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DIFFERENCE FUNCTIONS OF PERIODIC
L, FUNCTIONS

Abstract

We examine for which sets H of the circle group R/Z can the differ-
ence functions f(x + h) — f(z) of a measurable or L, function f belong
to an L, class for every h € H without f itself being in L,. Tamés
Keleti conjectured in [2] that these sets are the N-sets; that is, the sets
of absolute convergence of Fourier-series. We prove this conjecture for
q < 2. For ¢ = 2, as a quantitative analogue of this statement, we prove
a minimax theorem.

1 Introduction

Let T = R/Z denote the circle group and let Ly be the class of measurable
complex valued functions on T. Let G C F C Ly be two classes of functions
on T. Following the notations in [2] we denote by $(F,G) those subsets H
of T for which there exists a function f € F \ G with difference functions
Apf(z) = f(x + h) — f(z) belonging to G for every h € H. That is,

H(F,G)={HCT:3f e F\G) (Vhe H) Apf €gG}.

For the general properties of H(F,G) see [1].

Let L, (0 < p < 00) denote the class of those measurable functions on T
1

for which || f||z, = (Jp |f|?)” < oo. It is clear that ¢ < p implies L, C L,. Let
Ly<= () Le
0<g<p

Then clearly L, C Ly<.
Tamés Keleti observed in [2] that for these function classes the classes
H(F,G) are related to some classes of thin sets in harmonic analysis. He proved
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that $(L,, L,) is a proper F, subgroup of T, that every pseudo-Dirichlet set
is contained in X'J(Lp,Lq) and he also realized the importance of the non-
ejectivity property of the sets in $(L,, L,). (For the precise definitions see [5]
and below.) Since the class of sets of absolute convergence of Fourier-series
is exactly the closure of the class of compact non-ejective sets under taking
generated subgroup, Tamés Keleti conjectured that $(L,, L,) is exactly the
class of N-sets; that is, the sets of absolute convergence of Fourier-series. We
prove this for ¢ < 2.

Tamds Keleti also observed ([1], Theorem 4.10) that if H C T is not an
N-set, f : T — C is a measurable function with Ay f € Lo, for every h € H,
then f € Lo<. We prove the analoguous statement for every L, class.

Now we collect here those classes which arise in our proofs and results. For
a detailed study on these classes of thin sets see [5].

Definition 1.1. A set H C T is an N-set if there exists a trigonometric
series on T which is absolutely convergent on H but not absolutely convergent
everywhere. The class of N-sets on T will be denoted by 1.

Definition 1.2. A Borel set H C T is a weak-Dirichlet set if for every
probability measure p supported on H, limsup |ji(n)] = 1, where [i(n) =

|n|]—o0
Jp et dp(t) denotes the Fourier-transform of yu. The class of weak-Dirichlet
sets on T will be denoted by 1w®, while crw® will stand for the class of compact
weak-Dirichlet sets.

Remark 1.3. An easy computation shows that we get an equivalent definition
of weak-Dirichlet sets by requiring inf,,o [ ’e_%i”t — 1‘2 du(t) = 0 for every
probability measure u supported by H.

With this notation our results can be summarized as follows.
Theorem 1.4. 1. For every 0 <p < q <2, H(Lp,L,) =N
2. For every 0 < p < ¢ < 00, H(Lp, Lg<) =N.
Corollary 1.5. Let 0 < p < oo and H C T be not an N-set. If f: T — C is
a measurable function with A f € L, for every h € H, then f € Ly<.
2 Preliminaries

For proving that the classes in question are contained in 91 we use Fourier
transforms. For 0 < p < oo let I, denote the Banach-space of the two-way
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o0
n—=——oo

infinite sequences ¢ = (¢,) of complex numbers for which

1
llclli, = (Z |cn\p)p < oo.

For an f : T — C integrable function let Ff(n) = [;. f(£)e*™™ dt denote the
Fourier transform of f. The Plancherel Theorem says that f € Lo if and
only if §f € la, moreover every sequence of [ can be obtained as the Fourier
transform of a function belonging to the Ly class. According to the Parseval
formula |2, = 13/

The following two theorems show the close relation of N-sets and weak-
Dirichlet sets. (See [5], page 190, Theorem 1.5. and Corollary 1.6. or [4], page
49.)

