Harvey Rosen, Department of Mathematics, University of Alabama, Tuscaloosa, AL, 35487. e-mail: hrosen@gp.as.ua.edu

DARBOUX SYMMETRICALLY CONTINUOUS FUNCTIONS

Abstract

For a symmetrically continuous function $f: \mathbb{R} \rightarrow[0,1]$, a reduction formula is obtained which gives a Darboux symmetrically continuous function $g_{f}: \mathbb{R} \rightarrow[0,1]$ such that the set $C(f)$ of continuity points of f is a subset of $C\left(g_{f}\right)$. Under additional conditions, g_{f} and the oscillation function ω_{f} of f are Croft-like functions. One consequence of g_{f} being Darboux is that the absolutely convergent values $s(x)$ of a real trigonometric series $\sum_{n=1}^{\infty} \rho_{n} \sin \left(n x+x_{n}\right)$, with $\sum_{n=1}^{\infty}\left|\rho_{n}\right|=\infty$ and with an uncountable set E of points of absolute convergence, almost has the intermediate value property except for countably many values $s(x)$ and countably many points of E.

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is symmetrically continuous if for each $x \in \mathbb{R}$, $\lim _{h \rightarrow 0}(f(x+h)-f(x-h))=0$. The Stein-Zygmund and Pesin-Preiss Theorems [5] state that a symmetrically continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ is Lebesgue measurable and its set $D(f)$ of discontinuities is an F_{σ} set of measure zero. Also, the Denjoy-Luzin Theorem [6] states that the set E of points of absolute convergence of a real trigonometric series $\sum_{n=1}^{\infty} \rho_{n} \sin \left(n x+x_{n}\right)$, with $\sum_{n=1}^{\infty}\left|\rho_{n}\right|=\infty$, is an F_{σ} set of measure 0. Furthermore, according to Preiss [4], the function $f: \mathbb{R} \rightarrow[0,1]$ defined by

$$
f(x)=\lim _{m \rightarrow \infty}\left(1+\sum_{n=1}^{m}\left|\rho_{n} \sin \left(n x+x_{n}\right)\right|\right)^{-1}
$$

is upper semicontinuous, symmetrically continuous, $C(f)=\mathbb{R} \backslash E=f^{-1}(0)$, and E can be uncountable. We redefine this f at countably many points to get a Darboux function g_{f} with these same properties of f. So g_{f} is just like the Croft function on [0,1] described in [1] in that they both are Darboux, Baire class 1, and equal 0 a.e. but not everywhere. However, Croft's function is not symmetrically continuous.

[^0]A Darboux function maps connected sets to connected sets. Suppose $B \subset$ E and $C \subset R$. A function $f: E \rightarrow \mathbb{R}$ has the intermediate value property relative to $(E \backslash B) \times(\mathbb{R} \backslash C)$ if whenever $a, b \in E \backslash B, a<b$, and the number $y \in \mathbb{R} \backslash C$ lies between $f(a)$ and $f(b)$, then there exists $x \in(E \backslash B) \cap(a, b)$ such that $f(x)=y$. A point $(x, y) \in \mathbb{R}^{2}$ is a bilateral limit (c-limit) point of the graph of $f: \mathbb{R} \rightarrow \mathbb{R}$ if for every open neighborhood U of (x, y), both $((-\infty, x) \times \mathbb{R}) \cap U \cap f$ and $((x, \infty) \times \mathbb{R}) \cap U \cap f$ are infinite (have cardinality $\mathfrak{c})$. The graph of f is bilaterally dense (\mathfrak{c}-dense) in itself if every point $(x, f(x))$ is a bilateral limit (\mathfrak{c}-limit) point of f.

Given $f: \mathbb{R} \rightarrow \mathbb{R}$, define the set $B_{f}=\{x \in \mathbb{R}:(x, f(x))$ is not a bilateral \mathfrak{c}-limit point of $f\}$. If f is bounded, define $g_{f}: \mathbb{R} \rightarrow \mathbb{R}$ by $g_{f}(x)=\sup \{z:$ (x, z) is a bilateral \mathfrak{c}-limit point of $f\}$ and denote the oscillation of f at x by $\omega_{f}(x)=\lim \sup _{h \rightarrow 0+}\{|f(y)-f(z)|: y, z \in(x-h, x+h)\}$.

