{b} f(t) \, dg(t) = \lim_{n \to \infty} (\mathcal{RS})\int_{a}^{b} f_{n}(t) \, dg(t) \, .$$

Theorem 7.2. Let T be a wide integration on [a, b] as in Definition 2.2. Let $f, f_n \in \mathcal{K}(T, [a, b]), n = 1, 2, \dots$ The following assertions are equivalent:

- (i) $f_n \to f$ weakly on $\mathcal{K}(T, [a, b])$,
- (*ii*) Let $F_n(x) = T(f_n, [a, x])$ and $F(x) = T(f, [a, x]), x \in [a, b].$

- (1) $|F_n(x)| \leq M$ for some M, for every $x \in [a, b]$ and each $n = 1, 2, \dots$,
- (2) $F_n(x) \to F(x)$ for every $x \in [a, b]$.

PROOF. Our proof follows the proof of Theorem 3, # 3, Chapter VIII of [13]. Let $L : \mathcal{K}(T, [a, b]) \to \mathbb{R}$ be a continuous linear functional. By Theorem 4.1 there exists $g_L \in VB$ on [a, b] such that $L(f) = T(fg_L, [a, b])$, for every $f \in \mathcal{K}(T, [a, b])$.

(i) \Rightarrow (ii) We shall use the following classical result (see [7] or [13], Theorem 2, # 1 of Chapter VIII): $x_n \to x$ weakly in a normed space if and only if $\sup_n ||x_n|| < +\infty$ and $\{f : f(x_n) \to f(x), x \in [a, b]\}$ is a dense set of functionals in X^* . Since $f_n \to f$ weakly, we have $||f_n|| = ||F_n||_{\infty} \leq M$ for some positive number M. So we have (ii), (1). For $x \in [a, b]$ let $L_x : \mathcal{K}(T, [a, b]) \to$ \mathbb{R} be a continuous linear functional defined by $L_x(f) = T(f\chi_{[a,x]}, [a, b]) =$ T(f, [a, x]) = F(x). Since $f_n \to f$ weakly, we obtain (ii), (2).

(ii) \Rightarrow (i) It is sufficient to show that $L(f_n) \rightarrow L(f)$. By Theorem 7.1,

$$|L(f_n) - L(f)| = |T((f_n - f)g_L, [a, b])|$$

= $|(F_n - F)(b)g_L(b) - (\mathcal{RS})\int_a^b (F_n - F)(t) dg_L(t)| \to 0.$

8 General Classes of Primitives

Let $a \in \mathbb{R}, \alpha, \beta \in \mathbb{R}, \alpha < \beta$. Let's denote by

- $T_a f : \mathbb{R} \to \mathbb{R}, \ T_a f(x) := f(x-a)$, whenever $f : \mathbb{R} \to \mathbb{R}$,
- $f_{\alpha,\beta}: \mathbb{R} \to \mathbb{R}$,

$$f_{\alpha,\beta}(x) = \begin{cases} f(\alpha) & \text{if } x < \alpha \\ f(x) & \text{if } x \in [\alpha,\beta] \\ f(\beta) & \text{if } x > \beta \end{cases}$$

whenever $f : \mathbb{R} \to \mathbb{R}$,

• $f_Q : \mathbb{R} \to \mathbb{R}$,

$$f_Q(x) = \begin{cases} f(x) & \text{if } x \in Q\\ 0 & \text{if } x \notin Q \end{cases}$$

whenever $f: E \to \mathbb{R}$ and $Q \subset E \subset \mathbb{R}$.

Definition 8.1. A family $S \subset \{f : \mathbb{R} \to \mathbb{R} : \operatorname{supp}(f) \text{ is compact}\}$ is said to be a space of integrable functions if it satisfies the following conditions:

- 1) $\mathcal{L}_{comp} + \mathcal{S} = \mathcal{S}$ and $\mathbb{R} \cdot \mathcal{S} = \mathcal{S}$ i.e., if $f \in \mathcal{L}_{comp}, g \in \mathcal{S}, \alpha \in \mathbb{R}$, then $f + g \in \mathcal{S}$ and $\alpha g \in \mathcal{S}$,
- 2) S is invariant to translations: i.e., $T_a f \in S$ whenever $f \in S$ and $a \in \mathbb{R}$,
- 3) $S \cdot \chi_{[a,b]} \subset S$ for any $[a,b] \subset \mathbb{R}$; i.e., if $f \in S$ then $f \cdot \chi_{[a,b]} \in S$,
- 4) If $f, g \in S$ and $f-g \ge 0$ a.e. on some closed interval [a, b] then $(f-g) \cdot \chi_{[a,b]} \in \mathcal{L}_{comp}$,
- 5) If $f, g \in \mathcal{S}$, $\operatorname{supp}(f) \subseteq [a, b]$ and $\operatorname{supp}(g) \subseteq [b, c]$, then $f + g \in \mathcal{S}$.

