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Abstract

Using probabilistic methods, we find the exact Hausdorff measure
function and dimension of sets of dyadic Lipschitz points (i.e., slow
points) for functions belonging to particular Zygmund-type classes. We
then explore, in depth, the relationship between sets of slow points and
sets of standard Lipschitz points, both in the particular case of the van
der Waerden–Takagi function and for more general dyadic Zygmund
functions.

1 Zygmund Classes.

In 1945, A. Zygmund identified several classes of functions that inhabit an
intermediate ground between the spaces of continuous functions and differen-
tiable functions. Given a continuous periodic real-valued function f , we say
that f is in the Zygmund class Λ∗ if

f(x)− 1
2

[f(x + h) + f(x− h)] = O(h) (1.1)

as h → 0, uniformly in x. We obtain the related class λ∗ by replacing the
O(h) condition with o(h) in (1.1). Zygmund referred to a function f ∈ λ∗

as “smooth” and showed that, although it does not have to be differentiable
everywhere, f ′(x) must exist for uncountably many points in any subinterval
of the domain. By contrast, a function f ∈ Λ∗ does not have to “smooth” as
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it can have corners (but no cusps), and there exist examples that are nowhere
differentiable. On the other hand, for functions in Λ∗, Zygmund’s argument
does imply the existence of a dense set of points in any subinterval where a
Lipschitz condition is satisfied.

An important set of examples in this area are lacunary Fourier series of
the form

f(x) =
∞∑

n=0

an

2n
cos(2nx),

which is in Λ∗ if and only if {an} is a bounded sequence. Setting an = 1 gives
the Weierstrass function which Hardy showed to be nowhere differentiable in
1916. Replacing the cosine function in this construction with the“sawtooth”
function

h(x) =
{

x if 0 ≤ x ≤ 1/2
1− x if 1/2 < x < 1

which we take to be periodic with period 1 produces the van der Waerden–
Takagi function (see Figure 2)

w(x) =
∞∑

n=0

1
2n

h(2nx). (1.2)

This function is also nowhere differentiable but it fails to satisfy the definition
for Λ∗ because of cusps that appear at each dyadic rational. It is, however,
an important example of a function in the larger space Λ∗d or “dyadic lambda
star,” as it is called.

To define this space of functions formally, we first restrict our attention to
continuous real-valued functions of period 1. Referring back to equation (1.1),
we let I be the interval [a, b), where we set a = x − h and b = x + h. Then,
f ∈ Λ∗ if

‖f‖∗ = sup
I

(
|∆2(f, I)|

|I|

)
< ∞ (1.3)

where ∆2(f, I) is the second-order difference

∆2(f, I) = f

(
a + b

2

)
− 1

2
[f(a) + f(b)].

For the dyadic analogue Λ∗d, we follow the same procedure but restrict the
supremum in (1.3) to be over only dyadic intervals

In,k = [k/2n, (k + 1)/2n) where n ≥ 0, 0 ≤ k < 2n.
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Setting fn,k = ∆2(f, In,k) gives us the formulation f ∈ Λ∗d provided

‖f‖∗d = sup
n

sup
0≤k<2n

|2n fn,k| < ∞. (1.4)

The focus on dyadic intervals opens up the following crucial link to the
theory of stochastic processes. For each x and n, choose k so that x ∈ In,k.
Then let Dnf(x) be the dyadic difference quotient

Dnf(x) =
∆1(f, In,k)
|In,k|

where ∆1(f, In,k) is the first-order difference

∆1(f, In,k) = f

(
k + 1
2n

)
− f

(
k

2n

)
.

The key observation, expanded below and explored at length in [AP2], is that
for f ∈ Λ∗d, the sequence {Dnf(x)} is a martingale when considered as a
sequence of random variables on [0,1] (with Lebesgue measure) whose jumps,

Dn+1f(x)−Dnf(x),

are uniformly bounded.
Particular attention in this paper is given to functions where the jumps

have modulus one because, in this case, the martingale {Dnf(x)} is a classical
random walk. The van der Waerden function is a primary example of such a
function, and we’ll use Λ∗d,1 to denote the subset of all functions in Λ∗d satisfying

|Dn+1f(x)−Dnf(x)| = 1 for all x ∈ [0, 1).

The fact that {Dnf(x)} exhibits the properties of a random walk allows us
to determine the growth rate of {Dnf(x)} for almost all x ∈ [0, 1). Specifically,
the law of the iterated logarithm tells us that

lim sup
n→∞

|Dnf(x)|/
√

2n log log n = 1

almost surely; i.e., for a.e. x ∈ [0, 1), but there are sets of measure zero where
Dnf(x) behaves in exceptional ways. Of special interest here are sets of points
where the difference quotients grow more slowly than expected.

Definition 1. For a fixed natural number K, set

SK = SK(f) = {x ∈ [0, 1) : |Dnf(x)| ≤ K for all n}.

