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ON MEASURES OF CHAOS FOR
DISTRIBUTIONALLY CHAOTIC MAPS

Abstract

Let f be a distributionally chaotic map of the interval such that the
endpoints of the minimal periodic portions of any basic set are periodic.
Then the principal measure of chaos, µp(f), is not greater than twice the
spectral measure of chaos µs(f). This proves an assertion of Schweizer
et al. in a special case.

1 Introduction.

The notion of distributional chaos was introduced by Schweizer and Smı́tal in
[5] for continuous maps of the interval and later studied by many authors, not
only on the interval. To express the size of chaos, the principal measure µp

and the spectral measure µs of chaos which are based on differences between
upper and lower distribution functions are useful. In [5], the following theorem
is stated without a proof.

Theorem 1 ([5], Thm. 6.13). For any f in C(I, I), µs(f) ≤ µp(f) ≤ 2µs(f).

The aim of this paper is to establish this inequality in a special case, cf.
our theorem below. Before stating the results, we recall some notation. For
any x, z ∈ I, let

ξ(x, z, f, t, n) =
1
n

#{0 ≤ i < n : |f i(x)− f i(z)| < t},
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and define lower and upper distribution functions by

Fxz(t) = lim inf
n→∞

ξ(x, z, f, t, n) and F ∗xz(t) = lim sup
n→∞

ξ(x, z, f, t, n),

respectively. The principal measure µp(f) of chaos generated by f is given by

µp(f) = sup
x,z∈I

µ(x, z, f), where µ(x, z, f) =
∫ 1

0

(F ∗xz(t)− Fxz(t)) dt.

The measure of chaos is closely related to the structure of ω-limit sets of f .
By an ω-limit set, we mean the set of limit points of some trajectory {fn(x)},
x ∈ I. These sets were originally studied by A. N. Sharkovsky [4], and later
by A. Blokh [2], who gave characterizations of various types of ω-limit sets.
According to Sharkovsky, a maximal (with respect to inclusion) ω-limit set
ω̃ is of the second type if it is infinite and contains a periodic point. (It is
known that then the periodic points are dense in it.) In recent works [5] [6],
this set has been called (similarly as in Blokh [2]) a basic set, and we shall use
this terminology. Otherwise, ω̃ is of the first type. In this case, ω̃ either is a
periodic orbit or it is infinite and has a periodic decomposition of arbitrarily
high periods. We say that an ω-limit set ω̃ has a periodic decomposition of
period k if there is a minimal compact periodic interval J ⊂ I of period k
such that

⋃k
i=0 f i(J) ⊃ ω̃. Since J is minimal, the convex hulls of the periodic

portions ωi = f i(J) ∩ ω̃ of ω̃ are nonoverlapping, but may have endpoints in
common. Recall that a basic set has a maximal decomposition into periodic
portions (i.e., these portions are indecomposable). It is also known that any
basic set ω̃ is either a nowhere dense perfect set or a finite periodic collection of
compact intervals which are such that f | ω̃ is transitive. For other properties
of maximal ω-limit sets, see, e.g., Theorem 3.7 of [6].

Two points x, z ∈ I are isotectic if, for every integer n > 0, the ω-limit sets
ωfn(x) and ωfn(z) are contained in the same maximal ω-limit set of fn. By
Iso(f) we shall denote the set {(x, y) ∈ I×I : x, y are isotectic}. The spectrum
Σ(f) of f is the set of all minimal elements of the set {Fxz;x, z ∈ Iso(f)} which
is a finite set. The spectral measure of chaos is given by

µs(f) = max
{∫ 1

0

(1− F (t)) dt;F ∈ Σ(f)
}

.

Since, for any F ∈ Σ, there are points x, y ∈ I with Fxy = F and F ∗xy = 1
(cf. [5] or [6]), we get µs(f) ≤ µp(f). By [6], for any two maximal ω-limit
sets ω̃1 and ω̃2 there exists maxx∈ω̃1,z∈ω̃2 µ(x, z, f) =: µ(ω̃1, ω̃2). In [3] it was
shown that if the principal measure of chaos is positive, then it is generated
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by a pair of points such that at least one of them belongs to a basic set. We
extend this result by showing that, in certain cases, µ(ω̃1, ω̃2) is generated by
a pair of points such that one is periodic (see Lemmas 2 and 3 below). In our
next proof we shall use fundamental Lemma 3.3 from [1] which we restate as
follows.

