
Real Analysis Exchange
Vol. 28(2), 2002/2003, pp. 493–499
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A NOTE ON ALGEBRAIC SUMS OF
SUBSETS OF THE REAL LINE

Abstract

We investigate the algebraic sums of sets for a large class of invari-
ant σ-ideals and σ-fields of subsets of the real line. We give a simple
example of two Borel subsets of the real line such that its algebraic
sum is not a Borel set. Next we show a similar result to Proposition 2
from A. Kharazishvili paper [4]. Our results are obtained for ideals with
coanalytical bases.

1 Introduction

We shall work in ZFC set theory. By ω we denote natural numbers. By 4 we
denote the symmetric difference of sets. The cardinality of a set X we denote
by |X|. By R we denote the real line and by Q we denote rational numbers. If
A and B are subsets of Rn and b ∈ Rn, then A+B = {a+ b : a ∈ A ∧ b ∈ B}
and A + b = A + {b}. Similarly, if A ⊆ R, B ⊆ Rn and a ∈ R, then A · B =
{a · b : a ∈ A ∧ b ∈ B} and a ·B = {a} ·B.

We say that a family F of subsets of R is invariant if for each A ∈ F , a ∈ Q
and b ∈ R we have a ·A+ b ∈ F (see [3]).

Let E be a polish space. If x ∈ E and ε > 0, then by B(x, ε) we denote the
ball with center x and radius ε. The family of Borel subsets of E we denote
by Bor (E). For each α < ω1 such that α > 0 we denote by Σ0

α(E) the α-th
additive class of Borel subsets of E and by Π0

α(E) the α-th multiplicative class
of Borel subsets of E; i.e., Σ0

1(E) coincides with the family of all open subsets
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of E, Π0
1(E) is the family of all closed subsets of E, Σ0

2(E) is the family of all
Fσ subsets of E, Π0

2(E) is the family of all Gδ subsets of E and so on. By
Σ1

1(E) and Π1
1(E) we denote the family of all analytic and coanalytic subsets

of the space E.
Let I be an ideal of subsets of a set X, S any family of subsets of X. We

say that I is an ideal with S-base, or that I has S-base, if for every A ∈ I
there exists B ∈ I ∩ S such that A ⊆ B. In particular, if E is a polish space
and I is an ideal of subsets of E, then we say that the ideal I has a Borel base
if it has Bor (E)-base.

Notice that the σ-ideal L of Lebesgue measure zero subsets of R has a
Gδ-base and that the σ-ideal K of first category subsets of R has a Fσ-base.
Notice that it is quite easy to construct invariant σ-ideals with Π1

1-base which
has no Σ1

1-base. Namely, let P be a non-empty perfect subset of the real
line consisting of linearly independent over Q elements (see [5]). Let us fix a
subset A ∈ Π1

1(R) \ Σ1
1(R) of P . Let I be the σ-ideal of subsets of the real

line generated by the family of all translations of A. Then I is invariant over
translations, has Π1

1(R)-base and has no Σ1
1(R)-base.

Suppose that S is a σ-field of subsets of a set X and that I is a σ-ideal of
subsets of the set X. Then by S[I] we denote the smallest σ-field containing
S ∪ I. It is easy to check that S[I] = {A4B : A ∈ S ∧B ∈ I}.

We consider the field R as a linear space over the field Q of rational num-
bers. Let us recall that any base of the space R over Q is called a Hamel base.
For each X ⊆ R we denote by Span(X) the linear subspace of R generated by
the set X. If X ⊆ R and n ∈ ω, then we put

Span(X,n) = Q ·X + . . .+ Q ·X︸ ︷︷ ︸
n

.

Therefore for each set X ⊆ R we have Span(X) =
⋃
{Span(X,n) : n ∈ ω}.

Let us recall that a boolean algebra B satisfies the countable chain condition
if each family of pairwise disjoint elements from B is countable. In [3] and [4]
A. Kharazishvili proved the following theorem.

Theorem 1.1. Let I be an invariant σ-ideal of subsets of R, let S be an
invariant σ-algebra of subsets of R, containing I and let the quotient boolean
algebra S/I satisfy the countable chain condition. Then the next four sentences
are equivalent:

1. (∃X,Y ∈ I)(X + Y 6∈ I),

2. (∃X ∈ I)(X +X 6∈ I),
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3. there exists a linearly independent (over rational numbers Q) set X ∈ I
such that Span(X) 6∈ S,

4. (∃X ∈ I)(Span(X) 6∈ S).

2 On Algebraic Sums of Borel Sets

In this section we recall some probably well - known facts about algebraic
sums of Borel subsets of the space Rn. It is clear that if A is a nonempty open
subset of Rn and B is an arbitrary subset of Rn, then A + B is an open set.
If A is compact and B is closed, then A+B is closed. If A and B are closed,
then A+B is a Fσ set. But it may not be a closed set. Indeed, let A =

√
2 ·Z.

Then A+ Z is a dense subset of R. The following result is a generalization of
this observation.

Theorem 2.1. For each ordinal number α < ω1 there exists a set A ∈ Π0
α(R)

such that A+ Z ∈ Σ0
α+1(R) \Π0

α(R).

