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ON THE NON-COMPACTNESS OF
MAXIMAL OPERATORS

Abstract

It is proved that if B is a convex quasi-density basis and E is a
symmetric space on Rn with respect to Lebesgue measure, then there
do not exist non-orthogonal weights w and v for which the maximal
operator MB corresponding to B acts compactly from the weight space
Ew to the weight space Ev.

1 Definitions and Notation

A mapping B defined on Rn is said to be a differentiation basis in Rn (see,
e.g., [1]) if for every x ∈ Rn, B(x) is a family of open bounded sets containing
the point x such that there exists a sequence {Rk} ⊂ B(x) with diamRk → 0
(k →∞).

By MB we mean the maximal operator corresponding to the differentiation
basis B; that is,

MBf(x) = sup
R∈B(x)

1
|R|

∫
R

|f | (f ∈ Lloc(Rn), x ∈ Rn).

The basis B is said to differentiate the integral of the function f if for
almost every x ∈ Rn the integral mean 1

|R|
∫
R

f tends to f(x) when R ∈ B(x),

diamR→ 0.
The basis B is called:
a density basis if B differentiates the integral of the characteristic function

of every measurable set,
convex if for every x ∈ Rn the collection B(x) consists of convex sets,
translation invariant if B(x) = {x+R : R ∈ B(0)} for any x ∈ Rn,
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Busemann–Feller if for any R ∈
⋃

x∈Rn
B(x) we have that R ∈ B(y) for

every y ∈ R.
We call the basis B:
quasi-density if it contains some density basis; i.e., if there exists a density

basis H such that H(x) ⊂ B(x) (x ∈ Rn),
measurable if MBf is a measurable function for any f ∈ Lloc(Rn).
Note that: 1) any translation invariant convex basis is a quasi-density basis

(see [1, Ch. I, §3]; 2) any translation invariant basis and any Busemann-Feller
basis are measurable (as is easy to verify).

Denote by Q the differentiation basis for which Q(x) (x ∈ Rn) consists of
all cubic intervals containing x. Recall that MQ is called the Hardy–Littlewood
maximal operator.

Let (X,S, µ) be a measure space and let ∆ be the class of all µ-measurable
functions defined on X. The normed function space (function space for short)
E is said to be ideal (see, e.g., [2]) if

x ∈ ∆, y ∈ E, |x| ≤ |y|µ -a.e.⇒ x ∈ X and ‖x‖
E
≤ ‖y‖

E
.

The function space E on (X,S, µ) is said to be symmetric if it is ideal and

x ∈ ∆, y ∈ E, x is equimeasurable with y ⇒ x ∈ X and ‖x‖
E

= ‖y‖
E
.

Let E be a symmetric space on Rn with respect to Lebesgue measure and
w be a locally integrable and non-negative function on Rn (i.e., w is a weight).
Denote by Ew the set of all measurable functions f for which there is a function
g ∈ E such that

|{|f | > t}|w = |{|g| > t}| (t > 0), (1)

where | · |w = w dx and | · | = dx. The norm in Ew is defined as follows. For
f ∈ Ew, ‖f‖Ew = ‖g‖

E
, where g is some function from E satisfying (1). Ew is

called the space E with respect to the weight w. Note that Ew is a symmetric
space on the measure space (Rn, w dx).

For the symmetric space E on the measure space (X,S, µ) let

ϕ
E

(t) = ‖χA‖E (t ≥ 0),

where A ∈ S and µ(A) = t. ϕ
E

is called a fundamental function of E.
We call the symmetric space E regular if lim

t→0+
ϕ
E

(t) = 0.

We call the weights w and v non-orthogonal if

|{x ∈ Rn : w(x) > 0, v(x) > 0}| > 0.
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Let w and v be non-orthogonal weights. Obviously, there is k ∈ N such
that |{x ∈ Rn : 1

k ≤ w(x), v(x) ≤ k}| > 0. Due to this note we can introduce
the notation

cw,v = sup
{c1
c2

: 0 < c1 < c2, |{x ∈ Rn : c1 ≤ w(x), v(x) ≤ c2}| > 0
}
.

