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Péter sétány 1/C, 1117 Budapest, Hungary. e-mail: tmatrai@cs.elte.hu

DIFFERENCE FUNCTIONS OF PERIODIC
Lp FUNCTIONS

Abstract

We examine for which sets H of the circle group R/Z can the differ-
ence functions f(x + h)− f(x) of a measurable or Lp function f belong
to an Lq class for every h ∈ H without f itself being in Lq. Tamás
Keleti conjectured in [2] that these sets are the N -sets; that is, the sets
of absolute convergence of Fourier-series. We prove this conjecture for
q ≤ 2. For q = 2, as a quantitative analogue of this statement, we prove
a minimax theorem.

1 Introduction

Let T = R/Z denote the circle group and let L0 be the class of measurable
complex valued functions on T. Let G ⊂ F ⊂ L0 be two classes of functions
on T. Following the notations in [2] we denote by H(F ,G) those subsets H
of T for which there exists a function f ∈ F \ G with difference functions
∆hf(x) = f(x+ h)− f(x) belonging to G for every h ∈ H. That is,

H(F ,G) = {H ⊂ T : (∃f ∈ F \ G) (∀h ∈ H) ∆hf ∈ G} .

For the general properties of H(F ,G) see [1].
Let Lp (0 < p <∞) denote the class of those measurable functions on T

for which ‖f‖Lp =
(∫

T |f |
p
) 1
p <∞. It is clear that q ≤ p implies Lp ⊂ Lq. Let

Lp< =
⋂

0<q<p

Lq.

Then clearly Lp ⊂ Lp< .
Tamás Keleti observed in [2] that for these function classes the classes

H(F ,G) are related to some classes of thin sets in harmonic analysis. He proved
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that H(Lp, Lq) is a proper Fσ subgroup of T, that every pseudo-Dirichlet set
is contained in H(Lp, Lq) and he also realized the importance of the non-
ejectivity property of the sets in H(Lp, Lq). (For the precise definitions see [5]
and below.) Since the class of sets of absolute convergence of Fourier-series
is exactly the closure of the class of compact non-ejective sets under taking
generated subgroup, Tamás Keleti conjectured that H(Lp, Lq) is exactly the
class of N -sets; that is, the sets of absolute convergence of Fourier-series. We
prove this for q ≤ 2.

Tamás Keleti also observed ([1], Theorem 4.10) that if H ⊂ T is not an
N-set, f : T → C is a measurable function with ∆hf ∈ L∞ for every h ∈ H,
then f ∈ L∞< . We prove the analoguous statement for every Lp class.

Now we collect here those classes which arise in our proofs and results. For
a detailed study on these classes of thin sets see [5].

Definition 1.1. A set H ⊂ T is an N-set if there exists a trigonometric
series on T which is absolutely convergent on H but not absolutely convergent
everywhere. The class of N -sets on T will be denoted by N.

Definition 1.2. A Borel set H ⊂ T is a weak-Dirichlet set if for every
probability measure µ supported on H, lim sup

|n|→∞
|µ̂(n)| = 1, where µ̂(n) =∫

T e
−2πint dµ(t) denotes the Fourier-transform of µ. The class of weak-Dirichlet

sets on T will be denoted by wD, while cwD will stand for the class of compact
weak-Dirichlet sets.

Remark 1.3. An easy computation shows that we get an equivalent definition
of weak-Dirichlet sets by requiring infn 6=0

∫
T
∣∣e−2πint − 1

∣∣2 dµ(t) = 0 for every
probability measure µ supported by H.

With this notation our results can be summarized as follows.

Theorem 1.4. 1. For every 0 ≤ p < q ≤ 2, H(Lp, Lq) = N.

2. For every 0 ≤ p < q <∞, H(Lp, Lq<) = N.

Corollary 1.5. Let 0 ≤ p < ∞ and H ⊂ T be not an N-set. If f : T → C is
a measurable function with ∆hf ∈ Lp for every h ∈ H, then f ∈ Lp< .

2 Preliminaries

For proving that the classes in question are contained in N we use Fourier
transforms. For 0 < p < ∞ let lp denote the Banach-space of the two-way
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infinite sequences c = (cn)∞n=−∞ of complex numbers for which

‖c‖lp =
(∑

|cn|p
) 1
p

<∞.

For an f : T → C integrable function let Ff(n) =
∫

T f(t)e2πint dt denote the
Fourier transform of f . The Plancherel Theorem says that f ∈ L2 if and
only if Ff ∈ l2, moreover every sequence of l2 can be obtained as the Fourier
transform of a function belonging to the L2 class. According to the Parseval
formula ‖f‖L2 = ‖Ff‖l2 .

The following two theorems show the close relation of N -sets and weak-
Dirichlet sets. (See [5], page 190, Theorem 1.5. and Corollary 1.6. or [4], page
49.)

Theorem 2.1. Any increasing union of compact, weak-Dirichlet sets is an
N -set.

Theorem 2.2. Any N -set can be obtained as an increasing countable union
of compact weak-Dirichlet sets.

Finally we state a result, which will be crucial for proving that N is con-
tained in the classes we examine. For an h ∈ T and A ⊂ T we introduce the
notation

∆hA = ((A+ h) \A) ∪ (A \ (A+ h)) .

The following notion was introduced by M. Laczkovich and I. Ruzsa in [3].

Definition 2.3. Let λ denote the normalized Lebesgue measure on T. A
compact set H ⊂ T is non-ejective if for every 0 ≤ x ≤ 1,

inf
A⊂T

λ(A)=x

sup
h∈H

λ(∆hA) = 0.