Proof. Let B ⊆ (0, 1) be such set that B ∈ Σ0
α+1(R) \ Π0

α(R). Therefore
B =

⋃
n∈ω An, where An ∈ Π0

α(R) for each natural number n. Let A =⋃
n∈ω(An + n). Then A ∈ Π0

α(R) and (A+ Z) ∩ (0, 1) = B.

Suppose that A,B ⊆ Rn are Borel sets. Then A + B = {f(x, y) : x ∈
A ∧ y ∈ B}, where f(x, y) = x+ y. Therefore A+B is a continuous image of
the Borel set A×B; so A+B is an analytic set.

It is quite easy to give an example of two Borel subsets A,B ⊆ R2 such that
A+B is not a Borel set. Namely, let us consider a Gδ subset A ⊆ [0, 1]2 such
that π2(A) is not a Borel set, where π2 is the projection defined by π2(x, y) = y.
Finally let us put B = [0, 1]×{0}. Note that (A\B)∩({0}×R) = {0}×π2(A)
and therefore A\B is not a Borel set. In fact we showed that for each natural
number n ≥ 2 there exist a Gδ subset A of Rn and a compact subset B of Rn
such that A \B is not a Borel set.

In 1954 B. Sodnomow (see [7]), P. Erdős and A. H. Stone in 1969 (see [2])
and C. A. Rogers in 1969 (see [6]) showed that there exists a Gδ subset A of
the real line and a compact subset B of the real line such that A+B is not a
Borel set. We shall present now a simple proof of this fact.

Let N be a perfect and compact subset of the real line of algebraically in-
dependent elements. Let P ∗ and Q∗ be two disjoint nonempty perfect subsets
of N . Then Span(P ∗) ∩ Span(Q∗) = {0}. Let G∗ ⊆ P ∗ × Q∗ be such a Gδ
set such that π2(G∗) is not a Borel set. Let us fix an element r ∈ Q∗. Using
similar arguments as above we show that G∗ \ (P ∗×{r}) is not a Borel subset
of R2. Let P = P ∗ \P ∗ and Q = Q∗ \Q∗. Then G∗ \ (P ∗×{r}) ⊆ P ×Q and
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P ×Q is a compact set. Let ϕ(x, y) = x+ y. Then ϕ is a continuous one-to-
one function on P ×Q. Therefore ϕ is a homeomorphism between P ×Q and
ϕ(P ×Q). Let G = ϕ(G∗) and P = −(ϕ(P ∗) + r). Then G is a Gδ subset of
R and P is a compact set. But G+P = ϕ(G∗ \ (P ∗ × {r}); so G+P is not a
Borel set.

3 On Summable Families of Sets

Let A and S be two families of sets. We say that A is S-summable if for every
family B ⊆ A we have

⋃
B ∈ S. A family A is point-finite if {X ∈ A : x ∈ X}

is finite for each x. The following result is a slightly stronger formulation of
the main result from [1].

Theorem 3.1. Suppose that E is a polish space and that I ⊆ P (E) is a
σ-ideal with a Π1

1(E)-base. Suppose also that A is a point-finite and Σ1
1(E)[I]-

summable family. Then there exists a countable subfamily B ⊆ A such that⋃
A \

⋃
B ∈ I.

Proof. Without loss of generality we may assume that the cardinality of the
family A is less or equal to that of the continuum. Let T be an arbitrary subset
of R which contain no perfect subset and |T | = |A|. Let A = {At : t ∈ T}.
Let us put R = {(x, t) ∈ E ×R : x ∈ At}. Let D be a countable dense subset
of R. Since the family A is point-finite, we get

R =
⋂
n∈ω

⋃
d∈D

(R−1(B(d,
1
n

))×B(d,
1
n

)).

For any n ∈ ω and d ∈ D let Sn,d ∈ Σ1
1(E) and An,d ∈ I be such that

R−1(B(d, 1
n )) = Sn,d 4An,d. Let us put B =

⋃
n

⋃
dAn,d and let us fix some

C ∈ Π1
1(E) such that C ∈ I and B ⊆ C. Then the set Q = R ∩ ((E \C)×R)

is an analytic subset of the product polish space E × R. Hence the set S =
{t ∈ T : (∃x)((x, t) ∈ Q} is a subset of T which is an analytic subset of the
real numbers, so is countable. Thus we have

⋃
t∈S At ⊇

⋃
A \ C.

It is possible to apply Theorem directly 3.1 to the family of all analytic
subsets of a polish space (put I = {∅}), to the family of all Lebesgue mea-
surable subsets of R, to the σ-field of all subsets with the Baire property of a
fixed polish space and so on. We shall now formulate some other applications
of this theorem.

Corollary 3.2. Let E be a polish space and let A be an uncountable family of
pairwise disjoint Σ1

1(E) sets. Then there exists a subfamily B ⊆ A such that⋃
B is not in the class Σ1

1(E).
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Corollary 3.3. Let E be a polish space and let I ⊆ P (E) be a σ-ideal with a
Π1

1(E)-base and let A be an uncountable pairwise disjoint family of subsets of
Bor (E)[I] \ I. Then there exists a subfamily B ⊆ A such that

⋃
B is not in

the class Bor (E)[I].