Lemma 1 ([1]). Let ω̃ be a nowhere dense, indecomposable basic set and
δ > 0, λ > 0. Then, there is a compact portion W of ω̃ and an integer
K = K(δ, λ) with the following properties: for any n > K and any x ∈ ω̃,
there is a compact portion U of ω̃ contained in W such that:

(i) W ⊂ fn(U),

(ii) #{i ≤ n; | f i(u)− f i(x) |≥ δ} < λn for any u ∈ U .

2 Main Results.

Lemma 2. Let ω̃ be a basic set and p, q be periodic points belonging to the same
minimal periodic portion ω1 of ω̃. Then, for any ε > 0, there is an integer
K = K(ε, p, q) such that if {mi}∞i=1 is a sequence of nonnegative integers with
mi+1 −mi > K, then there is a u ∈ ω1 such that, for any i ≥ 1:

(i) 1
m2i−m2i−1

#{m2i−1 ≤ j < m2i : |f j(u)− f j(p)| > ε} < ε,

(ii) 1
m2i+1−m2i

#{m2i ≤ j < m2i+1 : |f j(u)− f j(q)| > ε} < ε.

Proof. We may assume that p and q belong to the same periodic portion
of f , say ω1. First, assume that ω is nowhere dense. Let ω1, ω2, . . . , ωm be
minimal periodic portions of ω. Consider g = fm. Choose ε1 > 0 such
that |y1 − y2| < ε1 implies |f i(y1) − f i(y2)| < ε for any y1, y2 ∈ I and any
i = 1, 2, . . . ,m. By Lemma 1, there exists a compact portion W of ω1 and
K1 = K(ε, p, q) such that for any n > K1, there are U(p, n) and U(q, n)
contained in W such that gn(U) ⊃ W ,

1
n

#{0 ≤ i < n : |gi(u)− gi(p)| > ε1} < ε (1)

for u ∈ U(p, n), and

1
n

#{0 ≤ i < n : |gi(u)− gi(q)| > ε1} < ε (2)

for u ∈ U(q, n). Let {mi} be such that |mi − mi+1| > mK1 and ri = [mi

m ],
where [z] denotes the integer part of z. For any i let U2i−1 = U(p, r2i− r2i−1)
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and U2i = U(q, r2i+1−r2i). Now we construct a sequence of sets V1 ⊃ V2 ⊃ . . .
such that V1 = U1, and for i > 1, Vi+1 ⊂ Vi is such that gri+1−ri(Vi+1) =
Ui+1. If we take K = mK1 and u ∈

⋂∞
i=1 Vi, then u and K have the desired

properties. In the other case when ω̃ is the union of finitely many compact
intervals, the proof is easy and we omit it.

Lemma 3. Let ω̃ be basic with minimal periodic portions ω0, . . . , ωn−1 such
that the endpoints of all ωi form one or two periodic orbits (of periods 2n or
n, respectively). Let p be any of these endpoints, and let di be the length of ωi.
Then, there is some u ∈ ω̃, such that u and p are isotectic and µ(u, p, f) ≥
1
n

∑n−1
i=0 di.

Proof. Assume, as we may, that p and q are the endpoints of ω0. Let ε > 0
and {mi} an increasing sequence of positive integers divisible by n such that

lim
k→∞

(m1 + · · ·+ mk)/mk+1 = 0. (3)

Then, by Lemma 1, there is a u ∈ ω0 such that (1) and (2) are satisfied for
any i ≥ i(ε). Obviously, (1) implies F ∗up(ε) > 1− ε. By (2),

1
m2i+1 −m2i

#{m2i ≤ j < m2i+1 : |f j(u)− f j(p)| < dj(modn) − ε} < ε,

whence

ξ(fm2i+j(u), f j(p), fn, t, (m2i+1−m2i)/n) =: ξj(t) < ε if t≤dj(modn)−ε, (4)

and ξj(t) = 1 if t ≥ dj(modn). Let ν(t) = #{0 ≤ i < n; t ≤ di}; i.e., ν(t) is the
number of periodic portions of diameter not less than t. Then, by (4),

ξ(fm2i(u), p, f, t, m2i+1 −m2i) ≤
1
n

(εν(t + ε) + n− ν(t + ε)). (5)

Letting ε → 0, since ν is right continuous by (3) and (5), we get Fup(t) ≤
1−ν(t)/n, while F ∗up(ε) > 1−ε yields F ∗up ≡ 1. Thus, µ(u, p, f) ≥ 1

n

∫ 1

0
ν(t) dt.