Theorem 2.1. Any increasing union of compact, weak-Dirichlet sets is an
N-set.

Theorem 2.2. Any N-set can be obtained as an increasing countable union
of compact weak-Dirichlet sets.

Finally we state a result, which will be crucial for proving that 91 is con-
tained in the classes we examine. For an h € T and A C T we introduce the
notation

ApA=((A+h)\A)U(A\ (A+h)).
The following notion was introduced by M. Laczkovich and I. Ruzsa in [3].

Definition 2.3. Let A denote the normalized Lebesgue measure on T. A
compact set H C T is non-ejective if for every 0 <z <1,

int;T sup A(ApA) = 0.

M. Laczkovich and I. Ruzsa stated the following result. (See [3], page 162.
Theorem 4.2 and Remark 4.3.)

Theorem 2.4. Let H C T be a compact set. Then H is weak-Dirichlet if and
only if H is non-ejective.

Unfortunately, the proof of this theorem has not been published yet. The-
orem 4.2 and Remark 4.3 in [3] prove only that non-ejectivity implies the
weak-Dirichlet property.

In the sequel we will use the implication weak-Dirichlet — non-ejective.
The (easy) direction non-ejective — weak-Dirichlet will follow from our re-
sults, too. We also present the idea of Imre Ruzsa for the proof of the other
implication.
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In the proofs N and Z will stand for the set of nonnegative integers and
integers respectively. Translation on T by h € T will be denoted by p,.
For a function f : T — C and a,b € RU {£oo} let

a<f<b={xeT:a< f(xr) <b}.

For a set K C T, Xg denotes the characteristic function of K.

3 f’:)(Ll,IQ) :‘ﬁ

Our main goal in this section is to show that $(L1, L2) = 9. The extension of
this result for other classes requires mainly computation and will be discussed
in the next section.

3.1 Upper Bound

The proof of the upper bound uses an idea of de Bruijn proving the weak
difference property for the Lo class (see [6]). The trick is to average the
Fourier coefficients of the functions Ay, f for different h’s.

Theorem 3.1. For every 1 <p <2, H(Lp, Ls) CN.

Proor. Let H C T not be an N-set and suppose that for a function f € L,
we have Apf € Lo for every h € H. We show that f € Ly. For 0 < M let

Ay = {h eT: HAthZLQ < M} . It is easy to see that A, is compact and for
M < N we have A); C Ay. Since according to our assumption the increasing

union H C U Ajps is not an N-set, we have from Theorem 2.1 that for an

MeN
M € N the set A is not weak-Dirichlet.

Let Ay ¢ w®. This means that there exists a probability measure p
supported on Ajs for which limsup |i(n)| < 1. Thus for an 1 > 0 sufficiently

|n|—o0

small and an ng we have
n <li(n) =1 (1)

for every |n| > no.
For every h € Ap; we have

N(h) = Anfll7, = IBARLIT, =D I3(fom)(n) = §£(n)[?

2

=> @0 (e —1)[".
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As a function of h, N(h) is measurable and bounded by M on the support of
1. So by the Holder inequality and the Fubini Theorem,

1GF) G- DIE =S 187 )i — 1P ()
=SSP )| [ (= 1) dutr)
SZ \§f|2 (n)/T ‘e—2ﬂinh B 1‘2 du(h)
_ n) (e—27inh _ 1) _ ;
- / SOUGH) () ( [ dyu() / N(h)du(h) < M

2

no M
From this and (1) we have ||8"f||122 < Z 3712 ) + — - Thus §f € lz, which
n

Jj=—no
implies f € Lo by the Plancherel Theorem. O
3.2 Lower Bounds
Definition 3.2. For a measurable function f: T — C,
L(f)=sup{0<p:feL,}
denotes the class of f.

The lower bounds are based on the non-ejectivity property of weak-Dirichlet
sets; namely we prove first that every non-ejective set is contained in our
classes.

Lemma 3.3. For every compact, non-ejective set H C T and 0 < p < oo
fized, there is a function f: T — R such that L(f) = p and L(Anf) = co with

|Anfllz, < M(q)

for every h € H and 1 < q, where M(q) is a constant depending only on q
(for fized p).

