INROADS

Craig Cowan,* Department of Mathematics, Simon Fraser University, Vancouver, BC, Canada. email: ctcowan@sfu.ca

AN ELEMENTARY REMARK ON THE INTERSECTION OF SETS

Abstract

In this paper, we will investigate the following question: Given $C \in (0,1)$ and a sequence $A_n \subseteq [0,1]$ with $\lambda(A_n) = C$, when does there exist a subsequence A_{n_i} such that $\lambda(\cap_i A_{n_i}) > 0$? We will show that the answer to this question can be characterized by the properties of a function g which will be a weak L^1 limit of characteristic functions.

Before we get started, let's mention what notation we will be using. L^p will denote $L^p[0,1]$ with Lebesgue measure λ , and χ_A will denote the indicator function of A. We will use \rightharpoonup to denote weak convergence. All sets will be taken to be Lebesgue measurable.

The main result of this paper is given by the following theorem:

Theorem 1. Let $C \in (0,1)$ and $A_n \subseteq [0,1]$ with $\lambda(A_n) = C$ for all n. Then the following are equivalent:

- (i) There exists a subsequence of A_n whose intersection has positive measure.
- (ii) There exists a subsequence of χ_{A_n} with a weak L^1 limit g and g = 1 on a set of positive measure.

Before we prove theorem 1, we will need the following result:

Lemma 1. Given $B_n \subseteq [0,1]$ with $\lambda(B_n) = C$, there exists B_{n_i} and a measurable function g with $0 \le g \le 1$ a.e. such that $\chi_{B_{n_i}} \rightharpoonup g$ in L^1 .

PROOF. By a weak compactness argument in L^2 , we see there exists some $g \in L^2$ and $\chi_{B_{n_i}}$ such that $\chi_{B_{n_i}} \rightharpoonup g$ in L^2 . Since $L^{\infty} \subseteq L^2$, we see that $\chi_{B_{n_i}} \rightharpoonup g$ in L^1 .

Key Words: Weak L^1 convergence

Mathematical Reviews subject classification: 28A05

Received by the editors January 6, 2006

Communicated by: Paul D. Humke

^{*}Craig Cowan was an undergraduate at Simon Fraser University during the research on this topic.

222 Craig Cowan

Define $E := \{x : g(x) < 0\}$ and $F := \{x : g(x) > 1\}$. Then we have

$$0 \le \int_0^1 \chi_{B_{n_i}} \chi_E \ dx \to \int_0^1 g \chi_E \ dx,$$

and from this we see $\lambda(E) = 0$. Similarly, we have

$$0 \le \int_0^1 (1 - \chi_{B_{n_i}}) \chi_F \ dx \to \int_0^1 (1 - g) \chi_F \ dx,$$

and from this we see $\lambda(F)=0$. Hence, we have $0\leq g\leq 1$ a.e.

Let's now prove theorem 1.

Proof.

 $(i) \Rightarrow (ii)$

Let $A = \bigcap_i A_{n_i}$ have positive measure. By lemma 1, there exists a measurable g with $0 \le g \le 1$ a.e. and a subsequence of $\chi_{A_{n_i}}$ (which won't be renamed) such that $\chi_{A_{n_i}} \rightharpoonup g$ in L^1 . By standard arguments, it can be shown that $\chi_{A_{n_i}} \rightharpoonup g$ in $L^1(A)$.

Since $\chi_{A_{n_i}} = 1$ on A and $0 \le g \le 1$ a.e., we see that

$$\begin{split} \int_A \left| 1 - g \right| \, dx &= \int_A \left| \chi_{A_{n_i}} \, - g \right| \, dx \\ &= \int_A \chi_{A_{n_i}} \, dx - \int_A g \, \, dx \to 0 \qquad \text{since } \chi_{A_{n_i}} \rightharpoonup g \text{ in } L^1(A). \end{split}$$

Hence, q = 1 a.e. on A.

 $(ii) \Rightarrow (i)$

Let $\chi_{A_{n_i}} \rightharpoonup g$ in L^1 where g = 1 on A, and A has positive measure. Then we have

$$\int_0^1 \chi_{A_{n_i}} \chi_A \ dx \to \int_0^1 g \chi_A \ dx \qquad \text{or} \qquad \lambda(A_{n_i} \cap A) \to \lambda(A),$$

which implies the result.

Let's now look at an example and see if it agrees with what theorem 1 says.

Example 1. Let $C \in (0,1)$ and define

$$A_n := \bigcup_{k=0}^{n-1} \left[\frac{k}{n}, \frac{k+C}{n} \right].$$

Then $\lambda(A_n) = C$, and it is possible to show that

$$\chi_{A_n} \rightharpoonup C$$
 in L^1 .

If we apply Theorem 1, we see that $\lambda(A) = 0$ where $A := \bigcap_i A_{n_i}$, and A_{n_i} is any subsequence.

Let's now manually check this. Fix $x \in [0,1)$, and let $\epsilon > 0$, but with $x + \epsilon \leq 1$. Then we have

$$\begin{split} \lambda\left(A\cap[x,x+\epsilon]\right) &\leq \lambda\left(A_{n_i}\cap[x,x+\epsilon]\right) \\ &= \int_0^1 \chi_{A_{n_i}}\chi_{[x,x+\epsilon]}\ dx \to \int_0^1 C\chi_{[x,x+\epsilon]}\ dx = C\epsilon. \end{split}$$

Now divide by ϵ to get

$$\frac{\lambda \left(A\cap [x,x+\epsilon]\right)}{\epsilon}\leq C.$$

So we see

$$\limsup_{\epsilon \to 0^+} \frac{\lambda \left(A \cap [x, x + \epsilon] \right)}{\epsilon} \le C < 1$$

for all $x \in [0,1)$, and it follows from the Lebesgue Density Theorem that $\lambda(A) = 0$.

References

[1] A. Bruckner, J. Bruckner, B. Thomson, *Real Analysis*, Prentice Hall, Englewood Cliffs, 1996.