M. Laczkovich and I. Ruzsa stated the following result. (See [3], page 162.
Theorem 4.2 and Remark 4.3.)

Theorem 2.4. Let H ⊂ T be a compact set. Then H is weak-Dirichlet if and
only if H is non-ejective.

Unfortunately, the proof of this theorem has not been published yet. The-
orem 4.2 and Remark 4.3 in [3] prove only that non-ejectivity implies the
weak-Dirichlet property.

In the sequel we will use the implication weak-Dirichlet → non-ejective.
The (easy) direction non-ejective → weak-Dirichlet will follow from our re-
sults, too. We also present the idea of Imre Ruzsa for the proof of the other
implication.
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In the proofs N and Z will stand for the set of nonnegative integers and
integers respectively. Translation on T by h ∈ T will be denoted by γh.

For a function f : T→ C and a, b ∈ R ∪ {±∞} let

[a ≤ f < b] = {x ∈ T : a ≤ f(x) < b}.

For a set K ⊂ T, χK denotes the characteristic function of K.

3 H(L1, L2) = N

Our main goal in this section is to show that H(L1, L2) = N. The extension of
this result for other classes requires mainly computation and will be discussed
in the next section.

3.1 Upper Bound

The proof of the upper bound uses an idea of de Bruijn proving the weak
difference property for the L2 class (see [6]). The trick is to average the
Fourier coefficients of the functions ∆hf for different h’s.

Theorem 3.1. For every 1 ≤ p < 2, H(Lp, L2) ⊂ N.

Proof. Let H ⊂ T not be an N -set and suppose that for a function f ∈ Lp
we have ∆hf ∈ L2 for every h ∈ H. We show that f ∈ L2. For 0 < M let
AM =

{
h ∈ T : ‖∆hf‖2L2

≤M
}
. It is easy to see that AM is compact and for

M < N we have AM ⊂ AN . Since according to our assumption the increasing
union H ⊂

⋃
M∈N

AM is not an N -set, we have from Theorem 2.1 that for an

M ∈ N the set AM is not weak-Dirichlet.
Let AM /∈ wD. This means that there exists a probability measure µ

supported on AM for which lim sup
|n|→∞

|µ̂(n)| < 1. Thus for an η > 0 sufficiently

small and an n0 we have
η < |µ̂(n)− 1| (1)

for every |n| > n0.
For every h ∈ AM we have

N(h) = ‖∆hf‖2L2
= ‖F∆hf‖2l2 =

∑
|F(f ◦ γh)(n)− Ff(n)|2

=
∑∣∣(Ff)(n)

(
e−2πinh − 1

)∣∣2 .
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As a function of h, N(h) is measurable and bounded by M on the support of
µ. So by the Hölder inequality and the Fubini Theorem,

‖(Ff) (µ̂− 1)‖2l2 =
∑
|Ff |2 (n) |µ̂− 1|2 (n)

=
∑
|Ff |2 (n)

∣∣∣∣∫
T

(
e−2πinh − 1

)
dµ(h)

∣∣∣∣2
≤
∑
|Ff |2 (n)

∫
T

∣∣e−2πinh − 1
∣∣2 dµ(h)

=
∫

T

∑∣∣(Ff) (n)
(
e−2πinh − 1

)∣∣2 dµ(h) =
∫

T
N(h) dµ(h) ≤M.

From this and (1) we have ‖Ff‖2l2 ≤
n0∑

j=−n0

|Ff |2 (j)+
M

η2
. Thus Ff ∈ l2, which

implies f ∈ L2 by the Plancherel Theorem.

3.2 Lower Bounds

Definition 3.2. For a measurable function f : T→ C,

L(f) = sup {0 ≤ p : f ∈ Lp}

denotes the class of f .

The lower bounds are based on the non-ejectivity property of weak-Dirichlet
sets; namely we prove first that every non-ejective set is contained in our
classes.

Lemma 3.3. For every compact, non-ejective set H ⊂ T and 0 ≤ p < ∞
fixed, there is a function f : T→ R such that L(f) = p and L(∆hf) =∞ with

‖∆hf‖Lq ≤M(q)

for every h ∈ H and 1 ≤ q, where M(q) is a constant depending only on q
(for fixed p).

Proof. By the non-ejectivity of H, for every fixed n ∈ N and for every 0 < ε
there exists a set Kn(ε) such that

λ (Kn(ε)) =
1
2n

(2)

and λ (∆hKn(ε)) ≤ ε, ∀h ∈ H. Let fn = 2
n
p χ

Kn( 1
22n

) and f =
∞∑
n=1

fn, as

a point-wise limit of measurable functions. We show that f < ∞ almost
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everywhere, L(f) = p and L(∆hf) = ∞ with ‖∆hf‖Lq ≤ M(q) for every
h ∈ H with an appropriate constant M(q) for every 1 ≤ q. By (2) we have
∞∑
n=1