It is easy to verify that 1
n

∫ 1

0
ν(t) dt = 1

n

∑n−1
i=0 di.

The following lemma shows that the principal measure of chaos generated
by points u and p in the preceding proof is the greatest possible in the sense
that any two points x and y lying in the same portion of ω generate a measure
of chaos less than 1

n

∑n
k=0 dk.
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Lemma 4. Let ω1, ω2 be basic sets with minimal periodic portions of periods
m, r and lengths d1

0, . . . , d
1
m−1 and d2

0, . . . , d
2
r−1, respectively. Then, for any

x ∈ ω1 and y ∈ ω2,

µ(x, y, f) ≤ 1
m

m−1∑
k=0

d1
k +

1
r

r−1∑
k=0

d2
k.

Proof. We may assume that f i(x) belongs to the periodic portion ω1
i of ω1

of length d1
i , 0 ≤ i < m. Similarly, f j(y) ∈ ω2

j ⊂ ω2, where ω2
j is a periodic

portion of the length d2
j if 0 ≤ j < r. Thus, for any k ≥ 0,

lk ≤ |fk(x)− fk(y)| ≤ d1
k(mod m) + d2

k(mod r) + lk,

where lk is the distance between the portions ω1
k(mod m) and ω2

k(mod r). Then,
obviously, ξ(fk(x), fk(y), fmr, t) = 0 if t < lk, and ξ(fk(x), fk(y), fmr, t) = 1
if t > lk + d1

k(mod m) + d2
k(mod r). This implies

µ(fk(x), fk(y), fmr) ≤ d1
k(mod m) + d2

k(mod r),

and hence,

µ(x, y, f) ≤ 1
mr

mr−1∑
k=0

µ(fk(x), fk(y), fmr) ≤ 1
m

m∑
k=0

d1
k +

1
r

r∑
k=0

d2
k.

Lemma 5. If u, p, f are as in Lemma 3, then µ(u, p, f) = 1
n

∑n−1
i=0 di.

Proof. As in the preceding proof, we obtain the inequality

µ(fk(u), fk(p), fm) ≤ dk(modm),

where dk denotes the length of the periodic portion ωk, and consequently

µ(u, p, f) ≤ 1
mr

mr−1∑
k=0

µ(fk(u), fk(p), fmr) ≤ 1
m

m∑
k=0

dk,

which, together with Lemma 3, gives the equality.

Lemma 6. Let ω-limit sets ω1, ω2 of f be maximal and such that if ωi (i =
1, 2) is basic. Then the set of endpoints of its minimal periodic portions consist
of one or two periodic orbits. If µp(f) = µ(x, y, f), for some x ∈ ω1 and
y ∈ ω2, then µp(f) ≤ 2µs(f).
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Proof. The assertion is trivial if µ(f) = 0. So we may assume that ω1 is a
basic set, with minimal periodic portions of period m and lengths d1

0, . . . d
1
m−1.

Consider three cases.

(i) Let ω2 be basic, with minimal periodic portions of period r and lengths
d2
0, . . . , d

2
r−1. Applying Lemmas 3 and 4, we obtain u1, v1 ∈ ω1

1 and
u2, v2 ∈ ω2

1 such that

µ(x, y, f)≤ 1
m

m−1∑
j=0

d1
j +

1
r

r−1∑
j=0

d2
j =µ(u1, v1, p)+µ(u2, v2, f)≤2µs(f). (6)

The second inequality follows since the pairs (u1, v1) and (u2, v2) are
isotectic.

(ii) Let ω2 be the orbit of a periodic point of period r ≥ 1. Then, the
inequality follows by (6), where we have d2

j = 0, 0 ≤ j < r, and u2 = v2.

(iii) If ω2 is an infinite maximal ω limit set of the first type, then for any
ε > 0 and any y ∈ ω2, there is a periodic point p of sufficiently large
period r such that

1
r
#{0 ≤ j < r; |f j(y)− f j(p)| > ε} < ε

which for ε → 0, reduces this case to case (ii).

Our main result, the next theorem, follows from Lemma 6.

Theorem 2. Let f be a continuous map of the interval such that endpoints
of minimal periodic portions of any basic set of f form periodic orbits. Then,
µp(f) ≤ 2µs(f).
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