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Abstract

Let A be an algebra of subsets of an underlying set A (which is not
the entire power set of A in general), and let I ⊆ A be an ideal over A.
The pair (A, I) is said to have the hull property iff whenever X ⊆ A,
there is a Y ∈ A such that X ⊆ Y and Y is “least” mod I, i.e., if
Z ∈ A and X ⊆ Z, then Y \ Z ∈ I. It has been observed that in many
cases for which (A, I) satisfies the hull property, the quotient Boolean
algebra A/I is a complete Boolean algebra. That, and the superficial
similarity between the definitions themselves, along with the similar
proofs that have sometimes resulted when using these properties, leads
to the natural question of how the two properties “(A, I) satisfies the
hull property” and “A/I is a complete Boolean algebra” are related to
each other. Examples will be produced which show that neither of these
two properties implies the other. In addition, we examine the question
of what additional hypotheses would cause one of these properties to
imply the other.

1 Introduction

Let A be an algebra of sets, and I an ideal. The Marczewski hull property
(see [M]) and the property of having a complete quotient algebra A/I are two
similar looking properties for which there are some natural questions. Re-
cently, an argument that had earlier been used by John Walsh (in [W]) to
prove that ((s), (s)0) has the hull property was modified by Jack Brown and
myself (in [BB]) to get a similar proof that (s)/(s)0 is a complete Boolean
algebra (see the following for the definitions). This result, along with the ap-
parent similarity in the definitions of the two properties themselves, prompted
the question about what the relationship was between the hull property and
complete quotient algebras.
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This paper is an attempt at answering some of the basic questions of the
relationships between these two properties. The remainder of section 1 will
give some of the basic definitions. In section 2, examples will be constructed
to show that neither of the two properties implies the other. In sections 3 and
4, we examine what additional hypotheses might be required to get one of the
two properties to imply the other, and section 5 summarizes the basic results
and states some problems for further research.

Definition 1. Let A be a set. A collection A of subsets of A is called an
algebra if it is closed under finite unions, finite intersections, and complements
with respect to A. A is a σ-algebra if, in addition, it is closed under countable
unions and intersections. A collection I of subsets of A is called an ideal over
A iff I is closed under finite unions and subsets. I is a σ-ideal if I is also
closed under countable unions. If A is an algebra on a set A, and I ⊆ A
define I+ = A \ I, and I∗ = {A \ X : X ∈ I}. Throughout this paper,
we shall assume that if an algebra is denoted by a calligraphic letter, then
its underlying set will be denoted by the corresponding Roman letter. Let
K be the class consisting of all pairs (A, I) such that A is an algebra with
underlying set A and I is an ideal over A such that I ⊆ A. Let Kσ be the
class of all (A, I) in K such that A is a σ algebra and I is a σ-ideal.

The pair (A, I) ∈ K is said to satisfy the hull property iff for every X ⊆ A
there is a Y ∈ A such that X ⊆ Y , and whenever Z ∈ A is such that X ⊆ Z,
we have Y \ Z ∈ I (i.e., Y is “least” mod I). This property has turned out
to be a useful property in the study of σ-algebras of separable metric spaces.
(See, e.g., [W].) Observe that the hull property is trivially equivalent to what
might be called the “dual hull property”, i.e., if X ⊆ A, then there is a Y ∈ A
such that Y ⊆ X and Y is “greatest possible mod I” (i.e., if Z ∈ A is such
that Z ⊆ X, then Z \ Y ∈ I).

Given (A, I) ∈ K, the quotient algebra A/I can be formed by defining an
equivalence relation ≡ by X ≡ Y iff (X \Y )∪ (Y \X) ∈ I, for X,Y ∈ A, and
then dropping to the corresponding equivalence classes, giving us the quotient
Boolean algebra A/I. Every Boolean algebra has a natural partial ordering
(which corresponds to the ⊆ relation for an algebra of sets). A Boolean algebra
is said to be complete iff every subset has a least upper bound with respect
to this natural ordering. Many standard references (for example, [J]) can be
consulted for the basic properties of Boolean algebras. However, rather than
dealing with this ordering at the level of the quotient algebra, it will be more
convenient to do some of our arguments at the level of the algebra A, thus
avoiding an additional layer of notation, so we shall take several standard
definitions of Boolean algebras, and pull them up to the level of the algebra
A. Thus, we define, for subsets V and W of X, the relation V ≤I W iff
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V \W ∈ I. If I is obvious from context (as will usually be the case), then
we shall drop the subscript and write just ≤ instead. Then this relation is
transitive and reflexive, but not antisymmetric in general. The terms upper
bound, least upper bound, etc., are then defined in the obvious way, noting that
least upper bounds (if they exist at all) may not be unique (since if U is a
least upper bound of some subset of A, then any other element of A which
is equivalent (mod I) to U will also be a least upper bound). However, least
upper bounds (if they exist) will be unique mod I. The Boolean algebra A/I
is said to be complete iff every subset of A has a least upper bound in this
natural ordering. Observe that this is equivalent to the dual statement that
every subset of A has a greatest lower bound.

