Yuan-Chuan Li, ${ }^{*}$ Department of Applied Mathematics, National Chung-Hsing University, Taichung, 402 Taiwan. email: ycli@amath.nchu.edu.tw

# A NOTE ON AN IDENTITY OF THE GAMMA FUNCTION AND STIRLING'S FORMULA 


#### Abstract

Short and elementary proofs of the well-known Stirling formula for the discrete Gamma function $\Gamma(n)$ have been given by several authors. In this note, a well-known identity and Stirling's formula for the continuous Gamma function $\Gamma(x)$ are deduced in a different and short way from a simple and elementary proposition.


It is well known that the Gamma function, $\Gamma(x):=\int_{0}^{\infty} e^{-t} t^{x-1} d t, x>0$, satisfies the identity

$$
\begin{equation*}
\Gamma(x)=\frac{2^{x-1}}{\sqrt{\pi}} \Gamma\left(\frac{x}{2}\right) \Gamma\left(\frac{x+1}{2}\right) \tag{1}
\end{equation*}
$$

and Stirling's formula

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{\Gamma(x+1)}{x^{x+\frac{1}{2}} e^{-x} \sqrt{2 \pi}}=1 \tag{2}
\end{equation*}
$$

In 2000, Romik [8] gives a very short proof of the Stirling's formula for $\Gamma(n)$. Other different proofs of (2) can be found in [1, pp. 20-24], [6], [4, pp. 216218], and [9, pg. 194]. See also [3], [5], and [7] for various proofs of the case $x=n \in \mathbb{N}$ of (2).

The purpose of this note is to deduce (1) and (2) in a different way from the following elementary and simple proposition, which also holds for vectorvalued functions.

[^0]Recall that a function $f:(a, b) \rightarrow \mathbb{R}$ is said to be convex, where $(a, b)$ is an interval of $\mathbb{R}$, if it satisfies

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y) \text { for all } x, y \in(a, b) \text { and } 0 \leq \lambda \leq 1
$$

It is well-known that convex functions have the following properties:
(C1) Every convex function is continuous [2, Thm. 6.2.5],
(C2) If $f:(a, b) \rightarrow \mathbb{R}$ is continuous and midpoint convex; i.e.,

$$
f\left(\frac{1}{2} x+\frac{1}{2} y\right) \leq \frac{1}{2} f(x)+\frac{1}{2} f(y) \text { for all } x, y \in(a, b)
$$

then $f$ is convex [9, pg. 101].
(C3) If $f:(a, b) \rightarrow \mathbb{R}$ is differentiable, then $f$ is convex if and only if $f^{\prime}$ is non-decreasing on $(a, b)$ (see [2, Thm. 6.2.3]). In particular, if $f^{\prime \prime}(x)>0$ on $(a, b)$, then $f$ is convex on $(a, b)$.

Proposition 1. Let $f:(0, \infty) \rightarrow \mathbb{R}$ and $\Delta f(x) \equiv f(x+1)-f(x), x>0$.
(a) $\lim _{x \rightarrow \infty} f(x)$ exists if and only if $\sum_{n=1}^{\infty} \Delta f(n)$ converges and $f$ satisfies
(3) $\lim _{n \rightarrow \infty}[f(n+1+x)-f(n+1)-x \Delta f(n)]=0$ uniformly on $0 \leq x \leq 1$.
(b) If $f$ is convex and $\lim _{n \rightarrow \infty} \Delta^{2} f(n)=0$, then (3) holds.

Proof. (a) The necessity is obvious. For the sufficiency, suppose that $\sum_{n=1}^{\infty} \Delta f(n)$ converges, and $f$ satisfies (3). Then $\Delta f(n) \rightarrow 0$ and

$$
f(n+1)=f(1)+\sum_{k=1}^{n} \Delta f(k) \rightarrow f(1)+\sum_{n=1}^{\infty} \Delta f(n) \text { as } n \rightarrow \infty
$$

From these facts and (3), we easily deduce that

$$
\lim _{x \rightarrow \infty} f(x)=f(1)+\sum_{n=1}^{\infty} \Delta f(n)
$$

(b) Since $f$ is convex, we have for every $n=1,2, \ldots$ and $0 \leq x \leq 1$

$$
f(n+1)=f\left(\frac{x}{x+1} n+\frac{1}{x+1}(n+1+x)\right) \leq \frac{x}{x+1} f(n)+\frac{1}{x+1} f(n+1+x)
$$

and

$$
f(n+1+x)=f((1-x)(n+1)+x(n+2)) \leq(1-x) f(n+1)+x f(n+2)
$$

From these two inequalities, we obtain
$x \Delta f(n)=x[f(n+1)-f(n)] \leq f(n+1+x)-f(n+1) \leq x[f(n+2)-f(n+1)]=x \Delta f(n+1)$,
and hence

$$
0 \leq f(n+1+x)-f(n+1)-x \Delta f(n) \leq x[\Delta f(n+1)-\Delta f(n)]=x \Delta^{2} f(n)
$$