λ

(
Kn

(
1

22n

))
=
∞∑
n=1

1
2n

< ∞, so the first statement follows from the

Borel-Cantelli Lemma. Since fn ≤ f for every n ∈ N and for every p < α, we
have

‖fn‖Lα =
1

2
n
α

2
n
p = 2n( 1

p−
1
α ) →∞

if n→∞, we can conclude L(f) ≤ p.
If a t ∈ T satisfies t /∈ Km( 1

22m ) for every m > n, then

f(t) ≤
n∑
j=1

2
j
p =

2
n+1
p − 2

1
p

2
1
p − 1

≤ Cp2
n
p

with a constant Cp = 2
1
p

2
1
p−1

depending only on p. Since

λ

( ∞⋃
m=n+1

Km

(
1

22m

))
≤

∞∑
m=n+1

1
2m

=
1
2n
,

we have λ
([
Cp2

n
p ≤ f

])
≤ 1

2n . So if Cp2
n
p ≤ x < Cp2

n+1
p for some n ∈ N,

then λ ([x ≤ f ]) ≤ 1
2n which implies that λ ([x ≤ f ]) < 2Cpp

xp . Thus for an α ≤ p,

‖f‖αLα =
∫

T
fα =

∫ ∞
0

λ ([y ≤ fα]) dy ≤ Cp +
∫ ∞
Cp

λ ([y ≤ fα]) dy

=Cp +
∫ ∞
Cp

αxα−1λ ([x ≤ f ]) dx ≤ Cp +
∫ ∞
Cp

2Cppαx
α−1x−p dx

=Cp +
∫ ∞
Cp

2Cppαx
α−1−p dx <∞

if α < p. This proves p ≤ L (f).
Now let 1 ≤ q be fixed. From f < ∞ almost everywhere we have that

the series of the difference functions
∞∑
n=1

∆hfn converges almost everywhere to

∆hf . For every N,M ∈ N with N < M we have

∥∥∥ M∑
n=N

∆hfn

∥∥∥
Lq
≤

M∑
n=N

‖∆hfn‖Lq ≤
M∑
n=N

(
2
n
p q

1
22n

) 1
q

=
M∑
n=N

2
n
p−

2n
q → 0
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as N → ∞. Hence the series
∞∑
n=1

∆hfn is Cauchy in Lq, so it is convergent

point-wise and in Lq too, so the point-wise limit ∆hf belongs to Lq with

‖∆hf‖Lq =
∥∥∥ ∞∑
n=1

∆hfn

∥∥∥
Lq
≤
∞∑
n=1

‖∆hfn‖Lq ≤
∞∑
n=1

2
n
p−

2n
q ,

which completes the proof.

Corollary 3.4. For every H ∈ cwD and 0 ≤ p <∞ fixed, there is a function
f : T → R such that L (f) = p and L (∆hf) = ∞ with ‖∆hf‖Lq ≤ M(q) for
every h ∈ H and 1 ≤ q with a constant M(q) depending only on q (for fixed
p).

Proof. Since by Theorem 2.4 every compact weak-Dirichlet set is non-
ejective, the statement follows from the previous lemma.

Now we consider general N -sets. On the account of Theorem 2.2, the
remaining task is to examine the behavior of H(L1, L2) for compact increasing
union.

Lemma 3.5. Let 1 ≤ p < q ≤ r < ∞ and suppose we have an increasing
sequence of sets (Hi) such that for every i ∈ N there is a function fi ∈ Lp \Lq

such that for every h ∈ Hi we have ‖∆hfi‖Lr ≤ Ki. Then for H =
∞⋃
i=1

Hi

there is a function f ∈ Lp \ Lq such that ‖∆hf‖Lr <∞ for every h ∈ H.

Proof. By taking absolute value we can suppose that 0 ≤ fi for every i ∈ N.
For every M ∈ R and i ∈ N, with the notation fi ∧M = min(fi,M), we have
‖fi ∧M‖Lp ≤ ‖fi‖Lp and ‖∆h(fi ∧M)‖Lr ≤ ‖∆hfi‖Lr ≤ Ki for any h ∈ Hi.
On the other hand, ‖fi ∧M‖Lq →∞ for M →∞, so we can find an Mi ∈ R
such that 2i max(Ki, ‖fi‖Lp) ≤ ‖fi ∧Mi‖Lq . Let

f =
∞∑
i=1

fi ∧Mi

2i max(Ki, ‖fi‖Lp)
, (3)

as a point-wise limit of measurable functions.
It is obvious that f ∈ Lp \ Lq, in particular f < ∞ almost everywhere.

Thus the series (3) is absolutely convergent almost everywhere, so for every h ∈

H the series
∑∞
i=1 ∆h

fi ∧Mi

2i max(Ki, ‖fi‖Lp)
converges point-wise to ∆hf almost
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everywhere. If h ∈ Hj for a j ∈ N, then for every N,M ∈ N with j < N < M
we have∥∥∥ M∑

i=N

∆h

( fi ∧Mi

2i max(Ki, ‖fi‖Lp)

)∥∥∥
Lr
≤

M∑
i=N

∥∥∥∆h

( fi ∧Mi

2i max(Ki, ‖fi‖Lp)

)∥∥∥
Lr

=
M∑
i=N

‖∆h(fi ∧Mi)‖Lr
2i max(Ki, ‖fi‖Lp)

≤
M∑
i=N

1
2i
≤ 1

2N−1
,

so the series
∞∑
i=1

∆h
fi ∧Mi

2i max(Ki, ‖fi‖Lp)
is Cauchy and hence convergent in Lr.

So we have that ∆hf itself is in Lr for every h ∈ H.

