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Abstract

This paper deals with the generalization of the density points with
respect to category. Topologies using this concept of density are intro-
duced, and their properties are investigated.

The concept of a density point with respect to category as the analogue of
a density point with respect to Lebesgue measure was first introduced in 1982
(see papers [6], [5]). In this paper, we will present a more general approach to
the density point with respect to category. It is a generalization of the concept
presented in [5] and [3].

Let R be the set of reals and N stand for the set of natural numbers. Let
I be the σ-ideal of first category sets in R, S be the σ-algebra of sets having
the Baire property in R, and Tnat be the natural topology in R.

According to paper [5], we say that 0 is a density point with respect to
category of a subset A of reals having the Baire property if the sequence
{fn}n∈N = {χnA∩[−1,1]}n∈N converges with respect to the σ-ideal of the first
category sets to the characteristic function χ[−1,1]. It means that every subse-
quence of the sequence {fn}n∈N contains a subsequence converging to the func-
tion χ[−1,1] everywhere except for a set of the first category. For Jn = [an, bn],
n ∈ N, let us put

s(Jn) =
1
2

(an + bn),

h(A, Jn)(x) = χ 2
|Jn| (A−s(Jn))∩[−1,1](x),
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where A + z = {a + z : a ∈ A}, αA = {αa : a ∈ A} for z, α ∈ R, A ⊂ R.
By J = {Jn}n∈N, we shall denote a sequence of intervals tending to zero, that
means

lim
n→∞

s(Jn) = 0 ∧ lim
n→∞

|Jn| = 0.

We will identify sequences which differ in finite numbers of their terms.

Definition 1. The point 0 is called an I(J)−density point of a set A ∈ S if

h(A, Jn)(x) I−→
n→∞

χ[−1,1](x),

which means that

∀
{nk}k∈N

∃
{nkm}m∈N

∃
Θ∈I

∀
x/∈Θ

h(A, Jnkm
)(x) −→

m→∞
χ[−1,1](x).

It is obvious that 0 is an I(J)−density point of a set A ∈ S if and only if

∀
{nk}k∈N

∃
{nkm}m∈N

lim sup
m→∞

(
[−1, 1] \ (A− s(Jnkm

))
2

|Jnkm
|

)
∈ I.

We shall say that a point x0 ∈ R is an I(J)−density point of a set A ∈ S
if and only if 0 is an I(J)−density point of the set A− x0.

A point x0 ∈ R is an I(J)−dispersion point of a set A ∈ S if and only if
x0 is an I(J)−density point of the complementary set A′.

It is easy to see that if Jn =
[
− 1

n , 1
n

]
, for n ∈ N, then x0 is an I(J)−density

point of a set A ∈ S if and only if x0 is an I−density point of A (see [5]).
Moreover, if Jn =

[
− 1

sn
, 1

sn

]
, where s = {sn}n∈N is an unbounded and

nondecreasing sequence of positive real numbers, then x0 is an I(J)−density
point of a set A ∈ S if and only if x0 is an 〈s〉−density point of A (see [3]).

If A ∈ S, then we let

ΦI(J)(A) = {x ∈ R : x is an I(J)− density point of A}.

Theorem 1. For any sets A,B ∈ S we have :

1. ΦI(J)(∅) = ∅, ΦI(J)(R) = R;

2. A M B ∈ I ⇒ ΦI(J)(A) = ΦI(J)(B);

3. A M ΦI(J)(A) ∈ I;

4. ΦI(J)(A ∩B) = ΦI(J)(A) ∩ ΦI(J)(B).
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Proof. Properties 1 and 2 are obvious. Let us prove property 3. Let A ∈ S.
Then there exist an open set G and a set P ∈ I such that A = G M P . We
shall show that A\ΦI(J)(A) ∈ I. Let us take a point x ∈ G. Then there exists
a number n0 ∈ N such that x + Jn ⊂ G for n ≥ n0, and hence Jn ⊂ G− x. So
we obtain

2
|Jn|

(
A− (x + s (Jn))

)
⊃ 2
|Jn|

(
(G \ P )− (x + s (Jn))

)
=

2
|Jn|

(
(G− x)− s(Jn)

)
\
(
P − (x + s(Jn)

))
⊃

2
|Jn|

(
Jn − s(Jn)

)
\
(
P − (x + s(Jn))

)
= [−1, 1] \ 2

|Jn|

(
P − (x + s(Jn))

)
.