Let A be an algebra of subsets of the set A, and let I be an ideal over A
such that I ⊆ A. A subset S of I+ will be called dense in I+ iff for every
U ∈ I+ there is a V ∈ S such that V ⊆ U . A subset S of I+ will be called
predense in I+ iff for every U ∈ I+ there is a V ∈ S such that U ∩V ∈ I+. It
is easy to check that S is predense in I+ iff S ′ = {W ∈ I+ : W ⊆ V for some
V ∈ S} is dense in I+. We can also observe that, in this language, a subset S
of I+ is predense in I+ iff A is a least upper bound of S. If C,D ⊆ I+, then
we say that D is predense below C iff for every X ∈ C and for every W ⊆ X
such that W ∈ I+, there is a Y ∈ D such that W ∩ Y ∈ I+. If C,D ⊆ A,
we say that D is a refinement of C iff for every X ∈ D, there is a Y ∈ C
such that X ⊆ Y . Given (A, I) ∈ K and C ⊆ I+, C is called an antichain
iff for any two distinct elements X and Y of C, X ∩ Y ∈ I. We remind the
reader of the well known fact that if C is any subset of I+, then there is an
antichain D ⊆ A which is a refinement of C and predense below C. (Among
all antichains which are refinements of C, use Zorn’s Lemma to get a maximal
one with that property.)

2 Complete Boolean Algebras and the Hull Property

In this section, we show that neither the complete Boolean algebra property
nor the hull property implies the other. An example which satisfies the hull
property but does not give a complete quotient algebra is easy to obtain by
using the trivial observation that a power set always satisfies the hull property,
added to the well known fact that quotient Boolean algebras which are not
complete are very common.

Theorem 1. If A is the set of real numbers, A is the set of all subsets of A,
and I is the σ-ideal of all countable subsets of A, then (A, I) satisfies the hull
property, but A/I is not a complete Boolean algebra.



418 Stewart Baldwin

Proof. (A, I) trivially satisfies the hull property. To see that A/I is not
a complete Boolean algebra, let S be an uncountable set of pairwise disjoint
uncountable subsets of R. To see that S has no least upper bound with respect
to the ideal I, suppose that U is an upper bound (mod I) of S for some U ⊆ R.
Then for each S ∈ S, S \ U ∈ I, i.e., S \ U is countable, and therefore S ∩ U
is uncountable, so we can pick an element aS ∈ S ∩ U . Since the elements of
S are pairwise disjoint, the aS ’s are distinct. Now, let U ′ = U \ {aS : S ∈ S}.
Then S \ U ′ = S \ U ∪ {aS} is still countable for each S ∈ S, so U ′ is also
an upper bound of S. But U \ U ′ is uncountable, and therefore not in I,
so U ′ ⊆ U shows that U is not a least uppper of S. Thus, since U was an
arbitrarily chosen upper bound of S, S has no least upper bound, and A/I is
not complete.

Getting the hull property to fail while maintaining completeness of the
quotient algebra is more difficult. We use a trick which will allow us to destroy
the hull property without altering the quotient algebra.

Definition 2. A set X ∈ I+ will be called an I-atom iff X is a minimal
element of I+ (mod I), i.e, for all Y ∈ I+, if Y ≤ X, then Y ≡ X. The pair
(A, I) ∈ K will be called atomless iff I+ has no I-atoms (equivalently, A/I
is atomless in the usual definition of the term for Boolean algebras). A set
U ⊆ A is called an ultrafilter on A iff U is maximal with respect to having the
finite intersection property. If (A, I) ∈ K, and U is an ultrafilter on A such
that U ∩I is empty (i.e., the set corresponding to U is an ultrafilter on A/I in
the usual definition of ultrafilter for Boolean algebras), then U will be called
an (A, I)-ultrafilter.