Definition 8.2. Let S be a space of integrable functions. A functional \mathcal{I} : $S \to \mathbb{R}$ is said to be an integral if:

- 1) $\mathcal{I}(\alpha f + \beta g) = \alpha(\mathcal{L}) \int_{\mathbb{R}} f(t) dt + \beta \mathcal{I}(g)$, whenever $f \in \mathcal{L}_{comp}, g \in \mathcal{S}$ and $\alpha, \beta \in \mathbb{R}$,
- 2) $\mathcal{I}(T_a f) = \mathcal{I}(f)$ whenever $a \in \mathbb{R}$ and $f \in \mathcal{S}$,
- 3) $\mathcal{I}(f+g) = \mathcal{I}(f) + \mathcal{I}(g)$ whenever $f, g \in \mathcal{S}$, $\operatorname{supp}(f) \subseteq [a, b]$, $\operatorname{supp}(g) \subseteq [b, c]$.

Let $f: E \to \mathbb{R}, Q \subset E \subset \mathbb{R}, Q$ bounded. f is said to be \mathcal{I} -integrable on Q if $f_Q \in \mathcal{S}$. We denote by $(\mathcal{I}) \int_Q f(t) dt = \mathcal{I}(f_Q)$.

Definition 8.3. Let $f : [a,b] \to \mathbb{R}$ be \mathcal{I} -integrable on [a,b], and let $\alpha \in \mathbb{R}$. The function $G : [a,b] \to \mathbb{R}$ defined by $G(x) = \alpha + (\mathcal{I}) \int_{[a,x]} f(t) dt$ is called an \mathcal{I} -primitive of f on [a,b].

A function $G : [a, b] \to \mathbb{R}$ is called an \mathcal{I} -primitive if there exists $g : [a, b] \to \mathbb{R}$, such that g is \mathcal{I} -integrable on [a, b] and there exists $\alpha \in \mathbb{R}$ so that

$$G(x) = \alpha + (\mathcal{I}) \int_{[a,x]} g(t) \, dt \, .$$

Definition 8.4. Let $AC_{\mathbb{R}} = \{F : \mathbb{R} \to \mathbb{R} : F \in AC \text{ on each compact interval}\}.$ A class $\mathcal{G} \subset \{F : \mathbb{R} \to \mathbb{R} : F \text{ is a measurable function approximately derivable} a.e.\}$ is said to be a general class of primitives if it has the following properties:

- 1) $AC_{\mathbb{R}} + \mathcal{G} = \mathcal{G}$ and $\mathbb{R} \cdot \mathcal{G} = \mathcal{G}$,
- 2) \mathcal{G} is invariant to translations; i.e., $T_a F \in \mathcal{G}$ whenever $F \in \mathcal{G}$ and $a \in \mathbb{R}$,
- 3) If $F \in \mathcal{G}$ and $\alpha, \beta \in \mathbb{R}$, $\alpha < \beta$, then $F_{\alpha,\beta} \in \mathcal{G}$,
- 4) If $F \in \mathcal{G}$ and $F'_{ap} \ge 0$ a.e. on some interval [a, b], then F is increasing on [a, b],

5) Let $F, G \in \mathcal{G}$. If $F = F_{a,b}$ for some $[a,b] \subset \mathbb{R}$ and $G = G_{b,c}$ for some [b,c], then $F + G \in \mathcal{G}$.

Let $g : \mathbb{R} \to \mathbb{R}$. A function $F : \mathbb{R} \to \mathbb{R}$, $F \in \mathcal{G}$ with $F'_{ap} = g$ a.e. is said to be a (\mathcal{G})- primitive of g on \mathbb{R} . A function $f : \mathbb{R} \to \mathbb{R}$ with compact support is said to be \mathcal{G} -integrable if it admits \mathcal{G} -primitives. The definite \mathcal{G} -integral of fwill be denoted by

$$(\mathcal{G})\int_{\mathbb{R}} f(t) \, dt = F(b) - F(a)$$

where F is a \mathcal{G} -primitive of f such that $\operatorname{supp}(f) \subseteq [a, b]$.

In what follows we show that the \mathcal{G} -integral is well defined.

Lemma 8.1. Let $g : \mathbb{R} \to \mathbb{R}$ which admits \mathcal{G} -primitives. Suppose that $F, G : \mathbb{R} \to \mathbb{R}$ are two \mathcal{G} -primitives of g. Then F - G is a constant on \mathbb{R} .