If P ∈ I, then 2
|Jn|

(
P − (x + s(Jn))

)
∈ I. Hence, for x ∈ G, we obtain

that
h(A− x, Jn)(x) −→

n→∞
χ[−1,1](x),

so that A \ ΦI(J)(A) ∈ I.
We prove that ΦI(J)(A) \ A ∈ I. Observe that ΦI(J)(A) ⊂ R \ ΦI(J)(A′).

Then

ΦI(J)(A) \A = ΦI(J)(A) ∩A′ ⊂ (R \ ΦI(J)(A′)) ∩A′ = A′ \ ΦI(J)(A′) ∈ I.

This fact ends the proof of property 3.
It remains to show 4. Observe that

ΦI(J)(A ∩B) ⊂ ΦI(J)(A), ΦI(J)(A ∩B) ⊂ ΦI(J)(B).

Hence, ΦI(J)(A ∩B) ⊂ ΦI(J)(A) ∩ ΦI(J)(B).
Suppose that x0 ∈ ΦI(J)(A)∩ΦI(J)(B), and let us take a sequence {nk}k∈N.

From the assumption that x0 ∈ ΦI(J)(A), there exists a subsequence {nkm
}m∈N

such that

lim sup
m→∞

(
[−1, 1] \

(
A− s(Jnkm

)
) 2
|Jnkm

|

)
∈ I.

Using the assumption that x0 ∈ ΦI(J)(B), we can choose a subsequence
{nkml

}l∈N of {nkm}m∈N such that

lim sup
l→∞

(
[−1, 1] \ (B − s(Jnkml

))
2

|Jnkml
|

)
∈ I.
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For the sequence {nkml
}l∈N, we obtain that

lim sup
l→∞

(
[−1, 1] \

(
(A ∩B)− s(Jnkml

)
) 2
|Jnkml

|

)
=

lim sup
l→∞

((
[−1, 1] \

(
A− s(Jnkml

)
) 2
|Jnkml

|

)
∪(

[−1, 1] \
(
B − s(Jnkml

)
) 2
|Jnkml

|

))
=

lim sup
l→∞

(
[−1, 1] \

(
A− s(Jnkml

)
) 2
|Jnkml

|

)
∪

lim sup
l→∞

(
[−1, 1] \

(
B − s(Jnkml

)
) 2
|Jnkml

|

)
∈ I.

Hence, x ∈ ΦI(J)(A ∩B).

Theorem 2. Let J be a sequence of intervals tending to zero. Then

TI(J) = {A ∈ S : A ⊂ ΦI(J)(A)}

is a topology on R, which will be called I(J)−density topology.
Moreover, we have Tnat ⊂ TI(J).

Proof. From the previous theorem, it follows that the operator ΦI(J) : S →
S is a lower density operator, and the pair (S, I) fulfills countable chain con-
dition. By the general lifting theorem (see [4]), we obtain that TI(J) is a
topology on R.

Theorem 3. Let J = {Jn}n∈N, where Jn = [an, bn] for n ∈ N, be a sequence
tending to zero. Then 0 is an I(J)−density point of the set

A = {0} ∪
⋃
n∈N

int(Jn).

Moreover, A ∈ TI(J).

Proof. Observe that for every n ∈ N,(
A− s(Jn)

) 2
|Jn|

⊃ (−1, 1).

Hence, h(A, Jn) I−→
n→∞

χ[−1,1]. It implies that 0 ∈ ΦI(J)(A). Moreover,
Tnat ⊂ TI(J), so we obtain that A ∈ TI(J).