Theorem 2. If (A, I) ∈ K is atomless, then there exists an algebra B and
an ideal J such that (B,J ) does not satisfy the hull property, and such that
A/I and B/J are isomorphic (as Boolean algebras). The algebra B can be
constructed such that the underlying set B of B has any cardinality greater
than or equal to the cardinality of A.

Proof. Note that since (A, I) is atomless, A is infinite, and therefore A is
infinite. Let κ ≥ |A| be the cardinality of the desired new set B, and let C be
a set of cardinality κ which is disjoint from A. Fix an infinite cardinal λ ≤ κ,
and let L be the set of all subsets of C having cardinality strictly less than λ.
Let L∗ = {C \S : S ∈ L}. Let B = A∪C, and note that B has cardinality κ.
Define J to be all sets of the form S ∪ T , where S ∈ I and T ∈ L. To define
the algebra B, let U ⊆ A be a (A, I)-ultrafilter (which exists by a standard
Zorn’s Lemma argument). Now, let B = {X ∪ Y : either (X ∈ U and Y ∈ L∗)
or (X ∈ A\U and Y ∈ L)}. It remains to show that B,J are as desired. It is
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easy to see that J is an ideal with J ⊆ B. Using the well known fact about
ultrafilters that if X ∈ A, then exactly one of X and A \X is in U , it is easy
to see that B is closed under finite unions and intersections. To see that B is
closed under complements, note that for every X ∈ A, X ∈ U iff A \X /∈ U .
To see that A/I and B/J are isomorphic, define f : B → A by f(X) = X ∩A
for all X ∈ B. Also, X ≡J Y iff f(X) ≡I f(Y ), for all X,Y ∈ B, and it
is therefore routine to check that f induces a Boolean algebra isomorphism
between A/I and B/J . Finally, to see that (B,J ) does not satisfy the hull
property, we observe that since A is atomless, U cannot have a least element
(mod I). Thus, we look at C ⊆ B. If Y is any element of B which covers
C, then Y = X ∪ C for some X ∈ U , for those are the only elements of B
containing C. However, since U has no least element (mod I), these sets can
have no least element (mod J ).

Corollary 3. Neither of the properties “A/I is a complete Boolean algebra”
and “(A, I) satisfies the hull property” implies the other.

Proof. There are many atomless pairs (A, I) which have a complete quotient
algebra (for example, the Lebesgue measurable sets and the Lebesgue null
sets), to which the previous theorem can be applied.

After the above proof was found, an alternate way of getting examples was
noticed: If B is a complete atomless Boolean algebra, A is the usual Stone
algebra of B, and I is the empty ideal, then (A, I) has a complete quotient
algebra (isomorphic to B) and does not satisfy the hull property (as it is routine
to show that any singleton from A cannot be covered by a least member of
A).

The above arguments show that we can get an example with any complete
atomless Boolean algebra as our quotient algebra. However, note that the
pair (B,J ) in the above proof will not be a σ-algebra and σ-ideal pair unless
(A, I) ∈ K is a σ-algebra and σ-ideal pair, λ is uncountable, and the ultrafilter
U is countably complete (i.e., closed under countable intersections). The first
two of these requirements present no problems, but it is not difficult to show
that there exists an atomless (A, I) ∈ K with a complete quotient algebra and
a countably complete (A, I)-ultrafilter iff there exists a measurable cardinal.
Thus, even though the above theorem can be used to construct many different
examples of algebras with the desired property, they could not be σ-algebras
without additional set theoretic hypotheses. (The Stone algebra of an atomless
Boolean algebra can never be a σ-algebra, so that argument will also not work
to get a σ-algebra example.) The original version of this paper provided an
example of a σ-algebra, using the above theorem and assuming the existence
of a measurable cardinal, but a ZFC example has now been found, as in the
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following results.

Definition 3. A set X of reals is said to be Marczewski Mesaurable (written
X ∈ (s)) iff for every perfect subset P of the reals there is a perfect set Q ⊆ P
such that either Q ⊆ X or Q is disjoint from X. A set X of reals is said to
be Marczewski Null (written X ∈ (s)0) iff for every perfect subset P of the
reals there is a perfect set Q ⊆ P such that Q is disjoint from X (equivelently,
X is Marczewski Null iff it is Marczewski Mesaurable and contains no perfect
subset). It is well known that the pair ((s), (s)0) satisfies the hull property
[W] and has a complete quotient algebra (see [BB] for a simple proof), and
that every Borel set is in (s). The desired example will be a modification of
this pair.

