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A NOTE ON AN IDENTITY OF THE
GAMMA FUNCTION AND STIRLING’S

FORMULA

Abstract

Short and elementary proofs of the well-known Stirling formula for
the discrete Gamma function Γ(n) have been given by several authors.
In this note, a well-known identity and Stirling’s formula for the con-
tinuous Gamma function Γ(x) are deduced in a different and short way
from a simple and elementary proposition.

It is well known that the Gamma function, Γ(x) :=
∫∞
0

e−ttx−1 dt, x > 0,
satisfies the identity

(1) Γ(x) =
2x−1

√
π

Γ(
x

2
)Γ(

x + 1
2

)

and Stirling’s formula

(2) lim
x→∞

Γ(x + 1)
xx+ 1

2 e−x
√

2π
= 1.

In 2000, Romik [8] gives a very short proof of the Stirling’s formula for Γ(n).
Other different proofs of (2) can be found in [1, pp. 20–24], [6], [4, pp. 216–
218], and [9, pg. 194]. See also [3], [5], and [7] for various proofs of the case
x = n ∈ N of (2).

The purpose of this note is to deduce (1) and (2) in a different way from
the following elementary and simple proposition, which also holds for vector-
valued functions.
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Recall that a function f : (a, b) → R is said to be convex, where (a, b) is an
interval of R, if it satisfies

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y) for all x, y ∈ (a, b) and 0 ≤ λ ≤ 1.

It is well-known that convex functions have the following properties:
(C1) Every convex function is continuous [2, Thm. 6.2.5],
(C2) If f : (a, b) → R is continuous and midpoint convex; i.e.,

f(
1
2
x +

1
2
y) ≤ 1

2
f(x) +

1
2
f(y) for all x, y ∈ (a, b),

then f is convex [9, pg. 101].
(C3) If f : (a, b) → R is differentiable, then f is convex if and only if f ′ is
non-decreasing on (a, b) (see [2, Thm. 6.2.3]). In particular, if f ′′(x) > 0 on
(a, b), then f is convex on (a, b).

Proposition 1. Let f : (0,∞) → R and ∆f(x) ≡ f(x + 1)− f(x), x > 0.

(a) lim
x→∞

f(x) exists if and only if
∞∑

n=1
∆f(n) converges and f satisfies

(3) lim
n→∞

[f(n + 1 + x)− f(n + 1)− x∆f(n)] = 0 uniformly on 0 ≤ x ≤ 1.

(b) If f is convex and lim
n→∞

∆2f(n) = 0, then (3) holds.

Proof. (a) The necessity is obvious. For the sufficiency, suppose that
∞∑

n=1
∆f(n)

converges, and f satisfies (3). Then ∆f(n) → 0 and

f(n + 1) = f(1) +
n∑

k=1

∆f(k) → f(1) +
∞∑

n=1

∆f(n) as n →∞.

From these facts and (3), we easily deduce that

lim
x→∞

f(x) = f(1) +
∞∑

n=1

∆f(n).

(b) Since f is convex, we have for every n = 1, 2, . . . and 0 ≤ x ≤ 1

f(n + 1) = f(
x

x + 1
n +

1
x + 1

(n + 1 + x)) ≤ x

x + 1
f(n) +

1
x + 1

f(n + 1 + x)

and

f(n + 1 + x) = f((1− x)(n + 1) + x(n + 2)) ≤ (1− x)f(n + 1) + xf(n + 2).
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From these two inequalities, we obtain

x∆f(n) = x[f(n+1)−f(n)] ≤ f(n+1+x)−f(n+1) ≤ x[f(n+2)−f(n+1)] = x∆f(n+1),

and hence

0 ≤ f(n + 1 + x)− f(n + 1)− x∆f(n) ≤ x[∆f(n + 1)−∆f(n)] = x∆2f(n).

Now (3) follows from the assumption lim
n→∞

∆2f(n) = 0.

Corollary 2. (cf. [9, pg. 194]) Γ(x) = 2x−1
√

π
Γ(x

2 )Γ(x+1
2 ) for all x > 0.