A Generalization of the Density Topology 277

The following theorem shows that we have obtained an essential extension
of I-density points.

Theorem 4. For every sequence J = {Jn}n∈N of intervals tending to zero,
there exists a sequence K = {Kn}n∈N of intervals tending to zero such that

TI(J) \ TI(K) 6= ∅ ∧ TI(K) \ TI(J) 6= ∅.

Proof. Let Jn = [an, bn] for n ∈ N. Let us consider that bn > 0. We can
assume that bn > bn+1 (eventually we choose subsequence {nk}k∈N such that
bnk

> bnk+1 ). Let us denote cn = max{an, bn+1}. Now we define intervals Kn

for n ∈ N in the following way:

Kn =
[
bn −

1
n

(bn − cn), bn

]
.

The sequence K = {Kn}n∈N tends to zero. Putting

A = {0} ∪
(⋃

n∈N
int(Jn) \

⋃
n∈N

int(Kn)
)
, B = {0} ∪

⋃
n∈N

int(Kn),

we obtain from the previous theorem that B ∈ TI(K). Moreover, B /∈ TI(J) and
A /∈ TI(K). Let us notice that for every n ∈ N,(

A− s(Jn)
) 2
|Jn|

⊃
(
−1, 1− 1

n

]
.

Thus, we obtain A ∈ TI(J).
If there exists sequence {nk}k∈N such that bnk

> 0, then we do analogous
construction for this subsequence. Otherwise, we do similar construction for
the sequence −J = {−Jn}n∈N. Therefore, the theorem holds.

From definition 1 we have:

Proposition 5. Let J = {Jn}n∈N and K = {Kn}n∈N be sequences tending
to zero. If for every n ∈ N there exists k(n) ∈ N such that Jn = Kk(n), then
TI(K) ⊂ TI(J).

Theorem 6. Let J = {Jn}n∈N, where Jn = [an, bn] for n ∈ N, be a sequence
tending to zero. Let us fix l0 ∈ N and i0 ∈ {1, . . . , l0}. Putting

Kn =
[
an +

i0 − 1
l0

(bn − an), an +
i0
l0

(bn − an)
]

for n ∈ N, we have that the sequence K = {Kn}n∈N tends to zero and
TI(J) ⊂ TI(K).
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Proof. The fact that the sequence K = {Kn}n∈N tends to zero is a conse-
quence of the assumption that the sequence J = {Jn}n∈N tends to zero.

Now we prove that TI(J) ⊂ TI(K). Let A ∈ S be such a set that 0 ∈
ΦI(J)(A). We will show that 0 ∈ ΦI(K)(A). Let us take a sequence of natural
numbers {nk}k∈N. From the assumption there exists a subsequence {nkm}m∈N
and a set Θ0 ∈ I such that

h(A, Jnkm
)(x) −→

m→∞
χ[−1,1](x) for x /∈ Θ0. (1)

Let us put Θ = l0Θ0 − 2i0 + 1 + l0. Obviously, Θ ∈ I. We will show that

h(A,Knkm
)(x) −→

m→∞
χ[−1,1](x) for x /∈ Θ.

It is sufficient to consider the case when x ∈ [−1, 1] \Θ. Then

1
l0

x +
2i0 − 1− l0

l0
∈
[

2i0 − 2− l0
l0

,
2i0 − l0

l0

]
\Θ0 ⊂ [−1, 1] \Θ0.

From condition (1), there exists a natural number mx such that for every
m ≥ mx, we have that

h(A, Jnkm
)
(

1
l0

x +
2i0 − 1− l0

l0

)
= 1.

This is equivalent to the condition :

1
l0

x +
2i0 − 1− l0

l0
∈
(
A− s(Jnkm

)
) 2
|Jnkm

|
∩ [−1, 1].