PRrROOF. By the non-ejectivity of H, for every fixed n € N and for every 0 < ¢
there exists a set K, (g) such that

A(Kn(e)) = o (2)

and A (ALK, () < e, Vh € H. Let f, = Q%XKH(%) and f = me as
2

n=1
a point-wise limit of measurable functions. We show that f < oo almost
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everywhere, L(f) = p and L(Anf) = oo with [|Apf||z, < M(q) for every
h € H with an appropriate constant M (q) for every 1 < ¢. By (2) we have

> 1 1
nzl)\ (Kn (2n>) = Z on < 00, so the first statement follows from the

= n=1
Borel-Cantelli Lemma. Since f, < f for every n € N and for every p < «, we

have 1
N, = =27 =2"G—3)
Lo 25

if n — oo, we can conclude L(f) < p.
If a ¢t € T satisfies t ¢ Km(221m ) for every m > n, then

i 27 —2% 0
fy<yai =20 2 o
= 2% —1
1
with a constant C, = —*— depending only on p. Since
27 -1
> 1 | 1
A( U Km(y)) S D T
m=n+1 m=n+1

we have A ([C’p2% < fD < 2% So if CPQ% <z< C'p2%1 for some n € N,

then A ([z < f]) < 5k which implies that A ([z < f]) < 20;. Thus for an a < p,

x

oo

115, = [ 55~ [ A=rnay<c,+ [ A= a

Cp

0
=C, +/ az® "\ ([x < f]) de < C, +/ chaxaflep da
Cp Cyp

=C, —|—/ 2CPaz® "' "P dr < o0

P

if @ < p. This proves p < L (f).

Now let 1 < ¢ be fixed. From f < oo almost everywhere we have that
o0

the series of the difference functions Z Ap fn converges almost everywhere to
n=1
Apf. For every N, M € N with N < M we have

M M 1 % M n
|3 an 3 (22q22n) T
n=N

n=N

M
< NAnfally, <
La n=N
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oo

as N — oo. Hence the series Z Ap fr, is Cauchy in Lg, so it is convergent
n=1
point-wise and in L, too, so the point-wise limit Ay, f belongs to L, with

o0 o0 on
CS Akl <2
a n=1 n=1

which completes the proof. O

ALflz, = H Z Apfn
n=1

Corollary 3.4. For every H € c¢tv® and 0 < p < oo fized, there is a function
[T — R such that L(f) = p and L(Anf) = oo with |Anfl|L, < M(q) for
every h € H and 1 < q with a constant M (q) depending only on q (for fized

p)

PrOOF. Since by Theorem 2.4 every compact weak-Dirichlet set is non-
ejective, the statement follows from the previous lemma. O

Now we consider general N-sets. On the account of Theorem 2.2, the
remaining task is to examine the behavior of (L1, Ls) for compact increasing
union.

Lemma 3.5. Let 1 < p < ¢ < r < oo and suppose we have an increasing
sequence of sets (H;) such that for every i € N there is a function f; € L,\ L,
[o ]

such that for every h € H; we have ||Apfi]

L. < Ki. Then for H = | J H;
i=1
there is a function f € Ly \ Ly such that |Apf||, < oo for every h € H.

Proor. By taking absolute value we can suppose that 0 < f; for every ¢ € N.
For every M € R and ¢ € N, with the notation f; A M = min(f;, M), we have
1AM, < U5l and [Aa(fi A ML, < [Anfill,, < K for any h € ..
On the other hand, ||f; A M|, — oo for M — oo, so we can find an M; € R
such that 2! max(K;, I fillr,) < I1fs A M|, - Let

— fi N M;
I~ 2 Sl Ko 1T, )

as a point-wise limit of measurable functions.
It is obvious that f € L, \ Ly, in particular f < co almost everywhere.
Thus the series (3) is absolutely convergent almost everywhere, so for every h €

el SN M,
H the series) .~ Ap—
L= o maX(KmeiHL,,)

converges point-wise to Ay f almost
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everywhere. If h € H; for a j € N, then for every N,M € Nwith j <N <M
we have

M . .
H ;Ah(?_ ma;f(l/gﬂﬁfh))‘

]

o

L~ &= 2t max (K, || fillz,)/ L,
M
-y [An(fi AM;)| L,
2 2 max (K, il )
M
1 1
S Z ? S 2N—17
i=N
- JiNM,; : .
so the series Ap— is Cauchy and hence convergent in L,..
2 A S (K i)
So we have that Ay, f itself is in L, for every h € H. O

Theorem 3.6. For every 1 < p < q < o0,
1. N CH(Ly, Ly<).
2. M C H(Ly, Ly).