Given a particular function f , a point x ∈ [0, 1) is called a slow point with
constant K if x ∈ SK , or simply a slow point if x ∈ SK for some K.
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In terms of the graph of f , the condition x ∈ SK(f), or equivalently
|Dnf(x)| ≤ K, corresponds to saying that the function f satisfies a dyadic
Lipschitz condition at x. It is this condition, and its relationship to the regu-
lar Lipschitz condition, that form the main thrust of our study.

The present paper offers a thorough analysis of the sets SK(f) in the con-
text of Λ∗d functions, treating questions both of size and smoothness. These
questions are analogous to the questions studied by Davis, Kahane, Perkins,
Orey and Taylor about “slow” (and “fast”) points for Brownian motion. After
reviewing some representation theorems for the spaces Λ∗d and Λ∗d,1 in Section
2, we move on in Section 3 to prove a result describing the Hausdorff measure
function and dimension of the sets SK(f) for f ∈ Λ∗d,1. The situation for func-
tions in Λ∗d is more complicated (see, for example, the remarks at the end of
Section 3.) In Section 4, we turn to questions of smoothness. Looking specif-
ically at the van der Waerden–Takagi function, we prove that all of the slow
points on this function satisfy a regular Lipschitz condition and provide sharp
estimates for the constants. This turns out not to be the case for the general
Λ∗d function, however. In Section 5, we begin with examples of functions in Λ∗d
containing slow points that are not Lipschitz points, and then proceed with
an analysis of how pervasive this phenomenon is. As it turns out, a significant
number points in SK(f) are Lipschitz points for all f ∈ Λ∗d,1. In particular, we
show that the dimension of the set of Lipschitz points in SK(f) is equal to the
dimension of SK(f). An interesting footnote to this result is the discovery of
a curious universal set that, despite having measure zero, manages to contain
slow points that are also regular Lipschitz points for every function in Λ∗d,1.
The final section of the paper contains a result that is a counterbalance to the
dimension result of Section 5. By introducing random coefficients, we show
that, from a probabilistic point of view, slow points that also satisfy a regular
Lipschitz condition are in fact the rare exception.

The central insight underlying all of the main results is the interplay be-
tween the geometry of the graphs of the Λ∗d functions and the martingale theory
used to analyze the difference quotients. This relationship is at its most ele-
gant when the martingale in question is a classical random walk, and this is
essentially why the restriction to the subclass Λ∗d,1 leads so efficiently to the
sharp results of Theorem 5, Theorem 14, and Theorem 15. Extending these
theorems to the entire space Λ∗d is the next part of the story. The examples of
results in this direction that we include (Theorem 6, Lemma 13) suggest that
we should not expect anything as tidy or thorough as what we have found in
this special case.
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2 The Structure of Λ∗
d and Λ∗

d,1.

Let C be the space of continuous functions on [0, 1) that are continuous and
periodic with period 1. Given f ∈ C, let fN (x) be the continuous function
that is linear on each IN,k and satisfies

fN (x) = f(x) whenever x = k/2N

where 0 ≤ k < 2N . Using the convention that we take right-hand derivatives
at the corners of fN , we make the important observation that

f ′N (x) = DNf(x).

Inspired by the construction of the van der Waerden–Takagi function as
a sum of “sawteeth,” we offer a more explicit description of the linear in-
terpolation fN (x) in terms of dyadic “triangle” functions. Let t(x) be the
(non-periodic) function

t(x) =
{

h(x) if 0 ≤ x ≤ 1
0 otherwise

and for each dyadic interval In,k = [an, bn], set

tn,k(x) =
1
2n

t

(
x− an

2−n

)
.

Referring the reader to [AP2] for the necessary details,1 it turns out that

fN+1(x) = f0 +
N∑

n=0

2n−1∑
k=0

an,ktn,k(x) (2.1)

where f0 is constant, an,k = 2n+1fn,k and fn,k = ∆2(f, In,k) as in (1.4). The
fact that f ∈ C is enough to conclude that fN → f uniformly, and thus we
have the representation

f(x) = f0 +
∞∑

n=0

2n−1∑
k=0

an,ktn,k(x). (2.2)

Notice that we obtain the van der Waerden–Takagi function w(x) by setting
f0 = 0 and an,k = 1 for every n and 0 ≤ k < 2n.

1In [AP2], the authors use the Schauder “triangle” functions φn,k(x) = 2n+1tn,k(x)
which satisfy max φn,k = 1. In the present context, using tn,k is slightly more convenient
for characterizing the space Λ∗

d,1.
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Theorem 2. Let f ∈ C and let an,k be defined as in (2.1). Then

(a) f ∈ Λ∗d if and only if the coefficients {an,k} are bounded.

(b) f ∈ Λ∗d,1 if and only if |an,k| = 1 for all n and 0 ≤ k < 2n.