Simultaneously,

s(Knkm
)−s(Jnkm

) =
1
2

(2i0−1− l0)|Knkm
| ∧ x ∈

[
2i0 − 2− l0

l0
,

2i0 − l0
l0

]
.
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Hence, we have that

h(A, Jnkm
)
(

1
l0

x +
2i0 − 1− l0

l0

)
= 1 ⇔(

1
l0

x +
2
(
s(Knkm

)− s(Jnkm
)
)

l0|Knkm
|

)
∈
(
A− s(Jnkm

)
) 2
|Jnkm

|
∩[

2i0 − 2− l0
l0

,
2i0 − l0

l0

]
⇔
(

x +
2
(
s(Knkm

)− s(Jnkm
)
)

|Knkm
|

)
∈(

A− s(Jnkm
)
) 2l0
|Jnkm

|
∩
[
2i0 − 2− l0, 2i0 − l0

]
⇔(

x +
2
(
s(Knkm

)− s(Jnkm
)
)

|Knkm
|

)
∈
(
A− s(Jnkm

)
) 2
|Knkm

|
∩[

2
(
s(Knkm

)− s(Jnkm
)
)

|Knkm
|

− 1,
2
(
s(Knkm

)− s(Jnkm
)
)

|Knkm
|

+ 1
]
⇔

x ∈
(
A− s(Knkm

)
) 2
|Knkm

|
∩ [−1, 1] ⇔ h(A,Knkm

)(x) = 1.

Therefore, we obtain that

h(A,Knkm
)(x) I−→

m→∞
χ[−1,1],

and finally we have proved that 0 ∈ ΦI(K)(A).

Observe that, if in the above theorem we take sequences {an}n∈N, {bn}n∈N
such that 0 < bn+1 < an, for every n ∈ N, l0 > 1, then we obtain that
TI(J) 6= TI(K). It suffices to take the set

A = {0} ∪
⋃
n∈N

int(Kn).

Then, A ∈ TI(K) and 0 /∈ ΦI(J)(A).
Moreover, if 0 < bn+1 < an, and we put Kn =

[
an, an + 1

n (bn − an)
]
, then

we obtain that the inclusion TI(J) ⊂ TI(K) does not hold. Indeed, let us put

A = {0} ∪
(⋃

n∈N
int(Jn) \

⋃
n∈N

Kn

)
.

Then A ∈ TI(J), and 0 /∈ ΦI(K)(A).
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Theorem 7. Let J = {Jn}n∈N, where Jn = [an, bn], be a sequence tending to
zero. Let us put

Ki
n =

[
an +

i− 1
l

(bn − an), an +
i

l
(bn − an)

]
,

for n ∈ N, l ∈ N, i ∈ {1, . . . , l}, n ∈ N. Then the family {Ki
n}i∈{1,...,l},n∈N

ordered in the sequence

K = {K1
1 ,K2

1 , . . . Kl
1,K

1
2 ,K2

2 , . . . ,Kl
2, . . .}

tends to zero and TI(J) = TI(K).

Proof. The fact that K tends to zero is the consequence of the assumption
that the sequence J = {Jn}n∈N tends to zero . The inclusion TI(J) ⊂ TI(K)

follows from the previous theorem.
It suffices to show the reverse inclusion. Let A ∈ S be such a set that

0 ∈ ΦI(K)(A). We will prove that 0 ∈ ΦI(J)(A). Let {nk}k∈N be a sequence of
natural numbers. From the assumption there exists a subsequence {n1,k}k∈N ⊂
{nk}k∈N and a set Θ1 ∈ I such that

h(A,K1
n1,k

)(x) −→
k→∞

χ[−1,1](x) for x /∈ Θ1.

Similarly, for every i ∈ {2, . . . , l}, we find a subsequence
{ni,k}k∈N of {ni−1,k}k∈N and such a set Θi ∈ I that

h(A,Ki
ni,k

)(x) −→
k→∞

χ[−1,1](x) for x /∈ Θi.