PrROOF. We prove the two statements simultaneously. Let H € 9. By
Theorem 2.2 there is an increasing sequence of sets (H;) C cw® with H =

U H;. Let 1 < p < g < oo be fixed. By Corollary 3.4, for any i = 1,2,... we
i=1
have a function f; fulfilling £(f;) = % and L(Ap f;) = oo with [|Apfillz, <

M (q) for some M(q) € R fixed, for every h € H;. Thus by Lemma 3.5 there is
a function f € Ly \ Lpysq< C Ly \ Lg< for which Ay, f € L, for every h € H.
4

This shows H € $(L,, Ly<) N $H(Ly, Ly) so the proof is complete. O
Theorem 3.1 and Theorem 3.6 together prove $(Ly, Ly) =M.

4 Inclusions of Classes

The arguments in the previous section used the Banach-space structure of L,
for 1 < p. Hence for p < 1 the proofs don’t work.

In this section we prove the following two inclusion theorems between the
classes 9(Ly, Ly) and $H(L,, Ls<).

Theorem 4.1. For every 0 < p < g < 00, 0 < r < s < o0 with q < s,
9(Lyp, Lq) C H(Ly, Ls).
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Theorem 4.2. For every 0 < p < q < oo the classes $(Ly, Lq4<) coincide.

We also finish the proof of our main theorem. The proofs of these theorems
use some properties of powers of functions. These properties are described in
Lemma 4.3, Lemma 4.5 and Lemma 4.7.

4.1 Powers Less Than 1

The following lemma describes the effect of taking the power f¢ for o < 1.

Lemma 4.3. Let 0 < p < r <occand h € T. If f € L,, 0 < f and
Apf € L, then for every 0 < a < 1 we have f* € Ly and Apf* € Lz with

AN, < ARSI, - We also have L(f) = £L.
PRrOOF. The first and third statement being obvious we prove only the second
one. It is easy to see that for 0 < o <1 and a,b € C, ||a|” — |b|"| < |a —b|*.
From this with a = f(z + h), b = f(z) we have

@t h) = f @ <\ f @+ h) = @) =@+ h) = f@)],
so Ay f* € Ly and A f*|r, < Anfl3,. 0

4.2 Powers Greater Than 1

Now we examine f® for 1 < a. As we shall see, this power does not behave as
well as it did for a < 1, there are more technical difficulties for a lesser result.

Lemma 4.4. Let 0 < 6 < 1, 1 < b < b+ b < a be reals. Then for every
(1-8)(v=1)

1<~ we have (a¥ —b) <27 (a—b)"" & .

PrROOF. We show that the value of the fraction % is maximal when

!
a = b+ b®. This is true since (%) = (x—b)"1 (b'*_1 - x'y_l) <0

for b < z and 1 < v, so the fraction (””;_;bg: is a decreasing function of x for

b<uz. Forevery 1 <~ and 0<t<1 we have

(1+t) <1427, (4)

since the left-hand side of the expression is convex while the right-hand side

is linear in ¢, and the inequality holds for ¢ = 0 and ¢t = 1. Applying (4) with
t= % we have (1 +y)” —y7 <27y !, and with y = b'~% we get

@ = _(b+b) b

(@a=8) = b+t —b)

ngb(lfts)(v*l) < 27(a—b)

(14 510)T

(A=9)(v=1)
&
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as stated. O

Lemma 4.5. Let 0 < g<r<oo, HCT and f : T — C such that L(f) =¢
and Apf € L, for every h € H. Then there is a continuous function p :
(0,9) — R such that p < p(p) and for every 0 < p < q there exists a function
fp such that L(fp) = p and p(p) < L(Awfp) for every h € H.

PrOOF. Let f, = |f|% Again, it is obvious that £(f,) = p. Fix an h € H
and let 0 < § < 1, p < s be arbitrary. The value of § will be chosen later. Let

a(x) = max(|f(z + h)|,[f(2)]),
b(z) = min(|f(z + h)|, | f(2))),

A:{xGT:b(I)er‘S(x)Sa(x)}, A={xeT:1<bx)}.