PROOF. By Definition 8.4, 4), it follows that F - G is a constant on each $[a, b] \subset \mathbb{R}$. Since $\mathbb{R} = \bigcup_{n=1}^{\infty} [-n, n]$, we get that F - G is a constant on \mathbb{R} . \Box

Lemma 8.2. The *G*-integral is well-defined.

PROOF. Let $f : \mathbb{R} \to \mathbb{R}$ be a \mathcal{G} -integrable function and F, G two \mathcal{G} -primitives of f. By Lemma 8.1, F - G is a constant on \mathbb{R} . Let $c = \inf \operatorname{supp}(f)$, $d = \operatorname{supsupp}(f)$ and $[a, b] \supset [c, d]$. By Definition 8.4, 3), $F_{c,d}, G_{c,d}$ belong to \mathcal{G} and they obviously are \mathcal{G} -primitives of f. Hence, by Lemma 8.1 again, $F = F_{c,d}$ and $G = G_{c,d}$. It follows that F(b) - F(a) = G(b) - G(a). \Box

Definition 8.5. A function $f : E \to \mathbb{R}$ is said to be \mathcal{G} -integrable on a bounded set $Q \subset E$, if the function f_Q is \mathcal{G} -integrable. Then we write

$$(\mathcal{G})\int_{Q}f(t)\,dt=(\mathcal{G})\int_{\mathbb{R}}f_{Q}(t)\,dt\,.$$

Theorem 8.1. Let $S_{\mathcal{G}} = \{f : \mathbb{R} \to \mathbb{R} : supp(f) \text{ is compact and } f \text{ is } \mathcal{G}\text{-integrable}\}$. Then $S_{\mathcal{G}}$ is a space of integrable functions.

PROOF. We verify conditions 1)-5) of Definition 8.1.

1) Let $f \in \mathcal{L}_{comp}$, $g \in S_{\mathcal{G}}$ and $\alpha \in \mathbb{R}$. Clearly $\alpha g \in S_{\mathcal{G}}$. Let $a_1 = \inf(\operatorname{supp}(f))$, $b_1 = \sup(\operatorname{supp}(f))$ and $F : \mathbb{R} \to \mathbb{R}$,

$$F(x) = \begin{cases} 0 & \text{if } x \le a_1\\ (\mathcal{L}) \int_a^x f(t) \, dt & \text{if } x \in [a_1, b_1]\\ F(b_1) & \text{if } x \ge b_1 \end{cases}$$

Then $F \in AC_{\mathbb{R}}$ and F' = f a.e. on \mathbb{R} . For $g \in S_{\mathcal{G}}$, there exists $G \in \mathcal{G}$ such that $G'_{ap} = g$ a.e. on \mathbb{R} . By Definition 8.4, 1), it follows that $F + G \in \mathcal{G}$ and $(F + G)'_{ap} = f + g$ a.e. on \mathbb{R} .

2) Suppose that $f \in S_{\mathcal{G}}$. Then there exists $F \in \mathcal{G}$ such that $F'_{ap} = f$ a.e. on \mathbb{R} . Let $a \in \mathbb{R}$. Then

$$(T_a F)'_{ap}(x) = (F(x-a))'_{ap} = F'_{ap}(x-a) = f(x-a) = T_a f(x) \ a.e. \ on \ \mathbb{R}.$$

By Definition 8.4, 2), it follows that $T_a f \in S_{\mathcal{G}}$.

3) Suppose that $f \in S_{\mathcal{G}}$ and $[a, b] \subset \mathbb{R}$. Then there exists $F \in \mathcal{G}$ such that $F_{ap}^{'} = f \ a.e.$ on \mathbb{R} . By Definition 8.4, 3), it follows that $F_{a,b} \in \mathcal{G}$ and

$$(F_{a,b})'_{ap} = f\chi_{[a,b]} a.e.$$
on \mathbb{R} ,

so $f\chi_{[a,b]} \in \mathcal{S}_{\mathcal{G}}$.

4) Suppose that $f, g \in S_{\mathcal{G}}$ and $f-g \geq 0$ a.e. on some $[a,b] \subset \mathbb{R}$. Then there exists $F, G \in \mathcal{G}$ such that $F'_{ap} = f$ and $G'_{ap} = g$ a.e. on \mathbb{R} . But $(F-G)'_{ap} = f - g \geq 0$ a.e. on [a,b]. By Definition 8.4, 4), F-G is increasing on [a,b]; so f-g is Lebesgue integrable on [a,b]. It follows that $(f-g) \cdot \chi_{[a,b]} \in \mathcal{L}_{comp}$.