Let {nkm
}m∈N = {nl,k}k∈N. Then for every x /∈

⋃l
i=1 Θi and j ∈ {1, . . . , l},

h(A,Kj
nkm

)(x) −→
m→∞

χ[−1,1](x). (2)

Let us put

Θ =
l⋃

i=1

(
1
l
Θi − 1 +

2(i− 1) + 1
l

)
∪ {1}.

Obviously, Θ ∈ I.
We will show that for every x /∈ Θ, we have that

h(A, Jnkm
)(x) −→

m→∞
χ[−1,1](x).

It is sufficient to consider the case when x ∈ [−1, 1] \Θ. Then there exists
i0 such that

2(i0 − 1)
l

− 1 ≤ x <
2i0
l
− 1.
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Observe also that

x ∈
[

2(i0 − 1)
l

− 1,
2i0
l
− 1
]
\Θ ⇒

(
x− 2(i0 − 1) + 1

l
+ 1
)

l ∈ [−1, 1] \Θi0 .

From condition (2), there exists a natural number mx ∈ N such that for every
m ≥ mx, we have that

h(A,Ki0
nkm

)
((

x− 2(i0 − 1) + 1
l

+ 1
)
l

)
= 1.

Simultaneously,

h(A,Ki0
nkm

)
((

x− 2(i0 − 1) + 1
l

+ 1
)
l

)
= 1 ⇔((

x− 2(i0 − 1) + 1
l

+ 1
)
l

)
∈
(
A− s(Ki0

nkm
)
) 2
|Ki0

nkm
|
∩ [−1, 1] ⇔(

x− 2(i0 − 1) + 1
l

+ 1
)
∈
(
A− s(Ki0

nkm
)
) 2

l|Ki0
nkm

|
∩
[−1

l
,

1
l

]
⇔(

x− 2(i0 − 1) + 1
l

+ 1
)
∈
(
A− s(Ki0

nkm
)
) 2
|Jnkm

|
∩
[−1

l
,

1
l

]
⇔

x ∈
(

A− s(Ki0
nkm

) +
(2(i0 − 1) + 1

l
− 1
) |Jnkm

|
2

)
2

|Jnkm
|
∩[

−1
l

+
(2(i0 − 1) + 1

l
− 1
)
,

1
l

+
(2(i0 − 1) + 1

l
− 1
)]

.

From the equality,

s(Ki0
nkm

) = s(Jnkm
)−

|Jnkm
|

2

(
1− 2(i0 − 1) + 1

l

)
,

we obtain that the last assertion is equivalent to the following one:

x ∈
(
A− s(Jnkm

)
) 2
|Jnkm

|
∩
[

2(i0 − 1)
l

− 1,
2(i0)

l
− 1
]
⇔

x ∈
(
A− s(Jnkm

)
) 2
|Jnkm

|
∩ [−1, 1] ⇔ h(A, Jnkm

)(x) = 1.

So for every m ≥ mx, we have that

h(A, Jnkm
)(x) = 1.

It implies that h(A, Jnkm
)(x) −→

m→∞
χ[−1,1](x) for x /∈ Θ. Therefore,

0 ∈ ΦI(J)(A).
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The next theorem gives us an example of a situation when the topologies
generated by sequences of intervals are identical.

Theorem 8. Let J = {Jn}n∈N and K = {Kn}n∈N be sequences of intervals
tending to zero. If

lim
n→∞

|Jn M Kn|
|Jn ∩Kn|

= 0,

then TI(J) = TI(K).

Proof. Let A ∈ S be a set such that 0 ∈ ΦI(J)(A). We show that
0 ∈ ΦI(K)(A). Let us take a sequence {nk}k∈N of natural numbers. From
the assumption that 0 ∈ ΦI(J)(A), there exists a subsequence {nkm}m∈N and
a set Θ1 ∈ I such that

h(A, Jnkm
)(x) −→

k→∞
χ[−1,1](x) for x /∈ Θ1. (3)

It is easy to see that

Θ = {−1, 1} ∪
⋃

m∈N

(
Θ1

|Jnkm
|

|Knkm
|
−

2(s(Knkm
)− s(Jnkm

))
|Knkm

|

)
∈ I.