Then

S

180t = [ [irte+ml = 1@ o

+ /(T\AM (a? (@) b (@) e+ /T " (@) -} (@) s

We estimate the integrals separately.
For the first term, by applying Lemma 4.4 with v = %, we get

a g s 4 g, -9 -D
/ (0% (@) b3 (@) dw <23 / (a(x) = b)) ? 7 dr.  (5)
A T
Since Ay f € L, means
[t = f@F do = [ (a(e) - b)) do < o,
T T
(5) is finite if sT + s% < r; that is, if
s<— P (6)

- (1-%)(g—p)
q+ (a—p
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For the second term, again from Lemma 4.4 with v = %7 we get

/(T\A)M/ (# (2) - b%(x)>s dx < /T ((b+b5)% - b%)s dx
< 9% / 655<%+%> da
T

< 23%/69(6—0—%—1) dx
T

<2 / A0
T
which is finite if s (5 +2- 1) < g; that is, if

p
$<71—(1—6)§' (7)

To estimate the third term we use that if 0 < b <1, b < a, then
a® < 2%(a—b)* +2%,

for 0 < a < 2 by the second term, for 2 < a by the first term. Applying this
with a = s%, for the third term we have

/T\A/ (a%(:c) - b%(x))s dr < /T\A, a®v da < /T\A/ 2°% ((a — )% + 1) dz,

which is finite whenever s% < r; that is, if

s < %. 8)

With the unique 0 < ¢ < 1 fulfilling %(q —p) = 52, the right-hand side of
(6) and (7) is bigger than p. Fixing this ¢ let

p = min P P br .
g+ U=l 1 = (1-6)L" q

Then p < p, and (6), (7) and (8) are satisfied for s < p. This proves the
statement. O
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4.3 A Small Power

To put a function f with £(f) = 0in a L, class for 0 < p it must be composed
by a function which increases more slowly than z® for any 0 < «. This is done
in the following lemmas. They will help to deal with the p = 0 case.

Lemma 4.6. If ® : [0,00) — [0,00) is a concave function with ®(1) < 1,
f: T — R is a function and Apf € Ly for some 0 < p < oo and h € T, then
AR®(|f|) € Ly with ||Ax®(|f])||z, bounded by a function of ||Anf]|L,-

PrROOF. Since 0 < ®, the concavity of ® and (1) < 1 imply ®(z) < z + 1.
Using the concavity and ®(z) < z + 1 we get

[©(1f (= + h)]) = 2(f (2)D] < S(|f(z + h)| = [f(@)]]) — (0)
< | f@@+n)]=f(2)] +1
<|fe+h) = o) +1,

from wihch the statement follows. O

Lemma 4.7. Let (\;)$2, be a given sequence of nonnegative reals with

i No=1, )
=0

i=1
Then there is a ® : [0,00) — [0,00) concave function with ®(1) <1 such that

ifb(i)/\i < 0, (11)
=0

Z(I)i)’(i))\i = 0. (12)

PROOF. From (9) we have an increasing sequence (ix)52,, of integers with
1
doa< 7 (13)
in<i
We define recursively a strictly increasing sequence (ay )72, of integers fulfilling

max{k, it} < ag, (14)
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ap — ap—1 < apy1 — ag (15)
and ) )
1 — ag
— < E4+——— N\ 16
k2 — Z ( +ak_ak1> (16)
ap<i<ap41
forevery k =1,2,... . Let ag =0, a3 = 41. If ai is already defined, we define

ar+1 simply by taking its value large enough. Conditions (14) and (15) can
easily be satisfied, while (10) shows that (16) also holds for a large ay41, since
the coefficients in (16) grow linearly in 4.

If there is a given strictly increasing sequence (ax)72,, of integers with
ap = 0 and a sequence (bg)3Z, of reals, we denote by ®(4,),s,) the function
for which ®(ax) = by, and linear on the intervals [ay, ax+1]. With this notation
let @ = ®(,, ) (x), & concave function by (15) and ®(1) < 1 by (14).

Since
DeDN=Y Y @<=y D (kDAY Y (k+1N
=0 k=0ar<i<apy1 k=0ar<i<apii k=0 a,<i
DB CESPIEDY (k;l) < o0,
k=01ir<i k=0

we have property (11). If we knew

% <D B(i)A (17)

akfi

for infinitely many k’s, then since k < ®(i) for ax < i, we would have 1 <
Z ®3(i)\; for infinitely many k’s, which would show that the series of (12)
ar <t
cannot converge. So if (17) holds only for a finite set of k’s, then we modify
® to have it for infinitely many k’s.