5) Suppose that $f, g \in S_{\mathcal{G}}$ such that $\operatorname{supp}(f) \subset [a, b]$ and $\operatorname{supp}(g) \subset [b, c]$. Then there exist $F, G \in S_{\mathcal{G}}$ such that $F'_{ap} = f$ and $G'_{ap} = g$ a.e. on \mathbb{R} . By Definition 8.4, 3), $F_{a,b}, G_{b,c} \in S_{\mathcal{G}}$. Clearly

$$(F_{a,b})'_{ap} = f$$
 and $(G_{b,c})'_{ap} = g \ a.e.$ on \mathbb{R} .

By Lemma 8.1, $F = F_{a,b}$ and $G = G_{b,c}$, Hence by Definition 8.4, 5), $F + G \in \mathcal{G}$ and $(F + G)'_{ap} = f + g$ a.e. on \mathbb{R} . Therefore $f + g \in \mathcal{S}_{\mathcal{G}}$.

Example 8.1 (Examples of general classes of primitives). Let

- $\mathcal{C} = \{F : \mathbb{R} \to \mathbb{R} : F \text{ is continuous on } \mathbb{R}\},\$
- $\mathcal{C}_{ap} = \{F : \mathbb{R} \to \mathbb{R} : F \text{ is approximately continuous on } \mathbb{R}\},\$
- $\mathcal{C}_{pro} = \{F : \mathbb{R} \to \mathbb{R} : F \text{ is proximally continuous on } \mathbb{R}\}.$

The definition of the proximal continuity is somewhat technical, and it was introduced by Sarkhel and De in [29]. We don't give this definition here, but we mention that C_{pro} is a real linear space contained in the class of Darboux Baire one functions and $C \cdot C_{pro} = C_{pro}$. That C_{ap} is contained in the class Darboux Baire one is well known, and of course $C \cdot C_{ap} = C_{ap}$.

Let

- $AC^*G_{\mathbb{R}} = \{F : \mathbb{R} \to \mathbb{R} : F \text{ is } AC^*G \text{ on each compact interval } [a, b]\},\$
- $ACG_{\mathbb{R}} = \{F : \mathbb{R} \to \mathbb{R} : F \text{ is } ACG \text{ on each compact interval } [a, b]\},\$
- $\mathcal{F}_{\mathbb{R}} = \{F : \mathbb{R} \to \mathbb{R} : F \text{ satisfies Foran's condition } \mathcal{F} \text{ on each compact interval } [a, b]\}.$

We have the following examples of \mathcal{G} -integrals:

- $\mathcal{G} = \mathcal{C} \cap AC^*G_{\mathbb{R}}$ is the Denjoy*-integral,
- $\mathcal{G} = \mathcal{C}_{ap} \cap AC^*G_{\mathbb{R}}$ is the α -Ridder integral,
- $\mathcal{G} = \mathcal{C}_{pro} \cap AC^*G_{\mathbb{R}}$ seems to be new,
- $\mathcal{G} = \mathcal{C} \cap ACG_{\mathbb{R}}$ is the wide Denjoy-integral,
- $\mathcal{G} = \mathcal{C}_{ap} \cap ACG_{\mathbb{R}}$ is the β -Ridder integral,
- $\mathcal{G} = \mathcal{C}_{pro} \cap ACG_{\mathbb{R}}$ seems to be new,
- $\mathcal{G} = \mathcal{C} \cap \mathcal{F}_{\mathbb{R}}$ is the Foran integral,
- $\mathcal{G} = \mathcal{C}_{ap} \cap \mathcal{F}_{\mathbb{R}}$ is called the *AF*-integral (see [11]),
- $\mathcal{G} = \mathcal{C}_{ap} \cap VBG \cap (N)$ is the Gordon integral,
- $\mathcal{G} = \mathcal{C}_{pro} \cap VBG \cap (N)$ seems to be new.

9 A Generalization of a Result on Differential Equations of Bullen and Vyborny

Definition 9.1. Let $I_o = [t_o - \alpha_o, t_o + \alpha_o]$ and $J_o = [x_o - \beta_o, x_o + \beta_o]$, where $t_o, x_o \in \mathbb{R}$ and $\alpha_o, \beta_o > 0$. Given $f: I_o \times J_o \to \overline{\mathbb{R}}$, I a compact interval, $I \subset I_o$ and $g: I \to J_o$, we define $f_g: I \to \mathbb{R}$ by $f_g(t) = f(t, g(t))$.

Lemma 9.1 (Helly). ([22, p. 221]). Let $F = \{f(x)\}$ be an infinite family of increasing functions, defined on [a, b]. If all functions of the family are bounded by one and the same number, $|f(x)| \leq K$, $f \in F$, $a \leq x \leq b$, then there is a sequence of functions $\{f_n(x)\}$ in F which converges to an increasing function $\varphi(x)$ at every point of [a, b].