Lemma 1. (Maliszewski [3]) If $f: \mathbb{R} \rightarrow \mathbb{R}$, then $\operatorname{card}\left(B_{f}\right)<\mathfrak{c}$. If f is also Lebesgue measurable (Borel measurable), then B_{f} has measure 0 (is countable).

Theorem 1. If $f: \mathbb{R} \rightarrow[0,1]$ is symmetrically continuous, then g_{f} is upper semicontinuous, Darboux, symmetrically continuous, and $C(f) \subset C\left(g_{f}\right)$. Moreover, if $D(f)=\mathbb{R} \backslash f^{-1}(0)$, then $C\left(g_{f}\right)=g_{f}^{-1}(0)$ and $\operatorname{card}\left(D\left(g_{f}\right)\right)=$ \mathfrak{c} whenever $\operatorname{card}(D(f))=\mathfrak{c}$.

Proof. According to Lemma $1, B_{f}$ had cardinality $<\mathfrak{c}$, and therefore $g_{f}(x)$ exists for each $x \in \mathbb{R}$ because f is bounded and symmetrically continuous. Notice that $g_{f} \geq f$ on $\mathbb{R} \backslash B_{f}$ and $C(f) \subset C\left(g_{f}\right)$. So if $D(f)=\mathbb{R} \backslash f^{-1}(0)$, then $C\left(g_{f}\right)=g_{f}^{-1}(0)$ and $\operatorname{card}\left(D\left(g_{f}\right)\right)=\mathfrak{c}$ whenever $\operatorname{card}(D(f))=\mathfrak{c}$. Because g_{f} is a sup and f is symmetrically continuous, g_{f} is upper semicontinuous. The graph of g_{f} is bilaterally \mathfrak{c}-dense in itself because B_{f} has cardinality $<\mathfrak{c}$. Therefore by [2], every Baire class 1, bilaterally dense in itself function, which g_{f} is, must have a connected graph and so must be Darboux.

To see that g_{f} is symmetrically continuous, let $\varepsilon>0$ and $x \in \mathbb{R}$. There exists $\delta>0$ such that if $0<h<\delta$, then $|f(x+h)-f(x-h)|<\frac{\varepsilon}{3}$. We may as well suppose $g_{f}(x-h)<g_{f}(x+h)$. Since $\left(x+h, g_{f}(x+h)\right)$ is a bilateral \mathfrak{c}-limit point of f, there exists a sequence $f\left(x+h_{n}\right) \rightarrow g_{f}(x+$ $h)$ as $h_{n} \rightarrow h$ such that $x \pm h_{n} \in \mathbb{R} \backslash B_{f}$. Since f is symmetrically continuous at $x,\left\{f\left(x-h_{n}\right)\right\}$ has a subsequence $\left\{f\left(x-h_{i_{n}}\right)\right\}$ converging to some $z \leq g_{f}(x-$ $h)$ such that $(x-h, z)$ is a bilateral \mathfrak{c}-limit point of f. Therefore for $h_{i_{n}}$ close enough to h with $h_{i_{n}}<\delta,\left|f\left(x-h_{i_{n}}\right)-z\right|<\frac{\varepsilon}{3}$ and $\left|g_{f}(x+h)-f\left(x+h_{i_{n}}\right)\right|<\frac{\varepsilon}{3}$. Since $z \leq g_{f}(x-h)<g_{f}(x+h)$,

$$
\begin{aligned}
\left|g_{f}(x+h)-g_{f}(x-h)\right| \leq & \left|g_{f}(x+h)-z\right| \leq\left|g_{f}(x+h)-f\left(x+h_{i_{n}}\right)\right| \\
& +\left|f\left(x+h_{i_{n}}\right)-f\left(x-h_{i_{n}}\right)\right|+\left|f\left(x-h_{i_{n}}\right)-z\right|<\varepsilon
\end{aligned}
$$

Apply Lemma 1 and Theorem 1 to Preiss' usc function f and observe $f=$ g_{f} on $\mathbb{R} \backslash B_{f}$ because f is usc order to obtain immediately the first corollary. The second corollary follows from $\sum_{n=1}^{\infty}\left|\rho_{n} \sin \left(n x+x_{n}\right)\right|=\frac{1}{f(x)}-1$ for $f(x) \in$ $(0,1]$.