Lemma 4. LetM⊆ (s)\ (s)0 be a maximal antichain with respect to the pair
((s), (s)0). Then there is a pairwise disjoint collection M′ of perfect sets that
is also a maximal antichain with respect to the pair ((s), (s)0), and such that
M′ is a refinement of M.

Proof. Given such an M, let (Pα : α < c) be an enumeration of all perfect
subsets of the reals, where c is the cardinality of the continuum. Define sets
(Qα : α < c) by transfinite induction on α < c. If Qβ has been defined
for all β < α and there is a perfect set Q such that Q ∩ Qβ is empty for
all β < α and Q ⊆ Pα∩X for some X ∈ M, then we let Qα be equal to
some such Q. If no such Q exists, then we let Qα be the empty set. We
then let M′ = {Qα : α < c and Qα is perfect}. M′ is clearly a pairwise
disjoint collection of perfect sets such that M′ is a refinement of M. Thus,
we only need to show thatM is a maximal antichain with respect to the pair
((s), (s)0). Suppose that this is not the case, and let Z ∈ (s) \ (s)0 be such
that Z ∩Q ∈ (s)0 for all Q ∈M′. By the maximality ofM, there must be an
X ∈M such that Z∩X /∈ (s)0. If we pick such an X, then (since Z∩X ∈ (s))
there must be a perfect set P such that P ⊆ Z ∩X. Then P = Pα for some
fixed α < c. Now, since P ⊆ Z, P ∩ Qβ ∈ (s)0 for all β < c and therefore
for all β < α. Thus, P ∩ Qβ is countable for each β < α, because otherwise
P ∩ Qβ would be an uncoutable closed set and would therefore contain a
perfect subset, contradicting that P ∩ Qβ ∈ (s)0. Therefore,

⋃
β<α(P ∩ Qβ)

has cardinality less than the continuum, and there exists a perfect set Q ⊆ P
such that Q ∩

⋃
β<α(P ∩Qβ) is empty. This Q would be a possible choice for

Qα, and therefore Qα is not the empty set. However, this contradicts the fact
that P intersects all Qβ ’s in only an (s)0-set.

Theorem 5. There exists a pair (A, I) ∈ K such that A is a σ-algebra, I is
a σ-ideal, and A/I is a complete Boolean algebra, but (A, I) does not satisfy
the hull property.
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Proof. Let M be a collection of c-many pairwise disjoint perfect sets such
that M is a maximal antichain with respect to the pair ((s), (s)0). Such a
collection can be obtained by starting with c-many pairwise disjoint perfect
sets, expanding it to a maximal antichain using a Zorn’s Lemma argument,
and then applying the previous lemma. For each M ∈ M, let BM ⊆ M be
a set which is Bernstein in M (i.e., every perfect subset of M intersects both
BM and the complement of BM ). Let B = {BM : M ∈ M}, and let I be the
σ-ideal of subsets of the reals generated by (s)0 and B. Let B =

⋃
M∈MBM ,

and note that B is a Berstein subset of the set of all reals (a simple consequence
of the maximality of M).
Claim. (s) ∩ I = (s)0.
Proof of Claim: The direction (s)0 ⊆ (s)∩I is clear, so assume X ∈ (s)∩I.
Since X ∈ I, X can be represented as the union of an element of (s)0 and of
subsets of countably many BM ’s. In particular, X = Y ∪Z for some Y ∈ (s)0

and Z ⊆ B. Now, to see that X ∈ (s)0, let P be any perfect subset of the
reals. Then since X ∈ (s), there is a perfect set Q ⊆ P such that either Q
misses X or Q is a subset of X. Since Y ∈ (s)0, there is a perfect set R ⊆ Q
such that R ∩ Y is empty. Since B contains no perfect sets, we cannot have
R ⊆ X, and therefore R ∩X is empty. This completes the proof of the claim.