Theorem 3.6. For every 1 ≤ p < q <∞,

1. N ⊂ H(Lp, Lq<).

2. N ⊂ H(Lp, Lq).

Proof. We prove the two statements simultaneously. Let H ∈ N. By
Theorem 2.2 there is an increasing sequence of sets (Hi) ⊂ cwD with H =
∞⋃
i=1

Hi. Let 1 ≤ p < q <∞ be fixed. By Corollary 3.4, for any i = 1, 2, . . . we

have a function fi fulfilling L(fi) = p+q
2 and L(∆hfi) = ∞ with ‖∆hfi‖Lq ≤

M(q) for some M(q) ∈ R fixed, for every h ∈ Hi. Thus by Lemma 3.5 there is
a function f ∈ Lp \ L p+3q

4
< ⊂ Lp \ Lq< for which ∆hf ∈ Lq for every h ∈ H.

This shows H ∈ H(Lp, Lq<) ∩ H(Lp, Lq) so the proof is complete.

Theorem 3.1 and Theorem 3.6 together prove H(L1, L2) = N.

4 Inclusions of Classes

The arguments in the previous section used the Banach-space structure of Lp
for 1 ≤ p. Hence for p < 1 the proofs don’t work.

In this section we prove the following two inclusion theorems between the
classes H(Lp, Lq) and H(Lr, Ls<).

Theorem 4.1. For every 0 ≤ p < q < ∞, 0 ≤ r < s < ∞ with q ≤ s,
H(Lp, Lq) ⊂ H(Lr, Ls).
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Theorem 4.2. For every 0 ≤ p < q <∞ the classes H(Lp, Lq<) coincide.

We also finish the proof of our main theorem. The proofs of these theorems
use some properties of powers of functions. These properties are described in
Lemma 4.3, Lemma 4.5 and Lemma 4.7.

4.1 Powers Less Than 1

The following lemma describes the effect of taking the power fα for α ≤ 1.

Lemma 4.3. Let 0 ≤ p ≤ r < ∞ and h ∈ T. If f ∈ Lp, 0 ≤ f and
∆hf ∈ Lr then for every 0 < α ≤ 1 we have fα ∈ L p

α
and ∆hf

α ∈ L r
α

with

‖∆hf
α‖L r

α
≤ ‖∆hf‖αLr . We also have L(fα) = L(f)

α .

Proof. The first and third statement being obvious we prove only the second
one. It is easy to see that for 0 < α ≤ 1 and a, b ∈ C, ||a|α − |b|α| ≤ |a− b|α .
From this with a = f(x+ h), b = f(x) we have

|fα(x+ h)− fα(x)|
r
α ≤ |f(x+ h)− f(x)|α

r
α = |f(x+ h)− f(x)|r ,

so ∆hf
α ∈ Lr and ‖∆hf

α‖L r
α
≤ ‖∆hf‖αLr .

4.2 Powers Greater Than 1

Now we examine fα for 1 < α. As we shall see, this power does not behave as
well as it did for α ≤ 1, there are more technical difficulties for a lesser result.

Lemma 4.4. Let 0 < δ < 1, 1 ≤ b ≤ b + bδ ≤ a be reals. Then for every
1 ≤ γ we have (aγ − bγ) ≤ 2γ (a− b)γ+

(1−δ)(γ−1)
δ .

Proof. We show that the value of the fraction aγ−bγ
(a−b)γ is maximal when

a = b + bδ. This is true since
(
xγ−bγ
(x−b)γ

)′
= (x − b)−1−γγb

(
bγ−1 − xγ−1

)
≤ 0

for b ≤ x and 1 ≤ γ, so the fraction xγ−bγ
(x−b)γ is a decreasing function of x for

b ≤ x. For every 1 ≤ γ and 0 ≤ t ≤ 1 we have

(1 + t)γ ≤ 1 + 2γt, (4)

since the left-hand side of the expression is convex while the right-hand side
is linear in t, and the inequality holds for t = 0 and t = 1. Applying (4) with
t = 1

y we have (1 + y)γ − yγ ≤ 2γyγ−1, and with y = b1−δ we get

aγ − bγ

(a− b)γ
≤
(
b+ bδ

)γ − bγ
(b+ bδ − b)γ

=
(
1 + b1−δ

)γ − b(1−δ)γ
≤2γb(1−δ)(γ−1) ≤ 2γ(a− b)

(1−δ)(γ−1)
δ
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as stated.

Lemma 4.5. Let 0 < q < r <∞, H ⊂ T and f : T→ C such that L(f) = q
and ∆hf ∈ Lr for every h ∈ H. Then there is a continuous function ρ :
(0, q)→ R such that p < ρ(p) and for every 0 < p < q there exists a function
fp such that L(fp) = p and ρ(p) ≤ L(∆hfp) for every h ∈ H.

Proof. Let fp = |f |
q
p . Again, it is obvious that L(fp) = p. Fix an h ∈ H

and let 0 < δ < 1, p < s be arbitrary. The value of δ will be chosen later. Let

a(x) = max(|f(x+ h)|, |f(x)|),

b(x) = min(|f(x+ h)|, |f(x)|),

A =
{
x ∈ T : b(x) + bδ(x) ≤ a(x)

}
, A′ = {x ∈ T : 1 ≤ b(x)} .

Then

‖∆hfp‖sLs =
∫

T

∣∣∣|f(x+ h)|
q
p − |f(x)|

q
p

∣∣∣s dx
=
∫

T

(
a
q
p (x)− b

q
p (x)

)s
dx =

∫
A∩A′

(
a
q
p (x)− b

q
p (x)

)s
dx

+
∫

(T\A)∩A′

(
a
q
p (x)− b

q
p (x)

)s
dx+

∫
T\A′

(
a
q
p (x)− b

q
p (x)

)s
dx.