Proof. Let h(x) := 2x−1
√

π
Γ(x

2 )Γ(x+1
2 ), x > 0. Then h(1) = 1 = Γ(1). Since

Γ(x) is continuous on (0,∞), so is the function ln Γ(x). Using the Cauchy-
Schwarz inequality, we obtain from the definition of Gamma function that

ln Γ(
1
2
x +

1
2
y) ≤ ln

[
Γ(x)1/2Γ(y)1/2

]
=

1
2

lnΓ(x) +
1
2

ln Γ(y)

for all x, y > 0; i.e., ln Γ(x) is midpoint convex on (0,∞). It follows from (C2)
that ln Γ(x) is convex on (0,∞). Hence, the function

lnh(x) = (x− 1) ln 2− 1
2

lnπ + lnΓ(
x

2
) + lnΓ(

x + 1
2

)

is also convex, and we have for every x > 0

∆ lnh(x) = ln 2 + lnΓ(x+1
2 )− ln Γ(x

2 ) + lnΓ(x+2
2 )− ln Γ(x+1

2 )
= ln 2 + ln x

2 = lnx = ∆ lnΓ(x),

so that ∆2 lnh(x) = ∆2 ln Γ(x) = ∆ lnx = ln x+1
x → 0 as x →∞.

By Proposition 1(b), both lnh(x) and ln Γ(x) satisfy (3) with ∆ lnh(x) =
∆ lnΓ(x) = lnx. Thus, the function f(x) := lnh(x)− ln Γ(x) satisfies (3) with
∆f(x) = 0 for all x > 0, and f(1) = lnh(1) − ln Γ(1) = 0. It follows from
Proposition 1(a) that c := lim

x→∞
f(x) exists. Therefore, for every x > 0,

lnh(x)− ln Γ(x) = f(x) = f(x + 1) = · · · = f(n + x) → c as n →∞.

Since f(1) = 0, this proves c = 0 and so h(x) ≡ Γ(x).

Corollary 3. (Stirling’s formula) lim
x→∞

Γ(x+1)

xx+ 1
2 e−x

√
2π

= 1.
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Proof. Since Γ(x + 1) = xΓ(x), we have

ln Γ(x+1)

xx+ 1
2 e−x

√
2π

= lnΓ(x + 1)− (x + 1
2 ) ln x + x− 1

2 ln(2π)

= lnΓ(x)− φ(x)− 1
2 ln(2π),

where φ(x) := (x − 1
2 ) ln(x) − x. Hence, it suffices to show lim

x→∞
[ln Γ(x) −

φ(x) − 1
2 ln(2π)] = 0. Since φ′′ > 0 on (0,∞), φ is convex on (0,∞). Also,

∆φ(x) = lnx + r(x), where r(x) = (x + 1
2 ) ln(1 + 1

x )− 1 for x > 0. Thus, we
have

x2r(x) = x2
[
(x + 1

2 )
∞∑

n=0

(−1)n

n+1 x−n−1 − 1
]

=
∞∑

n=1

[
(−1)n+1

n+2 − (−1)n+1

2(n+1)

]
x−n+1 → 1

12 as x →∞.

If follows that ∆2φ(x) = ∆ lnx + ∆r(x) → 0 as x →∞. Hence, φ satisfies
(3) by Proposition 1(b). Thus, the function f(x) := ln Γ(x) − φ(x) satisfies
(3) with

∆f(x) = ∆ lnΓ(x)−∆φ(x) = lnx−∆φ(x) = −r(x).

Since
∞∑

n=1
∆f(n) = −

∞∑
n=1

r(n) converges by limiting comparison test with the

series
∞∑

n=1

1
n2 , it follows from Proposition 1(a) that c := lim

x→∞
[ln Γ(x) − φ(x)]

exists. Since

φ(x + 1)− φ(x+1
2 )− φ(x+2

2 )− x ln(2)
= 1

2 (1 + ln(2)) + x+1
2 ln(x+1

x+2 ) → 1
2 ln(2) as x →∞,

using Corollary 2, we have

c = lim
x→∞

[
ln Γ(x + 1)− φ(x + 1)

]
= lim

x→∞

[(
x ln(2) + lnΓ(x+1

2 ) + lnΓ(x+2
2 )− 1

2 ln(π)
)

−
(
φ(x+1

2 ) + φ(x+2
2 ) + x ln(2) + 1

2 ln(2)
)]

= c + c− 1
2 ln(2π).

This shows that c = 1
2 ln(2π), and hence lim

x→∞
[ln Γ(x)−φ(x)− 1

2 ln(2π)] = 0.
The proof is complete.
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