Now, let A be the σ-algebra generated by (s) and I. Then A consists
of all sets of the form (X ∪ Y ) \ Z, where X ∈ (s) and Y,Z ∈ I (an easy
consequence of the routinely checked fact that the collection of all such sets is
closed under complements and countable unions). Combined with the claim,
it is easily seen that A/I and (s)/(s)0 are isomorphic as Boolean algebras (and
therefore complete, since (s)/(s)0 is). To see that (A, I) does not satisfy the
hull property, we show that the set B cannot be covered by a least (mod I)
member of A. Thus, let C ∈ A be such that B ⊆ C. Then C = (X ∪ Y ) \ Z
for some X ∈ (s), Y,Z ∈ I. Since Y = U ∪ V for some U ∈ (s)0 and some
V ⊆ B that intersects only countably many BM ’s, let M ∈ M be such that
V ∩M is empty. Let D = (C \M) ∪ BM . Then clearly B ⊆ D. In addition,
since BM ⊆ (C ∪ U) ∩M , and BM is Bernstein in M , we must have that
M \ C ∈ (s)0 (Otherwise, M \ (C ∪ U) contains a perfect set and intersects
BM , a contradiction). Thus, it is easy to check that C \ D /∈ I, thereby
showing that B cannot be covered by an least (mod I) member of A.

3 Properties Implied by the Hull Property

Definition 4. Let us say that the pair (A, I) has the density property iff
A \

⋃
S ∈ I whenever S is a predense subset of I+. (Intuitively, the density

property says that if S covers so much of A that A itself is a least upper bound
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of S, then the set of points not covered by S must be small, i.e., an element of
I.) Let (A, I) ∈ K, and let P is a collection of subsets of A. Then we say that
the pair (A, I) is Marczewski-Burstin representable (“MB-representable”) by
P iff the following two properties hold (see [BT], [BBC1]).

1. For all Y ⊆ A, Y ∈ A iff for every P ∈ P, there is a Q ∈ P, Q ⊆ P ,
such that Q is either a subset of, or disjoint from Y .

2. For all Y ⊆ A, Y ∈ I iff for every P ∈ P, there is a Q ∈ P, Q ⊆ P , such
that Q is disjoint from Y .

An interesting fact is that one of these two conditions is equivalent to the
density property in the case where P = I+.

Theorem 6. The pair (A, I) has the density property iff the following equiv-
alence is true: for all Y ⊆ A, Y ∈ I iff for every P ∈ I+, there is a Q ∈ I+,
Q ⊆ P , such that Q is disjoint from Y .

Proof. (⇒) Suppose (A, I) has the density property, and let Y ⊆ A. If
Y ∈ I, then for any P ∈ I+ we have that P \ Y ∈ I+ is disjoint from Y .
In the other direction, suppose that for every P ∈ I+, there is a Q ∈ I+

such that Q is disjoint from Y . Then it is easy to see that this implies that
S = {U ∈ I+ : U ∩ Y is empty} is predense in I+. Thus, by the density
property, Y ⊆ A \

⋃
S ∈ I.

(⇐). Suppose that Y ∈ I iff for every P ∈ I+, there is a Q ∈ I+, Q ⊆ P ,
such that Q is disjoint from Y . Let S be a predense subset of I+, and let
Y = A \

⋃
S. Let P ∈ I+. Then by the definition of predense, there must be

a Q ∈ I+, Q ⊆ P , such that Q ⊆ W for some W ∈ S. Clearly, Q and Y are
disjoint, so since P ∈ I+ was arbitrary, Y ∈ I.

Theorem 7. If A/I is a complete Boolean algebra, and (A, I) has the density
property, then (A, I) has the hull property.

Proof. Let Y ⊆ A, and let U = {V ∈ I+ : Y ⊆ V }. Then, since A/I
is a complete Boolean algebra, U has a greatest lower bound U ∈ A. Let
S = ({U} ∪ {A \ V : V ∈ U}) ∩ I+. It is easy see that S is predense in
I+, for otherwise, there would be a W ∈ I+ such that W ∩ V ∈ I for all
V ∈ S, and then U ∪W would be a lower bound of U which would contradict
the fact that U is the greatest lower bound of U . Thus, since S is predense,
Z = A \

⋃
S ∈ I. Then U ∪ Z is equivalent to U (mod I), and is therefore

also a greatest lower bound of U . But Y ⊆ U ∪ Z, so U ∪ Z is the desired set
which witnesses the hull property.