We estimate the integrals separately.
For the first term, by applying Lemma 4.4 with γ = q

p , we get

∫
A

(
a
q
p (x)− b

q
p (x)

)s
dx ≤ 2

q
p

∫
T

(a(x)− b(x))s
q
p+s

(1−δ)( q
p
−1)

δ dx. (5)

Since ∆hf ∈ Lr means∫
T
|f(x+ h)− f(x)|r dx =

∫
T

(a(x)− b(x))r dx <∞,

(5) is finite if s qp + s
(1−δ)( qp−1)

δ ≤ r; that is, if

s ≤ rp

q + (1−δ)(q−p)
δ

. (6)
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For the second term, again from Lemma 4.4 with γ = q
p , we get∫

(T\A)∩A′

(
a
q
p (x)− b

q
p (x)

)s
dx ≤

∫
T

((
b+ bδ

) q
p − b

q
p

)s
dx

≤ 2s
q
p

∫
T
b
sδ

„
q
p+

(1−δ)( q
p
−1)

δ

«
dx

≤ 2s
q
p

∫
T
bs(δ+

q
p−1) dx

≤ 2s
q
p

∫
T
|f |s(δ+

q
p−1) dx,

which is finite if s
(
δ + q

p − 1
)
< q; that is, if

s <
p

1− (1− δ)pq
. (7)

To estimate the third term we use that if 0 ≤ b ≤ 1, b ≤ a, then

aα ≤ 2α (a− b)α + 2α,

for 0 ≤ a ≤ 2 by the second term, for 2 ≤ a by the first term. Applying this
with α = s qp , for the third term we have∫

T\A′

(
a
q
p (x)− b

q
p (x)

)s
dx ≤

∫
T\A′

as
q
p dx ≤

∫
T\A′

2s
q
p

(
(a− b)s

q
p + 1

)
dx,

which is finite whenever s qp ≤ r; that is, if

s ≤ pr

q
. (8)

With the unique 0 < δ < 1 fulfilling 1−δ
δ (q − p) = r−q

2 , the right-hand side of
(6) and (7) is bigger than p. Fixing this δ let

ρ = min

{
rp

q + (1−δ)(q−p)
δ

,
p

1− (1− δ) qp
,
pr

q

}
.

Then p < ρ, and (6), (7) and (8) are satisfied for s < ρ. This proves the
statement.
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4.3 A Small Power

To put a function f with L(f) = 0 in a Lp class for 0 < p it must be composed
by a function which increases more slowly than xα for any 0 < α. This is done
in the following lemmas. They will help to deal with the p = 0 case.

Lemma 4.6. If Φ : [0,∞) → [0,∞) is a concave function with Φ(1) ≤ 1,
f : T → R is a function and ∆hf ∈ Lp for some 0 ≤ p < ∞ and h ∈ T, then
∆hΦ(|f |) ∈ Lp with ‖∆hΦ(|f |)‖Lp bounded by a function of ‖∆hf‖Lp .

Proof. Since 0 ≤ Φ, the concavity of Φ and Φ(1) ≤ 1 imply Φ(x) ≤ x + 1.
Using the concavity and Φ(x) ≤ x+ 1 we get

|Φ(|f(x+ h)|)− Φ(|f(x)|)| ≤ Φ(‖f(x+ h)| − |f(x)‖)− Φ(0)
≤ ‖f(x+ h)| − |f(x)‖+ 1
≤ |f(x+ h)− f(x)|+ 1,

from wihch the statement follows.

Lemma 4.7. Let (λi)∞i=0 be a given sequence of nonnegative reals with

∞∑
i=0

λi = 1, (9)

∞∑
i=1

iλi =∞. (10)

Then there is a Φ : [0,∞)→ [0,∞) concave function with Φ(1) ≤ 1 such that

∞∑
i=0

Φ(i)λi <∞, (11)

∞∑
i=0

Φ3(i)λi =∞. (12)

Proof. From (9) we have an increasing sequence (ik)∞k=0 of integers with∑
ik≤i

λi ≤
1
2k
. (13)

We define recursively a strictly increasing sequence (ak)∞k=0 of integers fulfilling

max{k, ik} ≤ ak, (14)
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ak − ak−1 ≤ ak+1 − ak (15)

and
1
k2
≤

∑
ak≤i<ak+1

(
k +

i− ak
ak − ak−1

)
λi (16)

for every k = 1, 2, . . . . Let a0 = 0, a1 = i1. If ak is already defined, we define
ak+1 simply by taking its value large enough. Conditions (14) and (15) can
easily be satisfied, while (10) shows that (16) also holds for a large ak+1, since
the coefficients in (16) grow linearly in i.

If there is a given strictly increasing sequence (ak)∞k=0 of integers with
a0 = 0 and a sequence (bk)∞k=0 of reals, we denote by Φ(ak),(bk) the function
for which Φ(ak) = bk and linear on the intervals [ak, ak+1]. With this notation
let Φ = Φ(ak),(k), a concave function by (15) and Φ(1) ≤ 1 by (14).