Now (3) follows from the assumption $\lim _{n \rightarrow \infty} \Delta^{2} f(n)=0$.
Corollary 2. (cf. [9, pg. 194]) $\Gamma(x)=\frac{2^{x-1}}{\sqrt{\pi}} \Gamma\left(\frac{x}{2}\right) \Gamma\left(\frac{x+1}{2}\right)$ for all $x>0$.
Proof. Let $h(x):=\frac{2^{x-1}}{\sqrt{\pi}} \Gamma\left(\frac{x}{2}\right) \Gamma\left(\frac{x+1}{2}\right), x>0$. Then $h(1)=1=\Gamma(1)$. Since $\Gamma(x)$ is continuous on $(0, \infty)$, so is the function $\ln \Gamma(x)$. Using the CauchySchwarz inequality, we obtain from the definition of Gamma function that

$$
\ln \Gamma\left(\frac{1}{2} x+\frac{1}{2} y\right) \leq \ln \left[\Gamma(x)^{1 / 2} \Gamma(y)^{1 / 2}\right]=\frac{1}{2} \ln \Gamma(x)+\frac{1}{2} \ln \Gamma(y)
$$

for all $x, y>0$; i.e., $\ln \Gamma(x)$ is midpoint convex on $(0, \infty)$. It follows from (C2) that $\ln \Gamma(x)$ is convex on $(0, \infty)$. Hence, the function

$$
\ln h(x)=(x-1) \ln 2-\frac{1}{2} \ln \pi+\ln \Gamma\left(\frac{x}{2}\right)+\ln \Gamma\left(\frac{x+1}{2}\right)
$$

is also convex, and we have for every $x>0$

$$
\begin{aligned}
\Delta \ln h(x) & =\ln 2+\ln \Gamma\left(\frac{x+1}{2}\right)-\ln \Gamma\left(\frac{x}{2}\right)+\ln \Gamma\left(\frac{x+2}{2}\right)-\ln \Gamma\left(\frac{x+1}{2}\right) \\
& =\ln 2+\ln \frac{x}{2}=\ln x=\Delta \ln \Gamma(x)
\end{aligned}
$$

so that $\Delta^{2} \ln h(x)=\Delta^{2} \ln \Gamma(x)=\Delta \ln x=\ln \frac{x+1}{x} \rightarrow 0$ as $x \rightarrow \infty$.
By Proposition 1(b), both $\ln h(x)$ and $\ln \Gamma(x)$ satisfy (3) with $\Delta \ln h(x)=$ $\Delta \ln \Gamma(x)=\ln x$. Thus, the function $f(x):=\ln h(x)-\ln \Gamma(x)$ satisfies (3) with $\Delta f(x)=0$ for all $x>0$, and $f(1)=\ln h(1)-\ln \Gamma(1)=0$. It follows from Proposition 1(a) that $c:=\lim _{x \rightarrow \infty} f(x)$ exists. Therefore, for every $x>0$,

$$
\ln h(x)-\ln \Gamma(x)=f(x)=f(x+1)=\cdots=f(n+x) \rightarrow c \text { as } n \rightarrow \infty
$$

Since $f(1)=0$, this proves $c=0$ and so $h(x) \equiv \Gamma(x)$.
Corollary 3. (Stirling's formula) $\lim _{x \rightarrow \infty} \frac{\Gamma(x+1)}{x^{x+\frac{1}{2}} e^{-x} \sqrt{2 \pi}}=1$.

Proof. Since $\Gamma(x+1)=x \Gamma(x)$, we have

$$
\begin{aligned}
\ln \frac{\Gamma(x+1)}{x^{x+\frac{1}{2}} e^{-x} \sqrt{2 \pi}} & =\ln \Gamma(x+1)-\left(x+\frac{1}{2}\right) \ln x+x-\frac{1}{2} \ln (2 \pi) \\
& =\ln \Gamma(x)-\phi(x)-\frac{1}{2} \ln (2 \pi)
\end{aligned}
$$