Theorem 8. If (A, I) satisfies the hull property, then (A, I) is MB-representable
by I+.
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Proof. Assume the hypothesis of the theorem, and let Y ⊆ A. We need to
show that Y ∈ A iff for every P ∈ I+ there is a Q ∈ I+, Q ⊆ P , such that
Q is either contained in or disjoint from Y . If Y ∈ A, and P ∈ I+, then
since P = (P ∩ Y ) ∪ (P \ Y ), at least one of P ∩ Y and P \ Y must be in I+.
In the other direction, suppose that Y /∈ A. By the hull property, there is a
U ∈ A such that Y ⊆ U , and U is smallest possible (mod I). By the dual hull
property, there is a L ∈ A such that L ⊆ Y and L is largest possible (mod I).
Now, since Y /∈ A, and L ⊆ Y ⊆ U , neither U \ Y nor Y \ L can be elements
of A, so neither are elements of I, and thus U \ L /∈ I. Let P = U \ L, and
since P ∈ A, P ∈ I+. Let Q be any element of I+ which is a subset of P .
Then Q cannot be a subset of U \ Y , because we would then have Y ⊆ U \Q,
contradicting leastness of U . For a similar reason, Q cannot be a subset of
Y \L. Thus, Q cannot be either contained in or disjoint from Y , and we have
therefore finished proving part (1) of Definition 2. Since Y ∈ I iff Y ∈ A and
Y contains no member of I+, part (2) of definition follows directly from what
we have already proven.

Theorem 9. There exists a pair (A, I) ∈ K having the density property, but
for which (A, I) is not MB-representable by I+. Examples can be found in
which A has cardinality continuum, A is a σ-algebra, and I is a σ-ideal.

Proof. Let κ be any uncountable regular cardinal, and for each α < κ, let
(Aα, Iα) ∈ K be (σ-algebra, σ-ideal) pairs satisfying the hull property such
that the sets Aα are pairwise disjoint, and for each α < κ, there is an Zα ∈ Aα
such that both Zα and Aα \ Zα are members of I+

α . Let A =
⋃
α<κAα, and

define I = {X ⊆ A: For all α < κ, X ∩ Aα ∈ Iα}, and A = {X ⊆ A: For all
α < κ, X∩Aα ∈ Aα, and for all but countably many α < κ, either X∩Aα ∈ Iα
or Aα \X ∈ Iα. Then it is easy to verify that (A, I) satisfies (2) of Definition
4, but that Z =

⋃
α<κ Zα is a counterexample for (1) of Definition 4.

4 Properties Weaker Than the Complete Boolean Alge-
bra Property

Definition 5. Let us say that the pair (A, I) has the splitting property iff
whenever C andD are antichains of (A, I) such that C∩D ∈ I for all C ∈ C and
D ∈ D, then there are sets EC , C ∈ C and FD, D ∈ D such that EC , FD,∈ I
and C \ EC and D \ FD are disjoint for all C ∈ C, D ∈ D. We define (A, I)
to have the weak splitting property iff whenever C1, C2 ⊆ I+ are such that
X1 ∩X2 ∈ I for all Xi ∈ Ci (i = 1, 2), there are Di such that Di is predense
below Ci (i = 1, 2), and such that X1 ∩X2 is empty for all Xi ∈ Di (i = 1, 2).
Since the relations “refinement of” and “predense below” are easily seen to
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be transitive relations on subsets of A, it is easy to check that the splitting
property implies the weak splitting property.

Proposition 10. If A/I is a complete Boolean algebra, then (A, I) has the
splitting property.

Proof. Let S and T be least upper bounds for C and D respectively. Then
S∩T ∈ I, so by shrinking one of S or T by a member of I, if necessary, we may
assume without loss of generality that S ∩T is empty. Then EC = C \ (C ∩S)
and FD = D \ (D ∩ T ) are as desired. (Note that it was not required in this
proof that C and D be antichains.)

The desired result is to prove that the hull property plus the weak splitting
property implies a complete quotient algebra. In fact, we get a better result
than this.

Theorem 11. If (A, I) satisfies the weak splitting property, and (A, I) is
MB-representable by I+, then A/I is a complete Boolean algebra.

