Harvey Rosen, Department of Mathematics, University of Alabama, Tuscaloosa, AL, 35487. e-mail: hrosen@gp.as.ua.edu

DARBOUX SYMMETRICALLY CONTINUOUS FUNCTIONS

Abstract

For a symmetrically continuous function $f : \mathbb{R} \to [0, 1]$, a reduction formula is obtained which gives a Darboux symmetrically continuous function $g_f : \mathbb{R} \to [0, 1]$ such that the set C(f) of continuity points of f is a subset of $C(g_f)$. Under additional conditions, g_f and the oscillation function ω_f of f are Croft-like functions. One consequence of g_f being Darboux is that the absolutely convergent values s(x) of a real trigonometric series $\sum_{n=1}^{\infty} \rho_n \sin(nx + x_n)$, with $\sum_{n=1}^{\infty} |\rho_n| = \infty$ and with an uncountable set E of points of absolute convergence, almost has the intermediate value property except for countably many values s(x)and countably many points of E.

A function $f : \mathbb{R} \to \mathbb{R}$ is symmetrically continuous if for each $x \in \mathbb{R}$, $\lim_{h\to 0} (f(x+h) - f(x-h)) = 0$. The Stein-Zygmund and Pesin-Preiss Theorems [5] state that a symmetrically continuous function $f : \mathbb{R} \to \mathbb{R}$ is Lebesgue measurable and its set D(f) of discontinuities is an F_{σ} set of measure zero. Also, the Denjoy-Luzin Theorem [6] states that the set E of points of absolute convergence of a real trigonometric series $\sum_{n=1}^{\infty} \rho_n \sin(nx + x_n)$, with $\sum_{n=1}^{\infty} |\rho_n| = \infty$, is an F_{σ} set of measure 0. Furthermore, according to Preiss [4], the function $f : \mathbb{R} \to [0, 1]$ defined by

$$f(x) = \lim_{m \to \infty} (1 + \sum_{n=1}^{m} |\rho_n \sin(nx + x_n)|)^{-1}$$

is upper semicontinuous, symmetrically continuous, $C(f) = \mathbb{R} \setminus E = f^{-1}(0)$, and E can be uncountable. We redefine this f at countably many points to get a Darboux function g_f with these same properties of f. So g_f is just like the Croft function on [0,1] described in [1] in that they both are Darboux, Baire class 1, and equal 0 a.e. but not everywhere. However, Croft's function is not symmetrically continuous.

Key Words: symmetric continuity, Darboux function, trigonometric series Mathematical Reviews subject classification: 26A15

Received by the editors October 8, 2002

⁴⁷¹

A Darboux function maps connected sets to connected sets. Suppose $B \subset E$ and $C \subset R$. A function $f : E \to \mathbb{R}$ has the *intermediate value property* relative to $(E \setminus B) \times (\mathbb{R} \setminus C)$ if whenever $a, b \in E \setminus B, a < b$, and the number $y \in \mathbb{R} \setminus C$ lies between f(a) and f(b), then there exists $x \in (E \setminus B) \cap (a, b)$ such that f(x) = y. A point $(x, y) \in \mathbb{R}^2$ is a bilateral limit (c-limit) point of the graph of $f : \mathbb{R} \to \mathbb{R}$ if for every open neighborhood U of (x, y), both $((-\infty, x) \times \mathbb{R}) \cap U \cap f$ and $((x, \infty) \times \mathbb{R}) \cap U \cap f$ are infinite (have cardinality c). The graph of f is bilaterally dense (c-dense) in itself if every point (x, f(x)) is a bilateral limit (c-limit) point of f.

Given $f : \mathbb{R} \to \mathbb{R}$, define the set $B_f = \{x \in \mathbb{R} : (x, f(x)) \text{ is not a bilateral } c\text{-limit point of } f \}$. If f is bounded, define $g_f : \mathbb{R} \to \mathbb{R}$ by $g_f(x) = \sup\{z : (x, z) \text{ is a bilateral } c\text{-limit point of } f\}$ and denote the oscillation of f at x by $\omega_f(x) = \limsup_{h \to 0+} \{|f(y) - f(z)| : y, z \in (x - h, x + h)\}.$

Lemma 1. (Maliszewski [3]) If $f : \mathbb{R} \to \mathbb{R}$, then $\operatorname{card}(B_f) < \mathfrak{c}$. If f is also Lebesgue measurable (Borel measurable), then B_f has measure 0 (is countable).

Theorem 1. If $f : \mathbb{R} \to [0,1]$ is symmetrically continuous, then g_f is upper semicontinuous, Darboux, symmetrically continuous, and $C(f) \subset C(g_f)$. Moreover, if $D(f) = \mathbb{R} \setminus f^{-1}(0)$, then $C(g_f) = g_f^{-1}(0)$ and $\operatorname{card}(D(g_f)) = \mathfrak{c}$ whenever $\operatorname{card}(D(f)) = \mathfrak{c}$.