If Y, < ®(i)Ai < 7z, then there is a 0 < d such that with the sequence
by=1,ifl<kand b =1+d, if k <, we have

, 1
> B a, o) ()N = = (18)

ar <t
and the function ®(,,) (s, is still concave. This follows from (16), which says
that if ® would increase on [k, ar41] as is does on [ag_1,ax], then 5 <
Z ®(i)\;. Moreover, if this modification is done for a k bigger than 2,

ap<t<ap41
then also ®(1) < 1 remains true.
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We repeat this modification step finitely or infinitely many times to get, as
a monotone increasing point-wise limit of concave functions, a concave function
® for which (17) holds for infinitely many k’s, so we certainly have property
(12). We show that we did not loose property (11). Either there were finitely
or infinitely many modification steps, in the jth step, say at ay,, the value of

oo
the sum Z ®(i)\; could increase by at most 1712 Since
J
i=1

must converge; so the proof is complete. O

As an application, we can prove the last lemma of this section.

Lemma 4.8. Let 0 < s < oo, HC T and f: T — R be such that L(f) =0
and Apf € Ls for every h € H. Then there is a function 0 < f, such that
fx € L1\ L3 and Ay, f« € Ly for every h € H with |Ap fil|lL, bounded by some
function of || Anf]|L.-

PROOF. If s < 4, then let f = [mz} , otherwise we set f = [|f|], where []
denotes the integer part. In the first case, by Lemma 4.3, we have Ahf € Ly
with 5

[ARfllz, < [|ARS]

for every h € H. In the second case (19) holds obviously for every h € H.

Since L(f) = 0, we have L(f) = 0 in both cases. By applying Lemma 4.7
with A; = A ([f = ZD , we get the concave function ® for which f, = ® o f €

Ly \ L. According to Lemma 4.6 , Apf, € Ly with ||Ap fil|lz, bounded by
some function of ||Ap f| . for every h € H. O

L, +2 (19)

Corollary 4.9. Let0<s<oo, HCT and f: T — R be such that L(f) =0
and Apf € Ly for every h € H. Then H € $(Ly, Ly) N H(Ly,, Ly<) for every
0<u<v<o.

PROOF. Let f, be as in the previous Lemma. If £(f,) < “f* or 4 < v,
we apply Lemma 4.3 for f = f, with r = 4 and @ = min {4 QE(f*)} . From

v utv
a < % we get that the function f2* satisfies u < L(f%) < v, while from
o < 2 we have Ay f& € L, for every h € H. If “I* < £(f,) and v < 4, we

2
can apply Lemma 4.5 for f = f, with ¢ = L(f,), r = 4. Since the function p
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is continuous and p < p(p) for every p € (0,q), there is a p with u < p < v
for which v < p(p). For this p from L(f,) = p, v < p(p) < L(Anf,) we have
u < L(fp) <vand Ayf, € L, for every h € H. O

4.4 The Inclusion Theorems
Now we can prove the two inclusion theorems and Theorem 1.4.

PrROOF OF THEOREM 4.1.  Suppose that for a set H C T we have H €
$(Ly, Ly); that is, there is a function f € L, \ L, with Ahf € L, for every
h € H. Then by Lemma 4.3 with a = 1 we have f = Gqu \ Ls and
Apf € L, for every h € H. So H € H(L,, Ly) if r < L(f).

Suppose now that £(f) < r < s. If 0 < L(f), then by applying Lemma

43W1tha—L(f)wehaveafunctlonfeL \ Ls w1thAhf€L r+s C Ly

s 22()
for every h € H. Thus H € $(L., Ls).
If £L(f) =0, then the statement follows from Corollary 4.9. O

PROOF OF THEOREM 4.2. It is enough to prove that (L, Ly<) C H(Ly, Ls<)
forevery 0 <p < g <o00,0<r<s<oo. Let H € $H(Ly, Ly<). We distinguish
two cases.