Theorem 9.1. Let $\mathcal{I} : \mathcal{S} \to \mathbb{R}$ be an integral as in Definition 8.2, and let $f : I_o \times J_o \to \overline{\mathbb{R}}$ satisfy the following properties:

(i) $f(t, \cdot)$ is continuous on J_o for almost all $t \in I_o$,

- (ii) There exists a subinterval $I = [t_o \alpha, t_o + \alpha]$ of I_o , and two \mathcal{I} -integrable functions $m, M : I \to \overline{\mathbb{R}}$ such that
 - $\left| (\mathcal{I}) \int_{t_o}^t m(s) \, ds \right| < \beta_o$
 - $\left| (\mathcal{I}) \int_{t_o}^t M(s) \, ds \right| < \beta_o$
 - if $g: I \to J_o$ is an \mathcal{I} -primitive with $g(t_o) = x_o$, then f_g is measurable on I and $m(t) \leq f_g(t) \leq M(t)$ a.e. on I.

Then there exists an \mathcal{I} -primitive $\varphi: I \to J_o$ such that $\varphi(t) = x_o + (\mathcal{I}) \int_{t_o}^t f_{\varphi}(s) \, ds$.

PROOF. We prove for example the case $t \ge t_o$. On the interval $[t_o, t_o + \alpha]$ we define the approximations φ_k , k = 1, 2, ... by

$$\varphi_k(t) = \begin{cases} x_o & \text{if } t \in [t_o, t_o + \frac{\alpha}{k}] \\ x_o + (\mathcal{I}) \int_{t_o}^{t - \frac{\alpha}{k}} f_{\varphi_k}(s) \, ds & \text{if } t \in [t_o + \frac{\alpha}{k}, t_o + \alpha]. \end{cases}$$

Since the integral \mathcal{I} is invariant to translations, it follows that

$$\varphi_k(t) = \begin{cases} x_o & \text{if } t \in [t_o, t_o + \frac{\alpha}{k}] \\ x_o + (\mathcal{I}) \int_{t_o + \frac{\alpha}{k}}^t f_{\varphi_k}(s - \frac{\alpha}{k}) \, ds & \text{if } t \in [t_o + \frac{\alpha}{k}, t_o + \alpha]. \end{cases}$$

Let $\varphi_{k,1} : [t_o, t_o + \alpha] \to J_o, \ \varphi_{k,1}(t) = x_o$. Clearly $\varphi_{k,1}$ is an \mathcal{I} -primitive on $[t_o, t_o + \alpha]$. By hypotheses we have

$$-\beta_o < (\mathcal{I}) \int_{t_o}^{t-\frac{\alpha}{k}} m(s) \, ds \le (\mathcal{I}) \int_{t_o}^{t-\frac{\alpha}{k}} f_{\varphi_{k,1}}(s) \, ds$$
$$\le (\mathcal{I}) \int_{t_o}^{t-\frac{\alpha}{k}} M(s) \, ds < \beta_o.$$
(8)

Let $\varphi_{k,2}: [t_o, t_o + \alpha] \to J_o$,

$$\varphi_{k,2}(t) = \begin{cases} \varphi_{k,1}(t) & \text{if } t \in [t_o, t_o + \frac{\alpha}{k}] \\ x_o + (\mathcal{I}) \int_{t_o}^{t - \frac{\alpha}{k}} f_{\varphi_{k,1}}(s) \, ds & \text{if } t \in [t_o + \frac{\alpha}{k}, t_o + \frac{2\alpha}{k}] \\ \varphi_{k,2}(t_o + \frac{2\alpha}{k}) & \text{if } t \in [t_o + \frac{2\alpha}{k}, t_o + \alpha]. \end{cases}$$

By (8), it follows that $\varphi_{k,2}$ takes indeed values in J_o . Since the integral \mathcal{I} is invariant to translations, it follows that

$$x_o + (\mathcal{I}) \int_{t_o}^{t - \frac{\alpha}{k}} f_{\varphi_{k,1}}(s) \, ds = x_o + (\mathcal{I}) \int_{t_o + \frac{\alpha}{k}}^t f_{\varphi_{k,1}}\left(s - \frac{\alpha}{k}\right) ds \,,$$

for $t \in [t_o + \frac{\alpha}{k}, t_o + \frac{2\alpha}{k}]$. Therefore $\varphi_{k,2}$ is well defined and a \mathcal{I} -primitive on $[t_o, t_o + \alpha]$, with $\varphi_{k,2}(t_o) = x_o$. Suppose that $\varphi_{k,j-1} : [t_o, t_o + \alpha] \to J_o, j \ge 2$ are already defined and let $\varphi_{k,j} : [t_o, t_o + \alpha] \to J_o$ be defined by