Since
∞∑
i=0

Φ(i)λi =
∞∑
k=0

∑
ak≤i<ak+1

Φ(i)λi ≤
∞∑
k=0

∑
ak≤i<ak+1

(k + 1)λi ≤
∞∑
k=0

∑
ak≤i

(k + 1)λi

≤
∞∑
k=0

∑
ik≤i

(k + 1)λi ≤
∞∑
k=0

(k + 1)
2k

<∞,

we have property (11). If we knew

1
k2
≤
∑
ak≤i

Φ(i)λi (17)

for infinitely many k’s, then since k ≤ Φ(i) for ak ≤ i, we would have 1 ≤∑
ak≤i

Φ3(i)λi for infinitely many k’s, which would show that the series of (12)

cannot converge. So if (17) holds only for a finite set of k’s, then we modify
Φ to have it for infinitely many k’s.

If
∑
ak≤i Φ(i)λi < 1

k2 , then there is a 0 < d such that with the sequence
bl = l, if l ≤ k and bl = l + d, if k < l, we have∑

ak≤i

Φ(ak),(bk)(i)λi =
1
k2

(18)

and the function Φ(ak),(bk) is still concave. This follows from (16), which says
that if Φ would increase on [ak, ak+1] as is does on [ak−1, ak], then 1

k2 ≤∑
ak≤i<ak+1

Φ(i)λi. Moreover, if this modification is done for a k bigger than 2,

then also Φ(1) ≤ 1 remains true.
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We repeat this modification step finitely or infinitely many times to get, as
a monotone increasing point-wise limit of concave functions, a concave function
Φ for which (17) holds for infinitely many k’s, so we certainly have property
(12). We show that we did not loose property (11). Either there were finitely
or infinitely many modification steps, in the jth step, say at akj , the value of

the sum
∞∑
i=1

Φ(i)λi could increase by at most 1
k2
j
. Since

∞∑
j=1

1
k2
j

≤
∞∑
j=1

1
j2

<∞,
∞∑
i=0

Φ(i)λi

must converge; so the proof is complete.

As an application, we can prove the last lemma of this section.

Lemma 4.8. Let 0 < s < ∞, H ⊂ T and f : T → R be such that L(f) = 0
and ∆hf ∈ Ls for every h ∈ H. Then there is a function 0 ≤ f? such that
f? ∈ L1 \L3 and ∆hf? ∈ L4 for every h ∈ H with ‖∆hf?‖L4 bounded by some
function of ‖∆hf‖Ls .

Proof. If s < 4, then let f̃ =
[
|f |

s
4

]
, otherwise we set f̃ = [|f |] , where [·]

denotes the integer part. In the first case, by Lemma 4.3, we have ∆hf̃ ∈ L4

with
‖∆hf̃‖L4 ≤ ‖∆hf‖Ls + 2 (19)

for every h ∈ H. In the second case (19) holds obviously for every h ∈ H.
Since L(f) = 0, we have L(f̃) = 0 in both cases. By applying Lemma 4.7
with λi = λ

([
f̃ = i

])
, we get the concave function Φ for which f? = Φ ◦ f̃ ∈

L1 \ L3. According to Lemma 4.6 , ∆hf? ∈ L4 with ‖∆hf?‖L4 bounded by
some function of ‖∆hf‖Ls for every h ∈ H.

Corollary 4.9. Let 0 < s <∞, H ⊂ T and f : T→ R be such that L(f) = 0
and ∆hf ∈ Ls for every h ∈ H. Then H ∈ H(Lu, Lv) ∩ H(Lu, Lv<) for every
0 ≤ u < v <∞.

Proof. Let f? be as in the previous Lemma. If L(f?) ≤ u+v
2 or 4 ≤ v,

we apply Lemma 4.3 for f = f? with r = 4 and α = min
{

4
v ,

2L(f?)
u+v

}
. From

α ≤ 2L(f?)
u+v we get that the function fα? satisfies u < L(fα? ) < v, while from

α ≤ 4
v we have ∆hf

α
? ∈ Lv for every h ∈ H. If u+v

2 < L(f?) and v < 4, we
can apply Lemma 4.5 for f = f? with q = L(f?), r = 4. Since the function ρ
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is continuous and p < ρ(p) for every p ∈ (0, q), there is a p with u < p < v
for which v < ρ(p). For this p from L(fp) = p, v < ρ(p) ≤ L(∆hfp) we have
u < L(fp) < v and ∆hfp ∈ Lv for every h ∈ H.

4.4 The Inclusion Theorems

Now we can prove the two inclusion theorems and Theorem 1.4.

Proof of Theorem 4.1. Suppose that for a set H ⊂ T we have H ∈
H(Lp, Lq); that is, there is a function f ∈ Lp \ Lq with ∆hf ∈ Lq for every
h ∈ H. Then by Lemma 4.3 with α = q

s we have f̃ = |f |
q
s ∈ L ps

q
\ Ls and

∆hf̃ ∈ Ls for every h ∈ H. So H ∈ H(Lr, Ls) if r < L(f̃).
Suppose now that L(f̃) ≤ r < s. If 0 < L(f̃), then by applying Lemma

4.3 with α = 2L(f̃)
r+s we have a function f ∈ Lr \ Ls with ∆hf ∈ Ls r+s

2L(f̃)
⊂ Ls

for every h ∈ H. Thus H ∈ H(Lr, Ls).
If L(f̃) = 0, then the statement follows from Corollary 4.9.

Proof of Theorem 4.2. It is enough to prove that H(Lp, Lq<) ⊂ H(Lr, Ls<)
for every 0 ≤ p < q <∞, 0 ≤ r < s <∞. LetH ∈ H(Lp, Lq<). We distinguish
two cases.