2 Results

Edmunds and Meskhi [3] proved the following theorem. Let 1 < p <∞. Then
there do not exist almost everywhere positive weights w and v on Rn for which
the Hardy–Littlewood maximal operator MQ acts compactly from Lpw(Rn) to
Lpv(Rn).

The following generalization of this result is true.

Theorem. Let B be a convex quasi-density measurable basis, E be a symmet-
ric space on Rn with respect to Lebesgue measure. Then for any non-orthogonal
weights w and v on Rn and for any ε ∈ (0, 1) there exists a sequence of sets
{Ak} with {χAk} ⊂ Ew, ‖χAk‖Ew > 0 (k ∈ N) such that

‖(MBfm −MBfk)χAm‖Ev > (1− ε)cw,v when m > k,

where fk = χ
Ak

/
‖χAk‖Ew (k ∈ N). Furthermore, if E is a regular symmetric

space, then the same conclusion is true for quasi-density measurable bases.

Corollary. Let B be a convex quasi-density basis, E be a symmetric space on
Rn with respect to Lebesgue measure. Then there do not exist non-orthogonal
weights w and v on Rn for which MB acts compactly from Ew to Ev. Fur-
thermore, if E is a regular symmetric space, then the same conclusion is true
for quasi-density bases.

3 Auxiliary Statements

Lemma 1. Let E be a symmetric space on Rn with respect to Lebesgue mea-
sure, w and v be weights on Rn. Suppose 0 < c1 < c2 and the set

H = {x ∈ Rn : c1 ≤ w(x), v(x) ≤ c2}

is of positive measure. Then for every set A ⊂ H with |A| > 0 the inequalities

0 < ϕ
E

(c1|A|) ≤ ‖χA‖Ew , ‖χA‖Ev ≤ ϕE (c2|A|) and
c1
c2
≤
‖χA‖Ew
‖χA‖Ev

≤ c2
c1

hold.
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Proof. As is known (see [2, Ch. II, §4]), the fundamental function of E has
the properties: ϕ

E
(0) = 0, ϕ

E
is positive and increasing on (0,∞) and ϕ

E
(t)/t

is decreasing on (0,∞). According to the definition of a weight symmetric
space we have

‖χA‖Ew = ϕ
E

(|A|w) and ‖χA‖Ev = ϕ
E

(|A|v).

Since A ⊂ H and |A|w =
∫
A

w dx , |A|v =
∫
A

v dx, we have c1|A| ≤ |A|w, |A|v ≤

c2|A|. Now taking into account the properties of ϕ
E

we easily obtain the
validity of the lemma.

Lemma 2. Let (X,S1, µ1) and (X,S2, µ2) be measure spaces, E1 be a function
space on (X,S1, µ1), E2 be an ideal function space on (X,S2, µ2), and T :
L∞(X,S1, µ1)→ L∞(X,S2, µ2) be a positively homogeneous operator. If there
exists a sequence of sets {Hi} ⊂ S1 ∩ S2 with the properties:

1) {χHi} ⊂ E1 ∩ E2,
2) ‖χHi‖E1

> 0 (i ∈ N) and ‖χHi‖E1
→ 0 (i→∞),

3) there is c > 0 such that ‖χHi‖E2
≥ c‖χHi‖E1

(i ∈ N),
4) TχHi(x) ≥ 1 for almost every x ∈ Hi,
5) TχHi ∈ L∞(X,S2, µ2) (i ∈ N),

then for any ε ∈ (0, 1) there exists an increasing sequence of indexes {i(k)}
such that

‖(Tfi(m) − Tfi(k))χHi(m)‖E2
> (1− ε)c when m > k,

where fi = χ
Hi

/
‖χHi‖E1

(i ∈ N).