$$\varphi_{k,j}(t) = \begin{cases} \varphi_{k,j-1}(t) & t \in [t_o, t_o + \frac{(j-1)\alpha}{k}] \\ \varphi_{k,j-1}(\frac{(j-1)\alpha}{k}) + (\mathcal{I}) \int_{t_o + \frac{(j-2)\alpha}{k}}^{t-\frac{\alpha}{k}} f_{\varphi_{k,j-1}}(s) \, ds & t \in [t_o + \frac{(j-1)\alpha}{k}, t_o + \frac{j\alpha}{k}] \\ \varphi_{k,j-1}(t_o + \frac{j\alpha}{k}) & t \in [t_o + \frac{j\alpha}{k}, t_o + \alpha] \end{cases}$$

But

$$(\mathcal{I})\int_{t_o+\frac{(j-2)\alpha}{k}}^{t-\frac{\alpha}{k}}f_{\varphi_{k,j-1}}(s)\,ds = (\mathcal{I})\int_{t_o+\frac{(j-1)\alpha}{k}}^{t}f_{\varphi_{k,j-1}}\left(s-\frac{\alpha}{k}\right)ds\,,$$

for $t \in [t_o + \frac{(j-1)\alpha}{k}, t_o + \frac{j\alpha}{k}]$. Clearly $\varphi_{k,j}$ is a \mathcal{I} -primitive on $[t_o, t_o + \alpha]$, with $\varphi_{k,j}(t_o) = x_o$. We show that $\varphi_{k,j}$ takes values only in J_o . We first show inductively that $\varphi_k = \varphi_{k,j}$ on $[t_o, t_o + \frac{j\alpha}{k}]$. Suppose that $\varphi_k = \varphi_{k,j-1}$ on $[t_o, t_o + \frac{j\alpha}{k}]$. Then clearly $\varphi_{k,j} = \varphi_{k,j-1} = \varphi_k$ on $[t_o, t_o + \frac{(j-1)\alpha}{k}]$. Let $t \in [t_o + \frac{(j-1)\alpha}{k}, t_o + \frac{j\alpha}{k}]$. It follows that

$$\begin{aligned} \varphi_{k,j}(t) &= \varphi_k \Big(t_o + \frac{(j-1)\alpha}{k} \Big) + (\mathcal{I}) \int_{t_o + \frac{(j-1)\alpha}{k}}^t \varphi_k \Big(s - \frac{\alpha}{k} \Big) \, ds \\ &= x_o + (\mathcal{I}) \int_{t_o + \frac{\alpha}{k}}^{t_o + \frac{(j-1)\alpha}{k}} f_{\varphi_k} \Big(s - \frac{\alpha}{k} \Big) \, ds + (\mathcal{I}) \int_{t_o + \frac{(j-1)\alpha}{k}}^t \varphi_k \Big(s - \frac{\alpha}{k} \Big) \, ds \\ &= x_o + (\mathcal{I}) \int_{t_o + \frac{\alpha}{k}}^t f_{\varphi_k} \Big(s - \frac{\alpha}{k} \Big) \, ds = \varphi_k(t). \end{aligned}$$

Suppose that $\varphi_{k,j-1} \in J_o$. We prove that $\varphi_{k,j} \in J_o$. For $t \in [t_o \frac{(j-1)\alpha}{k}, t_o + \frac{j\alpha}{k}]$ we have

$$-\beta_o < (\mathcal{I}) \int_{t_o}^{t-\frac{\alpha}{k}} m(s) ds \le (\mathcal{I}) \int_{t_o}^{t-\frac{\alpha}{k}} f_{\varphi_k}(s) ds \le (\mathcal{I}) \int_{t_o}^{t-\frac{\alpha}{k}} M(s) \, ds < \beta_o.$$

Hence $\varphi_{k,j} \in J_o$ in this case. Since $\varphi_{k,j} = \varphi_{k,j-1} = \varphi_k$ on $[t_o, t_o + \frac{(j-1)\alpha}{k}]$ we have $\varphi_{k,j}(t) \in J_o$ for all $t \in [t_o, t_o + \frac{j\alpha}{k}]$. Clearly $\varphi_{k,k} = \varphi_k$ on $[t_o, t_o + \alpha]$, hence φ_k is well defined and is a \mathcal{I} -primitive on $[t_o, t_o + \alpha]$.