From the assumption, we obtain that

|Kn|
|Jn|

−→
n→∞

1 ∧
2
(
s(Kn)− s(Jn)

)
|Kn|

−→
n→∞

0.

Indeed,

1 = lim
n→∞

|Jn ∩Kn|
|Jn ∩Kn|

= lim sup
n→∞

|Jn \ (Jn M Kn)|
|Jn ∩Kn|

≥

lim sup
n→∞

|Jn|
|Jn ∩Kn|

− lim
n→∞

|Jn M Kn|
|Jn ∩Kn|

= lim sup
n→∞

|Jn|
|Jn ∩Kn|

≥ lim sup
n→∞

|Jn|
|Kn|

.

Similarly, we can show that

lim sup
n→∞

|Kn|
|Jn|

≤ 1,

and hence,

lim inf
n→∞

|Jn|
|Kn|

≥ 1.
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Thus, we obtain that

lim
n→∞

|Jn|
|Kn|

= 1.

Suppose conversely that there exists 1 > α > 0 and a natural number
n0 ∈ N such that for every n ≥ n0, we have

|s(Kn)− s(Jn)|
|Kn|

> α.

There exists n1 ≥ n0 such that for every n ≥ n1, we have

(1− α)|Kn| < |Jn| < (1 + α)|Kn|.

Then we obtain that

|Jn M Kn|
|Jn ∩Kn|

≥ α|Kn|
|Kn|

= α.

It contradicts with the assumption of the theorem. Indeed, if intervals Jn,Kn

are mutually disjoint, then for every n ∈ N, we have |Jn M Kn| ≥ |Kn|. In the
opposite case, we have |Jn M Kn| ≥ |s(Kn)− s(Jn)|.

Let x ∈ (−1, 1) \Θ. For sufficiently large m ∈ N, we have that

x ∈
[
−
|Jnkm

|
|Knkm

|
+

2
(
s(Jnkm

)− s(Knkm
)
)

|Knkm
|

,
|Jnkm

|
|Knkm

|
+

2
(
s(Jnkm

)− s(Knkm
)
)

|Knkm
|

]
.

Therefore,

|Knkm
|

|Jnkm
|

(
x +

2
(
s(Knkm

)− s(Jnkm
)
)

|Knkm
|

)
∈ [−1, 1] \Θ1.

From condition (3), there exists a natural number m0 ≥ m1 such that for
every m ≥ m0, we have that

h(A, Jnkm
)

(
|Knkm

|
|Jnkm

|

(
x +

2
(
s(Knkm

)− s(Jnkm
)
)

|Knkm
|

))
= 1.
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Simultaneously,

h(A,Jnkm
)

(
|Knkm

|
|Jnkm

|

(
x +

2
(
s(Knkm

)− s(Jnkm
)
)

|Knkm
|

))
= 1 ⇔

|Knkm
|

|Jnkm
|

(
x +

2
(
s(Knkm

)− s(Jnkm
)
)

|Knkm
|

)
∈
(
A− s(Jnkm

)
) 2
|Jnkm

|
∩ [−1, 1]

⇔
( |Knkm

|
2

x + s(Knkm
)− s(Jnkm

)
)
∈
(
A− s(Jnkm

)
)

∩
[
−
|Jnkm

|
2

,
|Jnkm

|
2

]
⇔
( |Knkm

|
2

x + s(Knkm
)
)

∈ A ∩
[
−
|Jnkm

|
2

+ s(Jnkm
),
|Jnkm

|
2

+ s(Jnkm
)
]

⇔
|Knkm

|
2

x ∈
(
A− s(Knkm

)
)
∩[

−
|Jnkm

|
2

+ s(Jnkm
)− s(Knkm

),
|Jnkm

|
2

+ s(Jnkm
)− s(Knkm

)
]

⇔ x ∈
(
A− s(Knkm

)
) 2
|Knkm

|
∩[

−
|Jnkm

|
|Knkm

|
+

2
(
s(Jnkm

)− s(Knkm
)
)

|Knkm
|

,
|Jnkm

|
|Knkm

|
+

2(s(Jnkm
)− s(Knkm

))
|Knkm

|

]
⇒ x ∈

(
A− s(Knkm

)
) 2
|Knkm

|
∩ [−1, 1].