Proof. Assume the hypotheses of the theorem, and let C ⊆ A. We need to
show that C has a least upper bound in A (mod I). Let C1 = C and define C2
to consist of all X ∈ I+ such that X ∩ Y ∈ I for all Y ∈ C1. Then, let D1,D2

be the sets guaranteed by the weak splitting property. Finally, let L =
⋃
D1,

and we want to show that L is the desired least upper bound. We first need
to show that L ∈ A, and we use the MB-representation to do this. Thus, let
P ∈ I+. Since C1∪C2 is predense by definition of C2, so is D1∪D2. Thus, there
is an i ∈ {1, 2} and a Q ∈ I+ with Q ⊆ P such that Q ⊆ D for some D ∈ Di.
Then Q is either contained in or disjoint from L, depending on whether i is 1
or 2. Since P was arbitrary, this proves that L ∈ A. Since L contains every
member of D1, L is an upper bound of D1, and therefore of C1 (since C1 is
predense below D1). Thus, L is an upper bound of C. Since L misses every
member of D2, L must be a least upper bound, for the same reason.

Corollary 12. If (A, I) satisfies the weak splitting property, and (A, I) is
MB-representable by I+, then (A, I) satisfies the hull property.

Proof. By the previous theorem, A/I is a complete Boolean algebra. Thus,
by results of the previous section, (A, I) has the density property, and it
therefore also has the hull property.

Definition 6. Let us say that the pair (A, I) is Borel dense iff

1. A is a σ-algebra of subsets of some complete, separable metric space X,
and I ⊆ A is a σ-ideal over X.
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2. A contains the set B of all Borel subsets of X.

3. I+ ∩ B is a dense subset of I+.

Proposition 13. If (A, I) ∈ Kσ is Borel dense, and the continuum hypothesis
holds, then (A, I) has the splitting property.

Proof. If C is an antichain in I+, then by Borel denseness, we can pick a
Borel set BC ∈ I+ such that BC ⊆ C for each C ∈ C. These sets BC must
be distinct (since otherwise C would not have been an antichain). Thus, since
there are no more than ω1 Borel sets (assuming CH), no antichain can have
size more than ω1. Thus, since we have a σ-algebra and a σ-ideal, it is easy
to see that any antichain can be replaced by a pairwise disjoint antichain in
which the members are equivalent (mod I) to the original antichain. This is
clearly stronger than the splitting property.

Since many pairs (A, I) which are of interest are Borel-dense, the above
theorem gives a convenient way of proving the splitting property when CH
holds. This will give us some examples (under CH) of pairs satisfying the
splitting property that do not have a complete quotient algebra. It is not clear
if the CH hypothesis can be eliminated. However, if “splitting” is replaced by
“weak splitting”, it will be shown that the same examples need no additional
set theoretic hypotheses. The examples given here will use known algebras
and ideals from the literature. For convenience, the “definitions” given here
will use known equivalences which are somewhat shorter to state. See [BC]
for an extensive survey of these ideas.

Definition 7. A subset X of the set of real numbers is said to be universally
measurable (written X∈U) iff for every homeomorphism h of the reals, h(A)
is Lebesgue measurable, and X has universal measure zero (written x∈U0) iff
h(A) has Lebesgue measure zero for every such h. X is said to have the Baire
property (written X∈Bw) iff it the the symmetric difference of an open set and
a first category set. X has the Baire property in the restricted sense (written
X∈Br) iff X∩P has the Baire property (in the relative topology for P ) for
every perfect subset P of the set of real numbers, and X is always of first
category (written x∈AFC) iff X∩P is of first category in P for every perfect
set P .

The pairs of current interest are (U ,U0) and (Br,AFC), and some well
known facts that will be used below are that U ,Br⊆(s), U0,AFC⊆(s)0, and
that (U0)+ and AFC+ are dense subsets of ((s)0)+. We give the proof for the
pair (U ,U0), with the proof for the pair (Br,AFC) (and for the pair (Borel,
Countable)) being very similar.
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Theorem 14. U/U0 is not a complete Boolean algebra.

Proof. By [MP], there is a Vitali set V which is Marczewski measurable.
Let S = {X ∈ U : X ⊆ V }. We shall show that S does not have any least
upper bound (mod U0) in U . Suppose otherwise, and let W ∈ U be a least
upper bound of S. Then, since U ⊆ (s), U0 ⊆ (s)0, and U+

0 is a dense subset
of ((s)0)+, W is also a least upper bound of S in (s). In addition, denseness
of U+

0 in ((s)0)+ implies that V is also a least upper bound of S in (s). Thus,
V and W must be equivalent mod (s)0, and there are sets A,B ⊆ (s)0 with
W = (V ∪ A) \ B (and, without loss of generality, A disjoint from V and
B ⊆ V ).