Case 1. (¢ < s) We proceed as in the proof of Theorem 4.1. By Lemma
4.3 with a = 4 we have f = |f|* € Lps \ Ls< and Anf € Ly< for every h € H,

and we are done if < L(f). i
Now if 0 < [,(f) < r < s, then again by Lemma 4.3 with o = 27?_&:) we
have a function f € L, \ Ls< with A, f € L(S

)< C Lg for every h € H

which shows H € (L., Ls<).

If £( f ) = 0, then the statement follows from Corollary 4.9.

Case 2. (s < q) Let us consider first 0 < L(f). By Lemma 4.5 we have
a pair u,v satisfying 0 < u < v < s and a function f with £(f) = u and
Anf € Ly< for every h € H. This f shows that H € $(Ly, Ly<). Now we are
in the situation of Case 1., so we have H € $(L,, Ly<).

Now if L(f) = 0, then again the statement follows from Corollary 4.9. O

rts
2L(f)

PRrROOF OF THEOREM 1.4. Let 0 < p < g < oo. From Theorem 3.6, Theorem
4.1 and Theorem 3.1 we have

NCH(L1, La<) C |J H(L1, Lr) € H(L1, Ly) CN,
1<r<?2

so from Theorem 4.2, 9(L,, Ly<) = H(L1, Lo<) = M. This proves H(L,, Ly<) =
n.
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If ¢ < 2, then from the preceding and from Theorem 4.1 and Theorem 3.1
we have

N C H(Ly, Le<) C | 9Ly, Ly) CH(Ly, Ly) C H(La, Lz) CN. O

p<r<q

5 Ejectivity

As a corollary of Lemma 3.3 and Theorem 3.1 we get that every non-ejective
set is an N-set, in particular every compact, non-ejective set is a compact
N-set, hence a compact weak-Dirichlet set. (For the last implication see [5].)
This proves Theorem 2.4 in one direction. However, as Imre Ruzsa showed,
the averaging technique of Theorem 3.1 can be applied directly to ejective
sets, which gives a direct proof (see [7]). In this section we prove a minimax
theorem and we discuss how it can be applied for proving Theorem 2.4.

5.1 A Minimax Theorem

In Corollary 3.4 we have proved in particular that for a compact, weak-
Dirichlet set H there is a function f € Lo \ L3 such that every h € H the
difference functions Ay, f are so small that they may belong to any fixed higher
class. The following theorem shows a quantitative analogue of this result in
the class Ls.

For a set H C T, M(H) denotes the set of probability measures supported
by H. For local use let

f:{f:THCZf€L2a||f”L2:1’/Ef:()}7

while rl,, C I, stands for the real Banach-space of two-way infinite p-summable
sequences.

Theorem 5.1. Let H C T be a compact set. Then

inf sup [|[Anf||2. = sup inf/ e~ 2mmh _ 112 du(h).
L sup s, = s it | ® du(h)

PROOF. If for an f € F we have sup,c [|Anf||7, < €2, then by the Parseval
formula Z IS f(n)> =|f|I7, =1 and

SIS ezt 1 = FARE = | Anfllz, < €.
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Thus for every p € M(H) we have by the Fubini Theorem

2 —2minh __ 2
> B () /T|e 1|” du(h)
= [ SR e - dut) < 2

Since Ff(0) = 0 for our f € F, we get inf,»o [r|e72™™" — 1|2 du(h) < €2,
which proves

sup inf/ e~ 2minh _ 112 du(h) < inf sup |Anf|%..
s it [ | 2 du(h) < nf sup A3,

For the other direction let €2 = infsex sup,ep [[Anfl|Z,. We denote by
(co, ||-|loo) the real Banach space of two-way infinite null-convergent sequences;
that is, (¢, ), € co if and only if lim,, o |¢,|+|c—,| = 0. For every positive
n € N let

en=(..,0,1,...,1,1,0,1,1,...,1,0,...) € loo;
—_— Y

n n

that is, for a j € Z, the j** coordinate of e, is 1 if 1 < |j| < n, otherwise it
is 0. For an h € T, let a(h) = (an(h))pe . = (e72™"h — 1);:0:700, and for
every (@ € N let

Wo = {Pu ((an®))) Im € N,Q <m,h e H},
where P, : o, — ¢q, defined by

P, ((cn)zo:_oo) = (oo, 0,C my Comits €Oy Cne1s Cmy 0yt ),

is projection on the central 2m + 1 coordinates. Let K¢g denote the closure of
the convex hull of W in the | - |[oc norm. We show that for every 0 < § < &2
and n,Q € N, (2 — d)e,, € Kg.