Corollary 3.4. (see [1]) Suppose that E is a polish space and that I ⊆ P (E)
is a σ-ideal with a Π1

1(E)-base. Suppose also that A ⊆ I is a point-finite
family of sets such that

⋃
A 6∈ I. Then there exists a subfamily B of A such

that
⋃
B 6∈ Bor (E)[I].

For a given family S of sets let us denote by S− the family of sets which
are hederatively in S; i.e., S− = {A : (∀B ⊆ A)(B ∈ S)}. Note that if Leb
denotes the family of all Lebesgue measurable subsets of the real line, then
Leb− is the family of all Lebesgue measure zero subsets of the reals. A similar
remark is holds for the Baire property.

Corollary 3.5. Suppose that E is a polish space and that I ⊆ P (E) is a
σ-ideal with a Π1

1(E)-base. Then (Bor (E)[I])− = I.

Proof. The inclusion I ⊆ (Bor (E)[I])− is obvious. Suppose that A ∈
(Bor (E)[I])−. Let A = {{x} : x ∈ A}. Then A is point-finite and Bor (E)[I]-
summable. Therefore there exists a countable family B ⊆ A such that

⋃
A \⋃

B ∈ I. But then A =
⋃
B ∪ (

⋃
A \

⋃
B), so A ∈ I.

4 Main Result

In this section we prove the main result of this paper. We begin with one
auxiliary result, whose easy proof is omitted.

Lemma 4.1. Let C be a linearly independent over Q subset of the real line and
let A,B be disjoint subsets of the set C. Then Span(A)+b1∩Span(A)+b2 = ∅
for different b1, b2 ∈ B.

Theorem 4.2. Let I ⊆ P (R) be an invariant σ-ideal with a Π1
1(R)-base. Then

the following are equivalent:

1. (∃A,B ∈ I)(A+B 6∈ I),

2. (∃A,B ∈ I)(A+B 6∈ Bor (R)[I]).

Proof. The implication (2) ⇒ (1) is obvious. We prove the implication
(1) ⇒ (2). Suppose that A, B ∈ I and A + B 6∈ I. Observe that the set
D = A ∪ B is such that D ∈ I and D + D 6∈ I. Let A∗ be a maximal
linearly independent subset of D over Q. Then D+D ⊆ Span(A∗) and hence
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Span(A∗) 6∈ I. Let {An : n < ω} be an increasing family of subsets of the set
A∗ such that:

1. A∗ =
⋃
n∈ω An,

2. (∀n ∈ ω)(|A∗ \An| > ω).

Then Span(A∗) =
⋃
n∈ω Span(An). Hence there exists m ∈ ω such that

Span(Am) 6∈ I. But Span(Am) =
⋃
k∈ω Span(Am, k). Therefore we find

natural number k such that Span(Am, k − 1) ∈ I and Span(Am, k) 6∈ I.
We may assume that Span(Am, k) ∈ Bor (R)[I]; otherwise the theorem is
proved. Let C = Span(Am, k) and let T = A∗ \ Am. Lemma 4.1 implies that
A = {C + t : t ∈ T} is uncountable family of pairwise disjoint subsets of
Bor (R)[I] \ I. Let us apply Corollary 3.3 to the family A. Then we obtain a
set Z ⊆ T such that

⋃
t∈Z(C + t) = C + Z 6∈ Bor (R)[I]. Hence we have

Q ·Am + · · ·+ Q ·Am︸ ︷︷ ︸
k−1

+Q ·Am + Z 6∈ Bor (R)[I].

Note that if Q · Am + Z ∈ I or Q · Am + Z 6∈ Bor (R)[I], then the proof
of the theorem is done. Suppose that Q · Am + Z ∈ Bor (R)[I] \ I. Then
A = {Q ·Am + z : z ∈ Z} is uncountable pairwise disjoint family of subsets of
ideal I such that

⋃
A 6∈ I. So by Corollary 3.4 there exists a set S ⊆ Z such

that Q ·Am + S 6∈ Bor (R)[I]. This finishes the proof of the theorem.

It is easy to see that a similar result also holds for an invariant σ-ideal of
subsets of the Euclidean space Rn with a Π1

1(Rn)-base, where n is an arbitrary
natural number. We can apply our theorem to some natural σ-ideals I such
that the quotient boolean algebra does not satisfy the countable chain con-
dition. Hence we may apply our theorem in such cases when Kharazishvili’s
theorem mentioned in the introduction does not apply. For example, let us
consider the σ-ideal of subsets of R2

M = {A ⊆ R2 : (∃B ∈ Bor (R2))(A ⊆ B ∧ (∀x)(Bx ∈ L)},

where Bx = {y ∈ R : (x, y) ∈ B}. ThenM is an invariant σ-ideal of subsets of
R2 with a Borel base. It is easy to check that the boolean algebra Bor (R2)/M
does not satisfy the countable chain condition.
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