where $\phi(x):=\left(x-\frac{1}{2}\right) \ln (x)-x$. Hence, it suffices to show $\lim _{x \rightarrow \infty}[\ln \Gamma(x)-$ $\left.\phi(x)-\frac{1}{2} \ln (2 \pi)\right]=0$. Since $\phi^{\prime \prime}>0$ on $(0, \infty), \phi$ is convex on $(0, \infty)$. Also, $\Delta \phi(x)=\ln x+r(x)$, where $r(x)=\left(x+\frac{1}{2}\right) \ln \left(1+\frac{1}{x}\right)-1$ for $x>0$. Thus, we have

$$
\begin{aligned}
x^{2} r(x) & =x^{2}\left[\left(x+\frac{1}{2}\right) \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1} x^{-n-1}-1\right] \\
& =\sum_{n=1}^{\infty}\left[\frac{(-1)^{n+1}}{n+2}-\frac{(-1)^{n+1}}{2(n+1)}\right] x^{-n+1} \rightarrow \frac{1}{12} \text { as } x \rightarrow \infty
\end{aligned}
$$

If follows that $\Delta^{2} \phi(x)=\Delta \ln x+\Delta r(x) \rightarrow 0$ as $x \rightarrow \infty$. Hence, $\phi$ satisfies (3) by Proposition 1(b). Thus, the function $f(x):=\ln \Gamma(x)-\phi(x)$ satisfies (3) with

$$
\Delta f(x)=\Delta \ln \Gamma(x)-\Delta \phi(x)=\ln x-\Delta \phi(x)=-r(x)
$$

Since $\sum_{n=1}^{\infty} \Delta f(n)=-\sum_{n=1}^{\infty} r(n)$ converges by limiting comparison test with the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$, it follows from Proposition $1(\mathrm{a})$ that $c:=\lim _{x \rightarrow \infty}[\ln \Gamma(x)-\phi(x)]$ exists. Since

$$
\begin{aligned}
& \phi(x+1)-\phi\left(\frac{x+1}{2}\right)-\phi\left(\frac{x+2}{2}\right)-x \ln (2) \\
& =\frac{1}{2}(1+\ln (2))+\frac{x+1}{2} \ln \left(\frac{x+1}{x+2}\right) \rightarrow \frac{1}{2} \ln (2) \text { as } x \rightarrow \infty
\end{aligned}
$$

using Corollary 2, we have

$$
\begin{aligned}
c= & \lim _{x \rightarrow \infty}[\ln \Gamma(x+1)-\phi(x+1)] \\
= & \lim _{x \rightarrow \infty}\left[\left(x \ln (2)+\ln \Gamma\left(\frac{x+1}{2}\right)+\ln \Gamma\left(\frac{x+2}{2}\right)-\frac{1}{2} \ln (\pi)\right)\right. \\
& \left.-\left(\phi\left(\frac{x+1}{2}\right)+\phi\left(\frac{x+2}{2}\right)+x \ln (2)+\frac{1}{2} \ln (2)\right)\right] \\
= & c+c-\frac{1}{2} \ln (2 \pi) .
\end{aligned}
$$

This shows that $c=\frac{1}{2} \ln (2 \pi)$, and hence $\lim _{x \rightarrow \infty}\left[\ln \Gamma(x)-\phi(x)-\frac{1}{2} \ln (2 \pi)\right]=0$. The proof is complete.

## References

[1] E. Artin, The Gamma Function, Holt, Rinehart and Winston, Inc., New York, 1964.
[2] G. de Barra, Measure Theory and Integration, Ellis Horwood Series in Mathematics and its Applications, Halsted Press, New York, 1981.
[3] C. R. Blyth and P. K. Pathak, A note on easy proofs of Stirling's theorem, Amer. Math. Monthly, 93 (1986), 376-379.
[4] R. C. Buck, Advanced Calculus, 2nd ed., McGraw-Hill, New York, 1965.
[5] P. Diaconis and D. Freeman, An elementary proof of Stirling's formula, Amer. Math. Monthly, 93 (1986), 123-125.
[6] W. Feller, A direct proof of Stirling's formula, Amer. Math. Monthly, 74 (1967), 1223-1225 and 75 (1968), 518.
[7] J. M. Patin, A very short proof of Stirling's formula, Amer. Math. Monthly, 96 (1989), 41-42.
[8] D. Romik, Stirling approximation for n!: the ultimate short proof?, Amer. Math. Monthly, 107 (2000), 556-557.
[9] W. Rudin, Principles of Mathematical Analysis, 3rd ed., McGraw-Hill, Inc., New York, 1976.


[^0]:    Key Words: convex function, Gamma function, Stirling's formula
    Mathematical Reviews subject classification: Primary 38B15; Secondary 54A41
    Received by the editors May 17, 2006
    Communicated by: B. S. Thomson
    *Research supported in part by the National Science Council of Taiwan