Suppose that this is not true for a @@ and n and consider the Minkowski
sum K of K¢ and the segment [0, $]e,. Let v =sup{0 < 7 < 1: e, € K}.
We have g <y <e?— g. Since K is a convex subset of the locally convex
Banach space ¢y and e, is one point on its boundary, by the Hahn Banach

Theorem there is a functional ¢ € ¢j with norm 1 such that

d(c) <75, Vee K (20)
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and ¢(e,) = 1. Since ¢§ = glj, the functional ¢ can be represented as a
(zn)re o € rl1 sequence, for which we have
o0 n
Yo Lzl =)l =1=dlen) = D 2
j=—o00 j=—-n
J#0

o0
n=—oo

that is, 0 < z; and z,, = 0 for n < |m| and for m = 0. Let (d,)
be the sequence for which 0 < d,, = \/z,. Then, from (20),

I (an(R)dn) |12, = ¢ (Pa ((lan(h)*))) <~

€ gl

for every h € H.
Consider now f = § ((dn)f;ioo). By the Parseval formula and do = /zo =

0 we have that ||f||7, = 1 and [, f =0, so f € F. On the other hand, for
every h € H,

180713 = 15 (Anf) 7, = | (@n(h)da) [, <7 <22 — 2,
which is a contradiction.

So we have that for every 0 < § < &2 the point (¢2—4§)e, is in Kp; that is, it
can be obtained as the limit of a sequence of convex combinations of elements
of Wqg. This means that for every 0 < § < €2 and Q € N there is a convex
combination (w%) " of certain elements of Wg such that (2 — §) < wJQ
for every 0 # |j| < Q. By reformulation, for every @) € N there is a convex
combination pg of Dirac measures on T such that for every |j] < @, j # 0,

P ( / PQ<|a<h>2>duQ<h>) () = Po ( / |a<h>|2duQ<h>) )

that is,

=02 [ layP duo(h) = [ e <1 dug(h)
T T

for every |j| < @, j # 0. Moreover, g is a probability measure. The Banach
space of measures on T being the dual space of the continuous functions on T,
we can take a subsequence pq,; weakly converging to a p probability measure,
and since supp g C H for every () € Nand H is compact, we have supp un C H
also. By the definition of weak limit we get

J—00

g2 — 6§ < lim / |6727”'”h - 1|2 dpg,; (h) = / |6727”'"t — 1|2 du(h)
T T
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for every n # 0. Taking § — 0 we obtain

inf sup [|[Anf||2. < sup inf/ e~ inh _ 112 du(h),
fefheH” 1z, o T| " dp(h)

so the proof is complete. O

The argument of Imre Ruzsa for proving that every compact weak-Dirichlet
set is non-ejective goes as follows. If the set H C T is a compact weak-Dirichlet
set, then by Remark 1.3,

sup inf / le=2™mh _ 12 du(h) = 0.
pemMn#0 Jr

So by Theorem 5.1, for every 0 < & there is a function f) € L, with
[f©)z, =1 and [ f©) = 0 such that [|Ayf©)| L, < e for every h € H.
(Imre Ruzsa proved this corollary of Theorem 5.1 in a different way, indepen-
dently of our work.)

For a sequence (g,,) € {—1,+1}% let fey = 5 H(en(Sf)(n))); that is,
the function obtained from f¢ by signing its Fourier coefficients with (e,,).
By averaging on signs, Imre Ruzsa showed that there is a sequence (g,) €
{—1,+1}% and a u € R such that for the sub-level set A = [f((i) < u] we get
sup,cp A(ArA) < eA(A), from which the non-ejectivity of H follows easily.

There is no reason to think that the conjecture of Taméas Keleti fails for
the class H(L,, Lq) if 2 < g. Our proof brakes down for 2 < ¢ only because
the Fourier transform happens to be an isometric isomorphism only on the Lo
class. We leave as a problem to prove the upper bound for 2 < q.

For 2 < ¢ we have no Theorem 5.1 like the statement for the L, class. But
from a function f ¢ L, with A € L, for every h € H one could construct a
function for which a sub-level set works in the same way. A difficulty can be
that not every function has appropriate sub-level sets even in the Ly case, and
for 2 < g we cannot average on the Fourier coefficients.
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