Proof. Let αi = 1
/
‖χHi‖E1

and βi = ‖Tfi‖L∞(X,S2,µ2) (i ∈ N). Since αi →∞
(i → ∞), we can choose an increasing sequence of indexes {i(k)} such that
αi(m) > αi(k) (m > k) and εαi(k+1) > βi(k) (k ∈ N). Taking into account the
condition of Lemma 1 and choosing {i(k)}, for m > k we can write

‖(Tfi(m) − Tfi(k))χHi(m)‖E2
≥ ‖Tfi(m) · χHi(m)‖E2

− ‖Tfi(k) · χHi(m)‖E2

≥ ‖αi(m)
χ
Hi(m)‖E2

− ‖βi(k)
χ
Hi(m)‖E2

= (αi(m) − βi(k))‖χHi(m)‖E2

≥ (1− ε)αi(m)c‖χHi(m)‖E1
= (1− ε)c.

We shall call a strip in Rn an open set bounded by two different parallel
hyperplanes; i.e., a set of the form{

x ∈ Rn : a < α1x1 + · · ·+ αnxn < b
}
,

where a, b (a < b) , α1, . . . , αn (|α1| + · · · + |αn| > 0) are real numbers, and
xk (k = 1, . . . , n) denotes the k-th coordinate of the point x ∈ Rn. The strip
width will be called the distance between the hyperplanes that bound the strip.
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Lemma 3. Let A be a set of positive measure in Rn. Then for any δ ∈ (0, 1)
there exists a sequence of mutually parallel strips {Sk} such that

1) |Sk ∩A| > 0 (k ∈ N),

2)
(width of Sk)
dist(Sk, Sm)

< δ (k < m).

Proof. By virtue of the well-known Lebesgue theorem (see, e.g., [1]), basis
Q differentiates the integral of every locally summable function. Thus

lim
Q∈Q(x), |Q|→0

1
|Q|

∫
Q

χ
A = χ

A(x) a.e. (2)

Let us consider the point x0 ∈ A for which (2) is valid. Denote N = [ 4
δ ] + 1.

Obviously, we can choose cubic intervals Qk (k ∈ N) with centers at x0 such
that

|Qk ∩A|
|Qk|

> 1− 1
2N

and `(Qk+1) =
1
2
`(Qk) (k ∈ N),

where `(Q) denotes the length of the edges of the cube Q. Obviously, Qk has
the form Qk = Ik × Jk, where Ik is an interval in R and Jk is a cubic interval
in Rn−1. Let us divide Ik (k ∈ N) into 2N equal intervals and denote by I ′k
the first interval from the left. Let Sk (k ∈ N) be the strip I ′k × Rn−1. It is
easy to check that {Sk} satisfies the conditions of Lemma 3.

Lemma 4 below was proved in [4]. We present the proof here for the sake
of completeness.

Lemma 4. Let B be a convex basis and S be a strip in Rn. Then

MB(χS)(x) <
2n(width of S)

dist(x, S)
when dist(x, S) ≥ (width of) S.

Proof. Let δ = (width of S), dist(x, S) ≥ δ and R ∈ B(x), R ∩ S 6= ∅.
Among the hyperplanes bounding S we denote by Γ the hyperplane which is
closest to x. It is obvious that R ∩ Γ 6= ∅. For every y ∈ R ∩ Γ let ∆y be a
segment connecting x and y. Let K =

⋃
y∈R∩Γ

∆y. Since R is convex, we have

K ⊂ R. (3)

Let H be the homothety centered at x and with the coefficient

α =
dist(x, S) + δ

dist(x, S)
.
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Let us show that
R ∩ S ⊂ H(K) \K. (4)

Indeed, let z be an arbitrary point from R∩S and let y be the point at which
the segment connecting x and z intersects with Γ. Since x, z ∈ R, by virtue
of the convexity of R we have y ∈ R. Therefore y ∈ R ∩ Γ. By the definitions
of the set K and homothety H we easily obtain z ∈ H(∆y) ⊂ H(K).Since
(R ∩ S) ∩K = ∅. Therefore z /∈ K. Thus, z ∈ H(K) \K.(4) is proved.