Let $h, H : [t_o, t_o + \alpha] \to \mathbb{R}$ be defined as follows:

$$h(t) = \begin{cases} x_o & \text{if } t \in [t_o, t_o + \frac{\alpha}{k}] \\ x_o + (\mathcal{I}) \int_{t_o}^{t - \frac{\alpha}{k}} m(s) \, ds & \text{if } t \in [t_o + \frac{\alpha}{k}, t_o + \alpha] \end{cases}$$

On the *T*-integration of Karták and Mařì

$$H(t) = \begin{cases} x_o & \text{if } t \in [t_o, t_o + \frac{\alpha}{k}] \\ x_o + (\mathcal{I}) \int_{t_o}^{t - \frac{\alpha}{k}} M(s) \, ds & \text{if } t \in [t_o + \frac{\alpha}{k}, t_o + \alpha] \end{cases}$$

Let $h_k : [t_o, t_o + \alpha] \to \mathbb{R}$, $h_k(t) = \varphi_k(t) - h(t)$. Then, for $t \in [t_o, t_o + \frac{\alpha}{k}]$ we have $h_k(t) = 0$, and for $t \in [t_o + \frac{\alpha}{k}, t_o + \alpha]$,

$$h_{k}(t) = (\mathcal{I}) \int_{t_{o}}^{t-\frac{\alpha}{k}} (f_{\varphi_{k}}(s) - m(s)) \, ds = (\mathcal{L}) \int_{t_{o}}^{t-\frac{\alpha}{k}} (f_{\varphi_{k}} - m)(s) \, ds$$
$$\leq (\mathcal{L}) \int_{t_{o}}^{t-\frac{\alpha}{k}} (M - m)(s) \, ds$$
$$= (\mathcal{I}) \int_{t_{o}}^{t-\frac{\alpha}{k}} M(s) \, ds - (\mathcal{I}) \int_{t_{o}}^{t-\frac{\alpha}{k}} m(s) \, ds < 2\beta_{o}.$$

Therefore $\{h_k\}_k$ is an increasing sequence of functions on $[t_o, t_o + \alpha]$ and

$$0 \le h_k(t_o) \le h_k(t_o + \alpha) \le 2\beta_o.$$

By Lemma 9.1, there exists a subsequence of $\{h_k\}_k$ which converges punctually to an increasing function G on $[t_o, t_o + \alpha]$. We may suppose without loss of generality that $\{h_k\}_k$ converges punctually to G on $[t_o, t_o + \alpha]$, hence $\{\varphi_k\}_k$ converges punctually to $\varphi := h + G$ on $[t_o, t_o + \alpha]$. By (i), it follows that $f_{\varphi_k} \to f_{\varphi}$ a.e. on $[t_o, t_o + \alpha]$. By Theorem 3.1, it follows that f_{φ_k} and f_{φ} belong to S on $[t_o, t]$ and $\lim_{k\to\infty} \mathcal{I}(f_{\varphi_k}) = \mathcal{I}(f_{\varphi})$ on $[t_o, t]$. From the definition of φ_k , we obtain that $\varphi(t) = x_o + (\mathcal{I}) \int_{t_o}^t f_{\varphi}(s) ds$.

Corollary 9.1 (Bullen and Vyborny). ([5]). Let $f: I_o \times J_o \to \mathbb{R}$ be such that

- (i) $f(t, \cdot)$ is continuous on J_o for almost all $t \in I_o$.
- (ii) there exists $\alpha > 0$ and two continuous functions $h, H : [t_o \alpha, t_o + \alpha] \rightarrow [-\beta_o, \beta_o]$ satisfying the following properties:
 - $h(t_o) = H(t_o) = 0.$
 - if $g: [t_o \alpha, t_o + \alpha] \to J_o, g \in AC^*G, g \text{ is continuous and } g(t_o) = x_o,$ then f_g is measurable and $\overline{D}h \leq f_g \leq \underline{D}H$.

Then there exists a continuous function $\varphi : [t_o - \alpha, t_o + \alpha] \to J_o$, such that $\varphi(t) = x_o + (\mathcal{D}^*) \int_{t_o}^t f_{\varphi}(s) \, ds.$

PROOF. Let $g_o: [t_o - \alpha, t_o + \alpha] \to J_o, g_o(t) = x_o$. By hypothesis $\overline{D}h \leq f_{g_o} \leq \underline{D}H$ and f_{g_o} is measurable. From Marcinkiewicz' theorem of [25, p. 253], it follows that f_{g_o} is \mathcal{D}^* -integrable. Since $\overline{D}h \leq \underline{D}H$ on $[t_o - \alpha, t_o + \alpha]$, and $\overline{D}h$, $\underline{D}H$