PROOF. According to Lemma 1, B_f had cardinality $< \mathfrak{c}$, and therefore $g_f(x)$ exists for each $x \in \mathbb{R}$ because f is bounded and symmetrically continuous. Notice that $g_f \geq f$ on $\mathbb{R} \setminus B_f$ and $C(f) \subset C(g_f)$. So if $D(f) = \mathbb{R} \setminus f^{-1}(0)$, then $C(g_f) = g_f^{-1}(0)$ and $\operatorname{card}(D(g_f)) = \mathfrak{c}$ whenever $\operatorname{card}(D(f)) = \mathfrak{c}$. Because g_f is a sup and f is symmetrically continuous, g_f is upper semicontinuous. The graph of g_f is bilaterally \mathfrak{c} -dense in itself because B_f has cardinality $< \mathfrak{c}$. Therefore by [2], every Baire class 1, bilaterally dense in itself function, which g_f is, must have a connected graph and so must be Darboux.

To see that g_f is symmetrically continuous, let $\varepsilon > 0$ and $x \in \mathbb{R}$. There exists $\delta > 0$ such that if $0 < h < \delta$, then $|f(x+h) - f(x-h)| < \frac{\varepsilon}{3}$. We may as well suppose $g_f(x-h) < g_f(x+h)$. Since $(x+h,g_f(x+h))$ is a bilateral c-limit point of f, there exists a sequence $f(x+h_n) \to g_f(x+h)$ as $h_n \to h$ such that $x \pm h_n \in \mathbb{R} \setminus B_f$. Since f is symmetrically continuous at $x, \{f(x-h_n)\}$ has a subsequence $\{f(x-h_{i_n})\}$ converging to some $z \leq g_f(x-h)$ such that (x-h,z) is a bilateral c-limit point of f. Therefore for h_{i_n} close enough to h with $h_{i_n} < \delta, |f(x-h_{i_n})-z| < \frac{\varepsilon}{3}$ and $|g_f(x+h)-f(x+h_{i_n})| < \frac{\varepsilon}{3}$. Since $z \leq g_f(x-h) < g_f(x+h)$,

$$\begin{aligned} |g_f(x+h) - g_f(x-h)| &\leq |g_f(x+h) - z| \leq |g_f(x+h) - f(x+h_{i_n})| \\ &+ |f(x+h_{i_n}) - f(x-h_{i_n})| + |f(x-h_{i_n}) - z| < \varepsilon \end{aligned}$$

Apply Lemma 1 and Theorem 1 to Preiss' usc function f and observe $f = g_f$ on $\mathbb{R} \setminus B_f$ because f is usc order to obtain immediately the first corollary. The second corollary follows from $\sum_{n=1}^{\infty} |\rho_n \sin(nx+x_n)| = \frac{1}{f(x)} - 1$ for $f(x) \in (0, 1]$.

Corollary 1. If $f(x) = \lim_{m \to \infty} (1 + \sum_{n=1}^{m} |\rho_n \sin(nx + x_n)|)^{-1}$, where $\sum_{n=1}^{\infty} |\rho_n| = \infty$ and D(f) is uncountable, then g_f is an upper semicontinuous, symmetrically continuous, and Darboux 2π -periodic function with $D(g_f)$ uncountable and $C(g_f) = g_f^{-1}(0)$. Moreover, f has the intermediate value property relative $to(\mathbb{R} \setminus B_f) \times (\mathbb{R} \setminus g_f(B_f))$, where B_f is countable.

Corollary 2. Let B be the set of all $x \in \mathbb{R}$ such that

$$s(x) = \sum_{n=1}^{\infty} |\rho_n \sin(nx + x_n)| < \infty$$

and such that the graph of s does not have a bilateral c-limit point at (x, s(x)). If $\sum_{n=1}^{\infty} |\rho_n| = \infty$ and the set E of points of absolute convergence of the real trigonometric series $\sum_{n=1}^{\infty} \rho_n \sin(nx + x_n)$ is uncountable, then s has the intermediate value property relative to $(E \setminus B) \times (\mathbb{R} \setminus (\frac{1}{g_f} - 1)(B))$, where B is countable and f is as in Corollary 1.

A result for convergence instead of absolute convergence can be found in [6], Thm 2.20, p.323. If $\sum_{k=1}^{n} k\rho_k = o(n)$, then the set E_0 of points of convergence of $\sum_{n=1}^{\infty} \rho_n \sin(nx + x_n)$ has cardinality **c** in every interval and its sum is Darboux with respect to $E_0 \times \mathbb{R}$. Observe that $s(x) = \sum_{n=1}^{\infty} \frac{1}{n} |\sin 2^n x|$ is bilaterally dense in itself at each dyadic rational $\frac{p}{2^q}$ times π . In particular, as $x_n = \frac{\pi}{2^n} \to 0$, then for n > 1,

$$s(x_n) = \sum_{k=1}^{\infty} \frac{1}{k} |\sin 2^k x_n| = \sum_{k=1}^{n-1} \frac{1}{n-k} \sin \frac{\pi}{2^k} < \sum_{k=1}^{n-1} \frac{\pi}{(n-k)2^k} < \frac{\pi \sum_{k=1}^{2^n} k\rho_k}{2^n} \to 0$$

According to a reduction theorem in [5], Cor. 2.6, if $f : \mathbb{R} \to [0, 1]$ is symmetrically continuous, then the oscillation $\omega_f : \mathbb{R} \to [0, 1]$ is upper semicontinuous, symmetrically continuous, and f is continuous exactly at the points $\omega_f^{-1}(0)$ where ω_f is continuous. Alternatively, in lieu of this reduction theorem, Theorem 1 can be used at the end of the proof of the Pesin-Preiss Theorem in [5] to show that a symmetrically continuous function $f : \mathbb{R} \to [0, 1]$

01

continuous on a dense set is measurable because f is continuous a.e. on account of $C(f) \subset C(g_f)$.

