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ON THE GAPS BETWEEN ZEROS OF
TRIGONOMETRIC POLYNOMIALS

Abstract

We show that for every finite set 0 /∈ S ⊂ Zd with the property
−S = S, every real trigonometric polynomial f on the d dimensional
torus Td = Rd/Zd with spectrum in S has a zero in every closed ball of
diameter D (S), where D (S) =

P
λ∈S

1
4||λ||2

, and investigate tightness
in some special cases.

1 Introduction and Presentation of the Main Results

We are interested in the following question: for real trigonometric polynomials
with a given spectrum, what is the maximal possible distance between two
consecutive real zeros? Of course, if we can use enough frequencies for building
our trigonometric polynomial, the size of the largest gap can be as close to
2π (or to 1, if one uses the transformation used throughout this paper) as we
want. The question gets more interesting when the number of frequencies is
relatively small.

The first theorem is a very general result, partially answering the above
question. We state it for multivariate trigonometric polynomials on the d-
dimensional torus Td = Rd/Zd.

Theorem 1. Let 0 6∈ S ⊂ Zd be a finite set s.t. −S = S. Let

f(x) =
∑
λ∈S

c(λ) exp 2πi〈x, λ〉
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be a real valued trigonometric polynomial on Td. Then f has a zero in any
closed ball of diameter D(S), where

D(S) :=
∑
λ∈S

1
4||λ||2

, ||λ||2 =
√
〈λ, λ〉 =

√∑d
j=1 λ

2
j .

Note that the requirement −S = S is necessary because we are interested
in real trigonometric polynomials.

How sharp is this theorem? To answer that we have to analyze specific
cases. From now on we concentrate on the one dimensional situation. For a
finite set 0 /∈ S ⊂ Z define

M (S) := sup
spec f⊂S

sup
I⊂[0,1]
f |I 6=0

|I|,

where spec f is the spectrum of f ; i.e. the support of the the Fourier transform
f̂ . The second supremum is over all intervals I such that f is never zero on
I. Here and also later on |I| stands for the length of I. With this notation
Theorem 1 is shortened to the formula

M(S) ≤ D(S).

The easiest case to investigate is when the spectrum is a (discrete) interval,
or rather, two intervals situated symmetrically around 0. It turns out that in
this case it is possible to get an explicit formula for the supremum (maximum
does not exist) of the gap size.

Theorem 2. For S = [−N −K,−N ] ∪ [N,N +K] ⊂ Z with N , K ∈ N,

M(S) =
K + 1

2N +K
.

As the proof will show, we can also demonstrate an explicit formula for
the trigonometric polynomial corresponding to the supremum (being a poly-
nomial with “touching zeros” — e.g. non-negative on an interval of length
(K + 1) / (2N +K)). We see that the general result applied for this specific
case is sharp only asymptotically when K � N . This leaves many questions.
As examples, we formulate some of them:
Question 1. Theorem 2 can be generalized to linear progressions with stepping
b smaller than twice the starting element; i.e. when

S = ±{N + nb : n ∈ 0, 1, 2, . . .K}

for some K, b ∈ N, b < 2N (see Theorem 3 on page 450). What happens when
b ≥ 2N? Can an explicit formula for M (S) be found in this case too?



On the Gaps between Zeros of Trigonometric Polynomials 449

Question 2. What is the maximum when the spectrum points are perfect
squares; i.e. S =

{
±n2

}N+K

n=N
?

Theorem 1 states that in this case the maximum tends to zero as N →
∞ even if K → ∞, a result which by itself is intriguing. However, is the
asymptotic truly O(1/N) or is it even lower?

Question 3. What can we say when S is a random set? A typical model is
taking every integer in 1, . . . , N with probability τ and independently and then
symmetrizing. For asymptotic results we should assume τ and N are related
somehow, say τ = N−δ for some 0 < δ < 1.

Question 4. What about nets? A net of order n is a set with 2n+1 elements,
defined by parameters {a0, . . . , an} as follows: S := ±{a0 +

∑n
i=1 {0, ai}}. In

many questions, nets behave like generalized arithmetic sequences. Is it true
in our case as well?