Let Z =
⋃
q∈Q((A∪B) + q), where Q is the set of rational numbers, and

(A∪B) + q is the translation of A∪B by q. Clearly, (A∪B) + q ∈ (s)0 for
every real number q, and therefore Z ∈ (s)0, since (s)0 is a σ-ideal. Let
Y =

⋃
q,r∈Q,q 6=r((W + q)∩ (W + r)). Since W is Lebesgue measurable, W + q

is Lebesgue measurable for all real numbers q, and therefore Y is Lebesgue
measurable. Let X = W\Y . Then X is Lebesgue measurable, and satisfies
the property that (X+ q)∩ (X+ r) is empty for any distinct rational numbers
q and r, i.e., X is a subset of some Vitali set. Let T = R\

⋃
q∈Q(X+ q). Then

T is clearly Lebesgue measurable, since X is. Our goal is to show that T is
Lebesgue null, and for that we need the following claim.
Claim. T ⊆ Z.
Proof of Claim: Let x ∈ T . Then by the definition of a Vitali set, x∈V + q
for some rational number q. There are now two cases:

Case 1: x/∈W + q. Then x− q∈V \W⊆B, and therefore x∈B + q⊆Z.
Case 2: x∈W+q. Then since x/∈X+q, x∈Y . Thus, x∈(W+p)∩(W+r) for

some distinct rational numbers p and r. On the other hand, x/∈(V +p)∩(V +r)
(by the definition of a Vitali set), and we must therefore have either x ∈ A+ q
or x ∈ A+ r, i.e., x ∈ Z. This finishes the proof of the claim.

Now, T ⊆ Z implies that T ∈ (s)0, and T must therefore have Lebesgue
measure zero, since every set of positive Lebesgue measure contains a perfect
subset (and a set containing a perfect set cannot be in (s)0). Thus, X can be
extended to a Vitali set V ′ by adding elements of T . But then V ′ would be
Lebesgue measurable (a union of X and a Lebesgue null set), contradicting
that no Vitali set can be Lebesgue measurable.

Theorem 15. (U ,U0) satisfies the weak splitting property.

Proof. Let C1, C2 ⊆ U+
0 be as in the definition of weak splitting property,

and let M be a collection of perfect sets such that for every P ∈ M, either
P ⊆ C for some C ∈ C1 ∪ C2 or P ∩ C ∈ U0 for every C ∈ C1 ∪ C2. Since
U+

0 is dense in ((s)0)+, it is easy to check that M is a maximal antichain
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in ((s)0)+ = (s)\(s)0, and therefore by Lemma 4 there is a pairwise disjoint
maximal antichainM′ refiningM. If we let Di = {D ∈M′ : D ⊆ C for some
C ∈ Ci} (i = 1, 2), then it is easy to check that D1 and D2 are as desired.

Corollary 16. The weak splitting property does not imply a complete quotient
algebra. Under CH, the splitting property does not imply a complete quotient
algebra.

5 Summary and Questions

The main properties can be given in the following two diagrams.

(A, I) satisfies the Marczewski hull property.
⇓ (⇑?)
(A, I) is MB-representable by I+.
⇓ (6⇑)
(A, I) satisfies the density property.

A/I is a complete Boolean algebra.
⇓ (6⇑ if CH holds)
(A, I) satisfies the splitting property.
⇓ (⇑?)
(A, I) satisfies the weak splitting property.

In addition, combining the results, we know that if (A, I) satisfies the weak
splitting property, and (A, I) is MB-representable by I+, then all of the above
properties hold.

The following two questions suggested by the above figures, which were
listed as open problems in the original version of this paper, have recently been
solved in the affirmative by M. Balcerzak, A. Bartoszewicz, and K. Ciesielski.
These results will appear in [BBC2], which will also give a ZFC example of an
algebra with the splitting property but a non-complete quotient algebra.

Question 1. Does there exist a pair (A, I) such that (A, I) is MB-representable
by I+, but (A, I) does not satisfy the hull property.

Another interesting open question which is not evident in the above figures
is:

Question 2. Are there examples of pairs (A, I) which satisfy the weak
splitting property and the density property, but for which (A, I) is not MB-
representable by I+?
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