Corollary 1. If $f(x)=\lim _{m \rightarrow \infty}\left(1+\sum_{n=1}^{m}\left|\rho_{n} \sin \left(n x+x_{n}\right)\right|\right)^{-1}$, where $\sum_{n=1}^{\infty}\left|\rho_{n}\right|$ $=\infty$ and $D(f)$ is uncountable, then g_{f} is an upper semicontinuous, symmetrically continuous, and Darboux 2π-periodic function with $D\left(g_{f}\right)$ uncountable and $C\left(g_{f}\right)=g_{f}^{-1}(0)$. Moreover, f has the intermediate value property relative to $\left(\mathbb{R} \backslash B_{f}\right) \times\left(\mathbb{R} \backslash g_{f}\left(B_{f}\right)\right)$, where B_{f} is countable.
Corollary 2. Let B be the set of all $x \in \mathbb{R}$ such that

$$
s(x)=\sum_{n=1}^{\infty}\left|\rho_{n} \sin \left(n x+x_{n}\right)\right|<\infty
$$

and such that the graph of s does not have a bilateral \mathfrak{c}-limit point at $(x, s(x))$. If $\sum_{n=1}^{\infty}\left|\rho_{n}\right|=\infty$ and the set E of points of absolute convergence of the real trigonometric series $\sum_{n=1}^{\infty} \rho_{n} \sin \left(n x+x_{n}\right)$ is uncountable, then s has the intermediate value property relative to $(E \backslash B) \times\left(\mathbb{R} \backslash\left(\frac{1}{g_{f}}-1\right)(B)\right)$, where B is countable and f is as in Corollary 1.

A result for convergence instead of absolute convergence can be found in [6], Thm 2.20, p.323. If $\sum_{k=1}^{n} k \rho_{k}=o(n)$, then the set E_{0} of points of convergence of $\sum_{n=1}^{\infty} \rho_{n} \sin \left(n x+x_{n}\right)$ has cardinality \mathfrak{c} in every interval and its sum is Darboux with respect to $E_{0} \times \mathbb{R}$. Observe that $s(x)=\sum_{n=1}^{\infty} \frac{1}{n}\left|\sin 2^{n} x\right|$ is bilaterally dense in itself at each dyadic rational $\frac{p}{2^{q}}$ times π. In particular, as $x_{n}=\frac{\pi}{2^{n}} \rightarrow 0$, then for $n>1$,
$s\left(x_{n}\right)=\sum_{k=1}^{\infty} \frac{1}{k}\left|\sin 2^{k} x_{n}\right|=\sum_{k=1}^{n-1} \frac{1}{n-k} \sin \frac{\pi}{2^{k}}<\sum_{k=1}^{n-1} \frac{\pi}{(n-k) 2^{k}}<\frac{\pi \sum_{k=1}^{2^{n}} k \rho_{k}}{2^{n}} \rightarrow 0$.
According to a reduction theorem in [5], Cor. 2.6, if $f: \mathbb{R} \rightarrow[0,1]$ is symmetrically continuous, then the oscillation $\omega_{f}: \mathbb{R} \rightarrow[0,1]$ is upper semicontinuous, symmetrically continuous, and f is continuous exactly at the points $\omega_{f}^{-1}(0)$ where ω_{f} is continuous. Alternatively, in lieu of this reduction theorem, Theorem 1 can be used at the end of the proof of the Pesin-Preiss Theorem in [5] to show that a symmetrically continuous function $f: \mathbb{R} \rightarrow[0,1]$
continuous on a dense set is measurable because f is continuous a.e. on account of $C(f) \subset C\left(g_{f}\right)$.

For a symmetrically continuous function $f: \mathbb{R} \rightarrow[0,1], \omega_{f}$ is symmetrically continuous by the above reduction theorem. Thus by Theorem $1, g_{w_{f}}$ is upper semicontinuous, symmetrically continuous, and Darboux, but f might be discontinuous at only countably many of the points $g_{w_{f}}^{-1}(0)$ where $g_{w_{f}}$ is continuous. Also, f can be symmetrically continuous and bilaterally \mathfrak{c}-dense in itself, yet ω_{f} not be Darboux. The example

$$
f(x)= \begin{cases}\frac{1}{2}+\frac{1}{2} \sin \frac{1}{x} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

illustrates both situations. However, if $f: \mathbb{R} \rightarrow[0,1]$ is symmetrically continuous, bilaterally \mathfrak{c}-dense in itself and $C(f) \subset f^{-1}(0)$, then $\omega_{f}=g_{f}$, which is Darboux by Theorem 1.
Theorem 2. If $f: \mathbb{R} \rightarrow[0,1]$ is symmetrically continuous, just bilaterally dense in itself, and $C(f) \subset f^{-1}(0)$, then ω_{f} is Darboux. Consequently, if $f^{-1}(0) \neq \mathbb{R}$, then ω_{f} acts like Croft's function.