We should remark that the specific case of N = 1 in Theorem 2, together
with the extremal polynomial, has been known for a while. The question
was asked in [T65] and answered in [B84], which actually showed that this
polynomial maximizes the measure of the positive part. The same polyno-
mial reappears attributed to Arnold in [T97] and again in [GS00] (which also
handles the question of positive coefficients). For our needs, though, the case
N = 1 is not enough to make a meaningful comparison between M and D
since we are even more interested in the case when they are both small, and
the proofs in these papers do not seem to generalize nicely. See also [Y96]
for inexact multidimensional results. Finally, [BH84, MDS99] deal with the
related question of completely positive polynomials with some bounds on the
zeroth coefficient.

2 Proof of Theorem 1 and Theorem 2

Proof of Theorem 1. We will use induction on the cardinality of S. Due
to the symmetry of S, we have #S = 2k, k = 0, 1, 2, . . . The case k = 0 is
trivial as then f ≡ 0.

In general, given k > 0, assume we have proven the statement for all
sets S with cardinality smaller than 2k. Take a set S with cardinality 2k
and a trigonometric polynomial f (x) =

∑
λ∈S c (λ) exp 2πi 〈x, λ〉. Arguing by

contradiction, assume that f does not have a zero, say is strictly positive, on
a d-dimensional ball of radius R = 1

2D(S) centered at y = (y1, . . . , yd), which
we denote as usual by B(y,R). Pick a frequency ν = (ν1, . . . , νd) ∈ S, and
translate f by µ := ν

2||ν||22
. Since f is strictly positive on the ball B (y,R), the

translate is strictly positive on the translated ball B(y − µ,R). Adding the
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translate to f (x) we get a new function f̃ (x) := f (x) + f (x+ µ) which is
strictly positive on the closed ball

B
(
y − 1

2µ,R−
1
2 ||µ||2

)
⊆ B (y,R) ∩B (y − µ,R) (1)

whose diameter is 2R− 1
2||ν||2 .

The Fourier expansion of the translated function is

f (x+ µ) =
∑
λ∈S

c (λ) exp 2πi 〈x+ µ, λ〉

=
∑
λ∈S

c(λ) exp 2πi〈µ, λ〉 exp 2πi〈x, λ〉

and thus f̃ (x) =
∑
λ∈S c(λ)(1 + exp 2πi〈µ, λ〉) exp 2πi 〈x, λ〉 . Since for λ =

±ν we get exp 2πi〈µ, λ〉 = e±πi = −1, the spectrum Sf̃ := spec(f̃) of f̃
is contained in S but definitely does not contain ±ν. Thus D(S) − 1

2||ν||2 ≥
D(Sf̃ ), and so we find that we have a new set Sf̃ of cardinality smaller than 2k
and a trigonometric polynomial f̃ with spectrum Sf̃ which is strictly positive
on the closed ball B(y−µ,R(Sf̃ )) of radius R(Sf̃ ) = 1

2D(Sf̃ ) centered at y−µ.
This contradicts our inductive hypothesis.

Remark. A similar proof can be applied to shapes different from balls. For
example, for cubes we get the following version of Theorem 1. If spec f = S,
then f has a zero in every closed cube of side length L(S) where

L(S) :=
∑
λ∈S

||λ||∞
4||λ||22

.

The only proof element that needs modification is (1), as for cubes we have
(denoting by C(y, L) the cube of side length L based at y), C(y, L−||µ||∞) ⊂
C(y, L) ∩ C(y − µ,L) and ||µ||∞ = ||ν||∞/2||ν||22.

Proof of Theorem 2.

Theorem 2 is a specific case of the following

Theorem 3. For S = {−N −Kb, . . . ,−N − b,−N}∪{N,N + b, . . . , N +Kb}
with N , K, b ∈ N and b < 2N we have M(S) = K+1

bK+2N .