Case 1. (q ≤ s) We proceed as in the proof of Theorem 4.1. By Lemma
4.3 with α = q

s we have f̃ = |f |
q
s ∈ L ps

q
\Ls< and ∆hf̃ ∈ Ls< for every h ∈ H,

and we are done if r < L(f̃).
Now if 0 < L(f̃) ≤ r < s, then again by Lemma 4.3 with α = 2L(f̃)

r+s we
have a function f ∈ Lr \ Ls< with ∆hf ∈ L“

s r+s
2L(f̃)

”< ⊂ Ls for every h ∈ H

which shows H ∈ H(Lr, Ls<).
If L(f̃) = 0, then the statement follows from Corollary 4.9.
Case 2. (s < q) Let us consider first 0 < L(f). By Lemma 4.5 we have

a pair u, v satisfying 0 < u < v < s and a function f̃ with L(f̃) = u and
∆hf̃ ∈ Lv< for every h ∈ H. This f̃ shows that H ∈ H(Lu, Lv<). Now we are
in the situation of Case 1., so we have H ∈ H(Lr, Ls<).

Now if L(f) = 0, then again the statement follows from Corollary 4.9.

Proof of Theorem 1.4. Let 0 ≤ p < q <∞. From Theorem 3.6, Theorem
4.1 and Theorem 3.1 we have

N ⊂ H(L1, L2<) ⊂
⋃

1<r<2

H(L1, Lr) ⊂ H(L1, L2) ⊂ N,

so from Theorem 4.2, H(Lp, Lq<) = H(L1, L2<) = N. This proves H(Lp, Lq<) =
N.
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If q ≤ 2, then from the preceding and from Theorem 4.1 and Theorem 3.1
we have

N ⊂ H(Lp, Lq<) ⊂
⋃

p<r<q

H(Lp, Lr) ⊂ H(Lp, Lq) ⊂ H(L1, L2) ⊂ N.

5 Ejectivity

As a corollary of Lemma 3.3 and Theorem 3.1 we get that every non-ejective
set is an N -set, in particular every compact, non-ejective set is a compact
N -set, hence a compact weak-Dirichlet set. (For the last implication see [5].)
This proves Theorem 2.4 in one direction. However, as Imre Ruzsa showed,
the averaging technique of Theorem 3.1 can be applied directly to ejective
sets, which gives a direct proof (see [7]). In this section we prove a minimax
theorem and we discuss how it can be applied for proving Theorem 2.4.

5.1 A Minimax Theorem

In Corollary 3.4 we have proved in particular that for a compact, weak-
Dirichlet set H there is a function f ∈ L2 \ L3 such that every h ∈ H the
difference functions ∆hf are so small that they may belong to any fixed higher
class. The following theorem shows a quantitative analogue of this result in
the class L2.

For a set H ⊂ T,M(H) denotes the set of probability measures supported
by H. For local use let

F =
{
f : T→ C : f ∈ L2, ‖f‖L2 = 1,

∫
T
f = 0

}
,

while Rlp ⊂ lp stands for the real Banach-space of two-way infinite p-summable
sequences.

Theorem 5.1. Let H ⊂ T be a compact set. Then

inf
f∈F

sup
h∈H
‖∆hf‖2L2

= sup
µ∈M(H)

inf
n 6=0

∫
T
|e−2πinh − 1|2 dµ(h).

Proof. If for an f ∈ F we have suph∈H ‖∆hf‖2L2
≤ ε2, then by the Parseval

formula
∑
|Ff(n)|2 = ‖f‖2L2

= 1 and∑
|Ff(n)|2

∣∣e−2πinh − 1
∣∣2 = ‖F∆hf‖2l2 = ‖∆hf‖L2 ≤ ε2.
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Thus for every µ ∈M(H) we have by the Fubini Theorem

∑
|Ff(n)|2

∫
T

∣∣e−2πinh − 1
∣∣2 dµ(h)

=
∫

T

∑
|Ff(n)|2

∣∣e−2πinh − 1
∣∣2 dµ(h) ≤ ε2.

Since Ff(0) = 0 for our f ∈ F , we get infn 6=0

∫
T |e
−2πinh − 1|2 dµ(h) ≤ ε2,

which proves

sup
µ∈M(H)

inf
n6=0

∫
T
|e−2πinh − 1|2 dµ(h) ≤ inf

f∈F
sup
h∈H
‖∆hf‖2L2

.

For the other direction let ε2 = inff∈F suph∈H ‖∆hf‖2L2
. We denote by

(c0, ‖.‖∞) the real Banach space of two-way infinite null-convergent sequences;
that is, (cn)∞n=−∞ ∈ c0 if and only if limn→∞ |cn|+|c−n| = 0. For every positive
n ∈ N let

en = (. . . , 0, 1, . . . , 1, 1︸ ︷︷ ︸
n

, 0, 1, 1, . . . , 1︸ ︷︷ ︸
n

, 0, . . . ) ∈ l∞;

that is, for a j ∈ Z, the jth coordinate of en is 1 if 1 ≤ |j| ≤ n, otherwise it
is 0. For an h ∈ T, let a(h) = (an(h))∞n=−∞ =

(
e−2πinh − 1

)∞
n=−∞ , and for

every Q ∈ N let

WQ =
{
Pm

(
(|an(h)|2)

)
|m ∈ N, Q ≤ m,h ∈ H

}
,

where Pm : l∞ → c0, defined by

Pm
(
(cn)∞n=−∞

)
= (. . . , 0, c−m, c−m+1, . . . , c0, . . . , cm−1, cm, 0, . . . ) ,

is projection on the central 2m+ 1 coordinates. Let KQ denote the closure of
the convex hull of WQ in the ‖ · ‖∞ norm. We show that for every 0 < δ ≤ ε2
and n,Q ∈ N, (ε2 − δ)en ∈ KQ.