Hence, we obtain that h(A,Knkm
)(x) = 1 for m ≥ m0, so

h(A,Knkm
)(x) −→

m→∞
χ[−1,1] for x /∈ Θ.

It follows that 0 ∈ ΦI(K)(A).
Similarly, we prove that TI(K) ⊂ TI(J). This ends the proof.

The following theorems show some properties of the family of I(J) type
topologies. Let J be the family of all sequences tending to zero.

Theorem 9. Let TH = {V \ P : V is open, P ∈ I}. Then⋂
J∈J

TI(J) = TH .
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Proof. It is obvious that TH ⊂
⋂

J∈J TI(J). Let us suppose to the contrary
that there exists a set A ∈

⋂
J∈J TI(J) \TH . Observe that for every set A ∈ S,

there exist sets G, F such that G is regular open, F ∈ I, and A = G M F .
Since A /∈ TH , there exists a point x0 ∈ F \ G. Let B = (G \ F ) ∪ {x0}. We
have that B ∈

⋂
J∈J TI(J) because B M A ∈ I and B ⊂ A. If x0 /∈ FrG,

then d(x0, G) > 0 and for every sequence J = {Jn}n∈N ∈ J , there exists n0

such that for every n ≥ n0, we have (B − x0) ∩ Jn ⊂ {0}. Hence, x0 is not
an I(J)−density point of B, for any sequence J ∈ J and B /∈

⋂
J∈J TI(J).

If x0 ∈ FrG, then there exists a sequence J = {Jn}n∈N ∈ J such that
Jn ⊂ R \ (G − x0) for every n ∈ N. Therefore, we have (B − x0) ∩ Jn ⊂ {0}
for every n ≥ n0. In this case, we obtain that x0 is not an I(J)-density point
of B and B /∈

⋂
J∈J TI(J).

Theorem 10. Let T ∗ be the topology generated by
⋃

J∈J TI(J). Then

T ∗ = 2R and
⋃

J∈J
TI(J) 6= T ∗.

Proof. From theorem 6 in [2], it follows that T ∗ = 2R. It is obvious that⋃
J∈J TI(J) 6= T ∗ because {0} /∈ TI(J) for any J ∈ J .

Theorem 11. For any sequence J of intervals tending to zero, the space
(R, TI(J)) is Hausdorff but not regular.

Proof. Let J be a sequence of intervals tending to zero. The fact that the
space (R, TI(J)) is Hausdorff is evident because TI(J) contains the natural
topology. The concept of a proof that (R, TI(J)) is not regular is based on
the proof of theorem 2.6.2 from [1]. Observe that if V ∈ TI(J) is a dense
set in the natural topology, then V is residual. Suppose to the contrary that
X \V is second category. Then there exists a nonempty open set G such that
G M (X \ V ) ∈ I. Hence, G ⊂ ΦI(J)(G) = ΦI(J)(X \ V ) 6= ∅. So we obtain
that V ∩ ΦI(J)(X \ V ) ⊂ ΦI(J)(V ) ∩ ΦI(J)(X \ V ) = ∅. On the other hand,
V is a dense set so ∅ 6= V ∩G ⊂ V ∩ΦI(J)(X \ V ). This contradiction proves
that the set X \ V must be of the first category. Finally, we have that the
set of all rational numbers Q, which is dense with respect to Tnat and TI(J)-
closed, cannot be separated from any point x ∈ R\Q with respect to topology
TI(J).
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