Proof. First we show
M (S) ≤ K + 1

bK + 2N
(2)
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by proving that for every trigonometric polynomial f (t) =
∑
λ∈S c (λ) e2πiλt,

if f > 0 on an interval I, then |I| ≤ K+1
bK+2N . We may assume w.l.o.g. that

I = [0, a]. One can write f (x) = ReF (t) with F (t) := e2πiNtQ
(
e2πit

)
,

where Q is a polynomial of degree Kb, that is

Q (z) = c

Kb∏
j=1

(z − ξj) . (3)

The condition f > 0 on I is equivalent to argF ∈ (−π/2, π/2) on I. Since
e2πiNt does a rotation of 2πNa in the positive direction as t goes from 0 to a,
f > 0 on I requires that Q

(
e2πit

)
does a rotation of at least 2πNa− π in the

negative direction on I. In other words, if ãrgQ is any continuous version of
arg on the arc

{
e2πit : t ∈ I

}
(ãrg exists because f |I > 0 gives Q 6= 0 on the

arc, so for example take ãrgQ
(
e2πit

)
:= Im

∫ t
0
Q′
Q ), then a necessary condition

is
indQ := ãrgQ

(
e2πia

)
− ãrgQ (1) ≤ π − 2πNa. (4)

Clearly the index indQ of Q does not depend on the choice of ãrg (all versions
of ãrg differ by a constant 2πk). As we want an upper bound for a = |I|, we
want to maximize − indQ. Clearly

indQ =
Kb∑
j=1

ind (z − ξj) .

Now it is obvious that if ξ is inside the unit disc, then ind (z − ξ) is positive
(draw a picture!) — this is not what we want. If ξ is outside the disc, then
ind (z − ξ) is harmonic (as a function of ξ) and therefore has no maxima in
any open subset outside the disc, thus we need to investigate only the limiting
behavior as ξ tends to infinity and to the unit circle.1 Both can be calculated
explicitly. When ξ →∞ clearly ind (z − ξ)→ 0. On the other hand, a simple
calculation shows that

lim
ξ→e2πis

ind (z − ξ) =

{
πa− π if s ∈ (0, a)
πa if s 6∈ [0, a]

(5)

where the limit is taken from the outside of the unit circle. A geometric note
may be due here. The limit limξ→e2πis

(
ãrg
(
e2πia − ξ

)
− ãrg (1− ξ)

)
, viewed

as a function of a, for s ∈ I is not continuous — it has a −π jump discontinuity
at s, this gives the −π factor in (5).

1The fact that the supremum occurs when ξ converges to the unit circle from outside
can also be deduced by elementary geometric arguments.
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A similar calculation shows that if ξ → 1 or ξ → e2πia, then the limit of
ind (z − ξ) depends on the angle of approach, but in any case is bounded from
below by πa−π. These three cases (ξ inside the disc, outside, and approaching
the boundary) totally give

ind (z − ξ) ≥ π (a− 1) ∀ξ ∈ C \
{
e2πis : s ∈ I

}
. (6)

The case b = 1 is now immediate from (4) and (6). The case b > 1 is not much
harder. Let τ = e2πi/b. If ξ is a zero of Q, then so are τξ, τ2ξ, . . . , τ b−1ξ so we
can rearrange ξj such that ξj+K = τξj . In particular this gives the following
representation using the first K zeros: Q (z) = c

∏K
j=1

(
zb − ξbj

)
. Now the

analog of (6) is
ind
(
zb − ξb

)
≥ π (ba− 1) (7)

which holds for a < 1/b — we will justify this assumption later. The reasoning
is similar. If ξ is inside the unit disc, so are all the conjugates and the index
is positive. For ξ outside the disc the index is harmonic in ξ so we need to
investigate only ξ converging to the circle, but as a < 1/b only one of the
conjugates of ξ may converge to the arc

{
e2πis : s ∈ (0, a)

}
. Summing b copies

of (5) gives (7). Summing the K copies of (7) gives (with (4))

Kπ (ba− 1) ≤ indQ ≤ π − 2πNa (8)

which, again, holds for a < 1/b. As according to our conditions 2N/b > 1,
for a = 1

b − ε with ε > 0 sufficiently small (8) cannot hold, thus no such f
can have an interval of length 1

b − ε with no zeros. This justifies our a priori
assumption a < 1/b, and we can use (8) to get the largest a allowed, proving
(2).