Suppose that this is not true for a Q and n and consider the Minkowski
sum K of KQ and the segment [0, δ2 ]en. Let γ = sup{0 < τ < 1 : τen ∈ K}.
We have δ

2 ≤ γ ≤ ε2 − δ
2 . Since K is a convex subset of the locally convex

Banach space c0 and γen is one point on its boundary, by the Hahn Banach
Theorem there is a functional φ ∈ c?0 with norm 1 such that

φ(c) ≤ γ, ∀c ∈ K (20)
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and φ(en) = 1. Since c?0 = Rl1, the functional φ can be represented as a
(zn)∞n=−∞ ∈ Rl1 sequence, for which we have

∞∑
j=−∞

|zj | = ‖(zn)‖l1 = 1 = φ(en) =
n∑

j=−n
j 6=0

zj ;

that is, 0 ≤ zj and zm = 0 for n < |m| and for m = 0. Let (dn)∞n=−∞ ∈ Rl2
be the sequence for which 0 ≤ dn =

√
zn. Then, from (20),

‖ (an(h)dn) ‖2l2 = φ
(
Pn
((
|an(h)|2

)))
≤ γ

for every h ∈ H.
Consider now f = F

(
(dn)∞n=−∞

)
. By the Parseval formula and d0 =

√
z0 =

0 we have that ‖f‖2L2
= 1 and

∫
T f = 0, so f ∈ F . On the other hand, for

every h ∈ H,

‖∆hf‖2L2
= ‖F (∆hf) ‖2l2 = ‖ (an(h)dn) ‖2l2 ≤ γ ≤ ε

2 − δ

2
,

which is a contradiction.
So we have that for every 0 < δ ≤ ε2 the point (ε2−δ)en is in KQ; that is, it

can be obtained as the limit of a sequence of convex combinations of elements
of WQ. This means that for every 0 < δ ≤ ε2 and Q ∈ N there is a convex
combination

(
wQn
)∞
n=−∞ of certain elements of WQ such that (ε2 − δ) ≤ wQj

for every 0 6= |j| ≤ Q. By reformulation, for every Q ∈ N there is a convex
combination µQ of Dirac measures on T such that for every |j| ≤ Q, j 6= 0,

ε2 − δ ≤
(∫

T
PQ(|a(h)|2) dµQ(h)

)
(j) = PQ

(∫
T
|a(h)|2 dµQ(h)

)
(j);

that is,

ε2 − δ ≤
∫

T
|aj |2(h) dµQ(h) =

∫
T

∣∣e−2πijh − 1
∣∣2 dµQ(h)

for every |j| ≤ Q, j 6= 0. Moreover, µQ is a probability measure. The Banach
space of measures on T being the dual space of the continuous functions on T,
we can take a subsequence µQj weakly converging to a µ probability measure,
and since suppµQ ⊂ H for everyQ ∈ N andH is compact, we have suppµ ⊂ H
also. By the definition of weak limit we get

ε2 − δ ≤ lim
j→∞

∫
T

∣∣e−2πinh − 1
∣∣2 dµQj (h) =

∫
T

∣∣e−2πint − 1
∣∣2 dµ(h)
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for every n 6= 0. Taking δ → 0 we obtain

inf
f∈F

sup
h∈H
‖∆hf‖2L2

≤ sup
µ∈M(H)

inf
n 6=0

∫
T
|e−2πinh − 1|2 dµ(h),

so the proof is complete.

The argument of Imre Ruzsa for proving that every compact weak-Dirichlet
set is non-ejective goes as follows. If the set H ⊂ T is a compact weak-Dirichlet
set, then by Remark 1.3,

sup
µ∈M

inf
n 6=0

∫
T
|e−2πinh − 1|2 dµ(h) = 0.

So by Theorem 5.1, for every 0 < ε there is a function f (ε) ∈ L2 with
‖f (ε)‖L2 = 1 and

∫
T f

(ε) = 0 such that ‖∆hf
(ε)‖L2 ≤ ε for every h ∈ H.

(Imre Ruzsa proved this corollary of Theorem 5.1 in a different way, indepen-
dently of our work.)

For a sequence (εn) ∈ {−1,+1}Z let fε(εn) = F−1((εn(Ff)(n))); that is,
the function obtained from fε by signing its Fourier coefficients with (εn).
By averaging on signs, Imre Ruzsa showed that there is a sequence (εn) ∈
{−1,+1}Z and a u ∈ R such that for the sub-level set A = [f (ε)

(εn) < u] we get
suph∈H λ(∆hA) ≤ ελ(A), from which the non-ejectivity of H follows easily.

There is no reason to think that the conjecture of Tamás Keleti fails for
the class H(Lp, Lq) if 2 < q. Our proof brakes down for 2 < q only because
the Fourier transform happens to be an isometric isomorphism only on the L2

class. We leave as a problem to prove the upper bound for 2 < q.
For 2 < q we have no Theorem 5.1 like the statement for the Lq class. But

from a function f /∈ Lq with ∆h ∈ Lq for every h ∈ H one could construct a
function for which a sub-level set works in the same way. A difficulty can be
that not every function has appropriate sub-level sets even in the L2 case, and
for 2 < q we cannot average on the Fourier coefficients.
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