are Borel measurable (hence Lebesgue measurable), by Marcinkiewicz' theorem again, we obtain that $\overline{D}h$, $\underline{D}H$ are \mathcal{D}^* -integrable on $[t_o - \alpha, t_o + \alpha]$. Let $m(x) = \overline{D}h(t)$ and $M(t) = \underline{D}H(t)$ for $t \in [t_o - \alpha, t_o + \alpha]$. Then

$$\left| (\mathcal{D}^*) \int_{t_o}^t m(s) \, ds \right| < \beta_o \quad \text{and} \quad \left| (\mathcal{D}^*) \int_{t_o}^t M(s) \, ds \right| < \beta_o \,,$$

because

$$-\beta_o \le h(t) \le (\mathcal{D}^*) \int_{t_o}^t m(s) \, ds \le (\mathcal{D}^*) \int_{t_o}^t M(s) \, ds \le H(t) \le \beta_o,$$

for all $t \in [t_o - \alpha, t_o + \alpha]$ (see for example [8]) Now the proof follows applying Theorem 9.1.

References

- A. Alexiewicz, Linear functionals on Denjoy integrable functions, Coll. Math., 1 (1948), 289–293.
- [2] P. Bhattacharyya, On the modified Perron integral, Indian J. Math., 15 (1973), 101–117.
- [3] P. Bhattacharyya and B. K. Lahiri, On the modified Perron integral II, Indian J. Math., 20 (3) (1978), 233–241.
- [4] A. M. Bruckner, Differentiation of real functions, Lect. Notes in Math., vol. 659, Springer-Verlag, 1978.
- [5] P. S. Bullen and R. Vyborny, Some applications of a theorem of Marcinkiewicz, Canad. Math. Bull., 34 (2) (1991), 165–174.
- [6] V. G. Čelidze and A. G. Džvaršeišvili, The theory of the Denjoy integral and some applications, World Scientific, 1978.
- [7] N. Dunford and J. T. Schwartz, *Linear operators*, Interscience, 1958.
- [8] V. Ene, *Real functions current topics*, Lect. Notes in Math., vol. 1603, Springer-Verlag, 1995.
- [9] V. Ene, *Riesz type theorems for general integrals*, Real Analysis Exchange, 22 (1997), no. 2, 714–733.
- [10] J. Foran, An extension of the Denjoy integral, Proc. Amer. Math. Soc., 49 (1975), 359–365.

- [11] SS. Fu, Integration by parts or the approximately continuous Foran integral, J. of Math. Study, 127 (1994), no. 1, 66–67.
- [12] R. Henstock, *Linear analysis*, Butterworth London, 1968.
- [13] L. V. Kantorovici and G. P. Akilov, Analiză funcțională, Editura ştiințifică și enciclopedică, 1986, (in Romanian).
- [14] K. Karták, A generalization of the Carathéodory theory of the differential equations, Czech. Math. J., 17 (1967), 482–514.
- [15] K. Karták and J. Mařik, On representations of some Perron integrable functions, Czech. Math. J., 19 (1969), 745–749.
- [16] H. Kestelman, Modern theories of integration, 2nd ed., Dover New York, 1960.
- [17] Y. Kubota, A characterization of the Denjoy integral, Math. Japan., 26 (1981), 389–392.
- [18] Y. Kubota, Notes on integration, Math. Japan., **31** (4) (1986), 617–621.
- [19] Y. Kubota, A characterization of the general Denjoy integral, J. Math., Study 27 (1) (1994), 83–85.
- [20] P. Y. Lee, Lanzhou lectures on Henstock integration, World Scientific, Singapore, 1989.
- [21] M. N. Manougian, On the convergence of a sequence of Perron integrals, Proc. Amer. Math., Soc. 23 (1969), 320–322.
- [22] I. P. Natanson, Theory of functions of a real variable, 2nd. rev. ed., Ungar, New York, 1961.
- [23] K. Ostaszewski, Topology for the spaces of Denjoy integrable functions, Real Analysis Exchange, 9 (1983-1984), no. 1, 79–85.
- [24] D. Preiss, Approximate derivatives and Baire classes, Czech. Math. J., 21 (1971), no. 96, 373–382.
- [25] S. Saks, Theory of the integral, 2nd. rev. ed., vol. PWN, Monografie Matematyczne, Warsaw, 1937.
- [26] W. L. C. Sargent, On the integrability of a product, J. London Math., Soc. 23 (1948), 28–34.

- [27] W. L. C. Sargent, On some theorems of Hahn-Banach and Steinhaus, J. London Math. Soc., 28 (1953), 438–451.
- [28] D. N. Sarkhel, A wide constructive integral, Math. Japonica, 32 (1987), 295–309.
- [29] D. N. Sarkhel and A. K. De, *The proximally continuous integrals*, J. Austral. Math. Soc., (Series A) **31** (1981), 26–45.