Using (3), (4), the definition of H and obvious inequality αn−1 < 2nδ
dist(x,S)

we can write

1
|R|

∫
R

χ
S =

|R ∩ S|
|R|

≤ |H(K) \K|
|K|

=
(αn − 1)|K|
|K|

<
2nδ

dist(x, S)
.

4 Proof of the Theorem

Proof of the Second Part of the Theorem. Let 0 < δ < 1 −
√

1− ε
and 0 < c1 < c2 be such that c1

c2
> (1− δ)cw,v and the set

H = {x ∈ Rn : c1 ≤ w(x), v(x) ≤ c2} (5)

is of positive measure. Let {Hi} be a sequence of measurable sets with the
properties

Hi ⊂ H, 0 < |Hi| <∞ (i ∈ N), |Hi| → 0 (i→∞). (6)

Let us set (X,S1, µ1) = (Rn, S, w dx), (X,S2, µ2) = (Rn, S, v dx), where S
is the class of all measurable sets in Rn; E1 = Ew, E2 = Ev and T =
MB |L∞(Rn,S,dx).

Now let us show that {Hi} satisfies all the conditions of Lemma 2. Every
ideal space contains a characteristic function of any set with the finite measure.
Therefore from (5) and (6) we have that {χHi} ⊂ E1 ∩ E2. From Lemma 1,
the regularity of the space E and (5), (6) we write

‖χHi‖Ew ≥ ϕE (c1|Hi|) > 0 (i ∈ N),
‖χHi‖Ew ≤ ϕE (c2|Hi|)→ 0 (i→∞),
‖χHi‖Ev
‖χHi‖Ew

≥ c1
c2
> (1− δ)cw,v (i ∈ N).

Thus we have established that {Hi} satisfies conditions 1)–3) of Lemma 2.
(Note that in condition 3) instead of c we have (1 − δ)cw,v.) Condition 4) is
satisfied because B is a quasi-density basis and 5) is obvious. Now by virtue
of Lemma 2 and a choice of δ we conclude that the assertion is proved.
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Proof of the Remaining Part of the Theorem. Due to the asser-
tion already established it remains to prove the assertion in the case where
lim
t→0+

ϕ
E

(t) = p > 0. Let 0 < δ < 1 −
√

1− ε and 0 < c1 < c2 be such that
c1
c2
> (1− δ)cw,v and the set

A = {x ∈ Rn : c1 ≤ w(x), v(x) ≤ c2}

is of positive measure. By virtue of Lemma 3 there exists a sequence of mu-
tually parallel strips {Sk} such that

|Sk ∩A| > 0 (k ∈ N) and
(width of Sk)
dist(Sk, Sm)

<
δ

16
(k < m).

For any k ∈ N let Ak be a set with the properties

Ak ⊂ Sk ∩A, |Ak| > 0 and ϕ
E

(c2|Ak|) < 2p.

Let αk = 1
/
‖χAk‖Ew (k ∈ N). Due to Lemma 1 we have

p ≤ ϕ
E

(c1|Ak|) ≤ ‖χAk‖Ew ≤ ϕE (c2|Ak|) < 2p.

Hence
1
2p

< αk <
1
p

(k ∈ N). (7)

By virtue of Lemma 4 for k < m and x ∈ Sm we can write

MB
χ
Ak(x) ≤MB

χ
Sk(x) ≤ 4(width of Sk)

dist(Sk, Sm)
<
δ

4
. (8)

Now taking into account the condition of the Theorem, (7), (8), Lemma 1 and
a choice of δ, for k < m we have

‖(MBfm −MBfk)χAm‖Ev ≥ ‖MBfm · χAm‖Ev − ‖MBfk · χAm‖Ev
≥ αm‖χAm‖Ev − αk‖MB

χ
Ak · χAm‖Ev

=
(
αm − αk

δ

4

)
‖χAm‖Ev

> αm

(
1− αk

αm

δ

4

)c1
c2
‖χAm‖Ew

> (1− δ)2cw,v‖αmχAm‖Ew > (1− ε)cw,v.
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