Proof. By the reduction theorem in [5], ω_{f} is upper semicontinuous, symmetrically continuous and $C\left(\omega_{f}\right)=\omega_{f}^{-1}(0)=C(f) \subset f^{-1}(0)$. Since f is symmetrically continuous, $C(f)$ is dense in $\mathbb{R}[5]$. To see that the graph of ω_{f} is bilaterally dense in itself, let $x \in \mathbb{R}$ and $\varepsilon>0$. Because $C(f) \subset f^{-1}(0)$ and $C(f)$ is dense in \mathbb{R},

$$
\begin{aligned}
\omega_{f}(x) & =\limsup _{h \rightarrow 0+}\{|f(y)-f(z)|: y, z \in(x-h, x+h)\} \\
& =\limsup _{h \rightarrow 0+}\{f(y): y \in(x-h, x+h)\} \geq f(x)
\end{aligned}
$$

Since f is symmetrically continuous at x and ω_{f} is upper semicontinuous, there exists $\delta>0$ such that: if $0<h<\delta$, then $|f(x+h)-f(x-h)|<\varepsilon$ and if $|x-y|<\delta$, then $\omega_{f}(y)<\omega_{f}(x)+\varepsilon$. Then, since f is bilaterally dense in itself and $C(f) \subset f^{-1}(0)$, for every $0<h<\delta$ there exist $t, t^{\prime} \in(x-h, x+h) \backslash\{x\}$ symmetric with respect to x (i.e., $t+t^{\prime}=2 x$) such that $\left|f(t)-\omega_{f}(x)\right|<\varepsilon$ and $\left|f\left(t^{\prime}\right)-f(t)\right|<\varepsilon$. Therefore,

$$
\left|f\left(t^{\prime}\right)-\omega_{f}(x)\right| \leq\left|f\left(t^{\prime}\right)-f(t)\right|+\left|f(t)-\omega_{f}(x)\right|<2 \varepsilon
$$

Then $\left|\omega_{f}(t)-\omega_{f}(x)\right|<\varepsilon$ because $\omega_{f}(t)<\omega_{f}(x)+\varepsilon,\left|f(t)-\omega_{f}(x)\right|<\varepsilon$ and $\omega_{f}(t) \geq f(t)$. Also $\left|\omega_{f}\left(t^{\prime}\right)-\omega_{f}(x)\right|<2 \varepsilon$ because $\omega_{f}\left(t^{\prime}\right)<\omega_{f}(x)+\varepsilon$, $\left|f\left(t^{\prime}\right)-\omega_{f}(x)\right|<2 \varepsilon$ and $\omega_{f}\left(t^{\prime}\right) \geq f\left(t^{\prime}\right)$. So ω_{f} is Darboux due to it being Baire 1 and its graph having each $\left(x, \omega_{f}(x)\right)$ as a bilateral limit point [2].

References

[1] A. M. Bruckner, Differentiation of real functions, Lecture Notes in Math. vol. 659, Springer-Verlag, Berlin, 1978.
[2] C. Kuratowski and W. Sierpinski, Les fonctions de classe 1 et les ensembles connexes punctiformes, Fund. Math. 3 (1922), 303-313.
[3] A. Maliszewski, On the averages of Darboux functions, Trans. Amer. Math. Soc. 350 (1998), 2833-2846.
[4] D. Preiss, A note on symmetrically continuous functions, Casopis Pest. Mat. 96 (1971), 262-264.
[5] B. S. Thomson, Symmetric properties of real functions, Marcel Dekker, Inc., New York, 1994.
[6] A. Zygmund, Trigonometric series, Vol. I, Cambridge University Press, Cambridge, 1990.

[^0]: Key Words: symmetric continuity, Darboux function, trigonometric series
 Mathematical Reviews subject classification: 26A15
 Received by the editors October 8, 2002