We turn to the proof of

M (S) ≥ K + 1
bK + 2N

. (9)

The first step will be to construct an extremal function f which will only
satisfy f ≥ 0 (i.e., will have zeros in the interval I = [0, a] where a = K+1

bK+2N ).
The analysis above suggests that we try f = ReF , F (t) = e2πiNtQ

(
e2πit

)
,

for Q satisfying (3), with K zeros on the arc
{
e2πis : s ∈ I

}
. (The other zeros

are the conjugates, which are of course also an the unit circle but not on the
arc.) It turns out that it is enough to space the zeros evenly; namely, define

Q (z) := c

K∏
j=1

(
zb − τ jb

)
,
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where τ := e2πiη with η := 1
bK+2N , and c is some constant such that F (0) =

Q (1) = −i. Now argF can be calculated explicitly, where this time arg is in
the usual sense; i.e. a discontinuous function between −π and π. Elementary
geometry shows that

arg
(
eiϕ − eiν

)
≡

{
ν+ϕ−π

2 if ν > ϕ
ν+ϕ+π

2 if ν < ϕ
mod 2π.

Summing this for all the roots we get that on each segment (kη, (k + 1) η)
argF is a linear function with derivative π (bK + 2N). Thus, on (0, η) it is
increasing from −π/2 to π/2, at η it has a jump of −π, then on (η, 2η) it is
again linear with the same slope, so it again rises from −π/2 to π/2, then has
another jump of −π and so on. This argument works till (K + 1) η = a. Thus
we get argF ∈ [−π/2, π/2] on I and therefore f ≥ 0 on I having its only zeros
at the points {0, η, 2η, . . . ,Kη, a}.

Taking f (t) + f (t+ ε) (whose Fourier transform is also supported on S)
for ε small enough one gets a strictly positive function on any interval interior
to I. This proves (9) and the theorem.

3 Corollaries and Remarks

Let’s compare the results of Theorems 1 and 2. A simple calculation shows
that

D(S) =
N+K∑
n=N

1
2n

=
K + 1

2N +K
+O

(
K2

N3

)
.

It is interesting to note that the true value; i.e. M(S) = K+1
2N+K is the unique

approximation of D(S) by a rational function of order 1 with this error term.
The following fact is a corollary of Theorem 2.

Corollary. For every interval I ⊂ [0, 1] with |I| < 1 there exists some constant
α such that for all N ∈ N there exists a real trigonometric polynomial f with
spec f ⊂ [−αN,−N ] ∪ [N,αN ] such that f > 0 on I.

Proof. Let δ := 1 − |I|. Let α := 1 + 4/δ. Apply Theorem 2 for N, K :=
b(α− 1)Nc (b·c denoting as usual the integer value) and ε := δ/2. Then as in
this case (

K + 1
2N +K

− ε
)
− |I| ≥

1 + δ(N − 1
2 )

2N +K
> 0,

there exists a real trigonometric polynomial f1 with spec (f1) ⊂ [−αN,−N ]∪
[N,αN ] s.t. f1 > 0 on an interval of length bigger than |I| (namely, on the
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interval
[
0, K+1

2N+K − ε
]
). If I ⊂

[
0, K+1

2N+K − ε
]
, we are done. Otherwise, we

need another shift and f (t) := f1 (t− a) will do, where I = (a, b) .

Here is a simple but slightly disappointing corollary to Theorem 3.

Corollary. M and D may be significantly different even when they are both
small.

Proof. Take b = K and N = K2. Then easily

M(S) =
1
3
K−1 +O(K−2) D(S) = (log 2)K−1 +O(K−3/2).
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