For a symmetrically continuous function $f : \mathbb{R} \to [0,1]$, ω_f is symmetrically continuous by the above reduction theorem. Thus by Theorem 1, g_{w_f} is upper semicontinuous, symmetrically continuous, and Darboux , but f might be discontinuous at only countably many of the points $g_{w_f}^{-1}(0)$ where g_{w_f} is continuous. Also, f can be symmetrically continuous and bilaterally \mathfrak{c} -dense in itself, yet ω_f not be Darboux. The example

$$f(x) = \begin{cases} \frac{1}{2} + \frac{1}{2}\sin\frac{1}{x} & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

illustrates both situations. However, if $f : \mathbb{R} \to [0, 1]$ is symmetrically continuous, bilaterally c-dense in itself and $C(f) \subset f^{-1}(0)$, then $\omega_f = g_f$, which is Darboux by Theorem 1.

Theorem 2. If $f : \mathbb{R} \to [0,1]$ is symmetrically continuous, just bilaterally dense in itself, and $C(f) \subset f^{-1}(0)$, then ω_f is Darboux. Consequently, if $f^{-1}(0) \neq \mathbb{R}$, then ω_f acts like Croft's function.

PROOF. By the reduction theorem in [5], ω_f is upper semicontinuous, symmetrically continuous and $C(\omega_f) = \omega_f^{-1}(0) = C(f) \subset f^{-1}(0)$. Since f is symmetrically continuous, C(f) is dense in \mathbb{R} [5]. To see that the graph of ω_f is bilaterally dense in itself, let $x \in \mathbb{R}$ and $\varepsilon > 0$. Because $C(f) \subset f^{-1}(0)$ and C(f) is dense in \mathbb{R} ,

$$\omega_f(x) = \limsup_{h \to 0+} \{ |f(y) - f(z)| : y, z \in (x - h, x + h) \}$$

=
$$\limsup_{h \to 0+} \{ f(y) : y \in (x - h, x + h) \} \ge f(x).$$

Since f is symmetrically continuous at x and ω_f is upper semicontinuous, there exists $\delta > 0$ such that: if $0 < h < \delta$, then $|f(x+h) - f(x-h)| < \varepsilon$ and if $|x-y| < \delta$, then $\omega_f(y) < \omega_f(x) + \varepsilon$. Then, since f is bilaterally dense in itself and $C(f) \subset f^{-1}(0)$, for every $0 < h < \delta$ there exist t, $t' \in (x-h, x+h) \setminus \{x\}$ symmetric with respect to x (i.e., t+t' = 2x) such that $|f(t) - \omega_f(x)| < \varepsilon$ and $|f(t') - f(t)| < \varepsilon$. Therefore,

$$|f(t') - \omega_f(x)| \le |f(t') - f(t)| + |f(t) - \omega_f(x)| < 2\varepsilon.$$

Then $|\omega_f(t) - \omega_f(x)| < \varepsilon$ because $\omega_f(t) < \omega_f(x) + \varepsilon$, $|f(t) - \omega_f(x)| < \varepsilon$ and $\omega_f(t) \ge f(t)$. Also $|\omega_f(t') - \omega_f(x)| < 2\varepsilon$ because $\omega_f(t') < \omega_f(x) + \varepsilon$, $|f(t') - \omega_f(x)| < 2\varepsilon$ and $\omega_f(t') \ge f(t')$. So ω_f is Darboux due to it being Baire 1 and its graph having each $(x, \omega_f(x))$ as a bilateral limit point [2]. \Box

References

- [1] A. M. Bruckner, *Differentiation of real functions*, Lecture Notes in Math. vol. 659, Springer-Verlag, Berlin, 1978.
- [2] C. Kuratowski and W. Sierpinski, Les fonctions de classe 1 et les ensembles connexes punctiformes, Fund. Math. 3 (1922), 303–313.
- [3] A. Maliszewski, On the averages of Darboux functions, Trans. Amer. Math. Soc. 350 (1998), 2833–2846.
- [4] D. Preiss, A note on symmetrically continuous functions, Casopis Pest. Mat. 96 (1971), 262–264.
- [5] B. S. Thomson, Symmetric properties of real functions, Marcel Dekker, Inc., New York, 1994.
- [6] A. Zygmund, *Trigonometric series*, Vol. I, Cambridge University Press, Cambridge, 1990.