Proof. To prove (a), we just rewrite (1.4) in terms of the coefficients {an,k}
to get

‖f‖∗d =
1
2

sup
n

sup
0≤k<2n

|an,k|. (2.3)

To prove (b), let x ∈ In,k be given and let x∗ be some point in the opposite
half of In,k after it is bisected. Then

Dn+1f(x)−Dnf(x) = f ′n+1(x)− f ′n(x)

= f ′n+1(x)− 1
2

[
f ′n+1(x) + f ′n+1(x

∗)
]

=
1
2

[
f ′n+1(x)− f ′n+1(x

∗)
]

= 2
[
∆2(f, In,k)
|In,k|

]
= an,k,

and the result follows.

Implicit in equation (2.3) is the following relationship between the rate of
convergence in (2.2) and the Λ∗d norm.

Lemma 3. If f ∈ Λ∗d and fN is given by (2.1), then

|f(x)− fN (x)| ≤ 2‖f‖∗d 2−N .

Proof. For a given x and fixed n, the intervals In,k for 0 ≤ k < 2n are
disjoint and exactly one contains the point x. This allows us to write

|f(x)− fN (x)| =
∣∣∣∣ ∞∑
n=N

2n−1∑
k=0

an,ktn,k(x)
∣∣∣∣

≤
∞∑

n=N

|an,k|
1

2n+1
≤ 2‖f‖∗d

∞∑
n=N

1
2n+1

= 2‖f‖∗d2−N .

Looking at the graph of a function f ∈ Λ∗d over a fixed dyadic interval IN,k,
Lemma 3 asserts that all the points on the graph will fall inside the parallelo-
gram with vertical sides obtained by adding and subtracting 2 ‖f‖∗d2−N to the
linear component of fN (x) over IN,k. (See Figure 1.) This kind of geometric
intuition makes the following lemma seem quite plausible.
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Figure 1: A geometric interpretation of Lemma 3.

Lemma 4. If x ∈ SK(f) for a function f ∈ Λ∗d, and x, y ∈ In,k, then

|f(y)− f(x)| ≤ (K + 4‖f‖∗d)2−n.

Proof. Because x ∈ SK(f), we know |fn(y) − fn(x)| ≤ K2−n. Then, by
Lemma 3, we get

|f(y)− f(x)| ≤ |f(y)− fn(y)|+ |fn(y)− fn(x)|+ |fn(x)− f(x)|
≤ (2‖f‖∗d + K + 2‖f‖∗d)2−n.

3 Exact Hausdorff Measures for Sets of Slow Points.

The probabilistic arguments in the next result require that we fix f ∈ Λ∗d,1 so
that Dnf(x) is a classical random walk. To simplify notation, we shall begin
to write SK in place of SK(f) when no confusion is likely.

Theorem 5. The set SK for a function f ∈ Λ∗d,1 has Hausdorff dimension

1 + log2r where r = cos
(

π
2(K+1)

)
is the dominant eigenvalue for the random

walk that vanishes the first time it leaves the interval [−K, K].

Proof. For each n ∈ N, set

SK,n = {x ∈ [0, 1) : |Dmf(x)| ≤ K for all m ≤ n},

and observe that

SK =
∞⋂

n=1

SK,n.
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Using m(·) to denote Lebesque measure, we set pK,n = m(SK,n), which we can
interpret to be the probability that the random walk Dnf(x) stays bounded
by K during the first n steps.

Now SK,n consists of a disjoint union of dyadic intervals of length 1/2n. If
NK,n equals the number of intervals that make up SK,n, then it follows that
pK,n = NK,n2−n. With an eye toward computing the Hausdorff dimension of
SK , we set α = 1 + log2 r and use the previous fact to see that∑

I⊆SK,n

|I|α = NK,n
1

2nα
= pK,n

1
2n(α−1)

, (3.1)

where the sum is over the dyadic intervals that constitute SK,n.
To get our hands on the probabilities pK,n, let’s consider a modified ran-

dom walk that starts at zero and vanishes the first time it leaves the interval
[−K, K]. To model this, define the sub-stochastic matrix

QK = (qij)K
i,j=−K ,

by setting

qij =
{

1/2 if i = j ± 1
0 otherwise.

If v0 = (vi)K
i=−K is the initial distribution (in this case v0 = 1 and vi = 0 for

i 6= 0), then pK,n can be computed by summing the entries of Qn
Kv0. But QK

can be diagonalized, and by the theorems of Perron and Frobenius it has a
dominant eigenvalue r > 0, from which it follows that

c0r
n ≤ pK,n ≤ c1r

n, (3.2)

for strictly positive constants c0 and c1 which can be chosen independently of
the initial distribution v0.

Returning to the calculation started above in (3.1), we now have∑
I⊆SK,n

|I|α ≤ 2(1−α)n(c1r
n) = c1

(
21−αr

)n
= c1 < ∞,

and, given that SK ⊆ SK,n, we may conclude that dim(SK) ≤ α = 1 + log2 r.

To produce the reverse inequality it suffices, by Frostman’s Lemma, to
construct a non-trivial measure µK satisfying

µK(I) ≤ c|I|α (3.3)
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for all dyadic intervals I = In,k. The strategy is to define µK as the weak
limit of the sequence of measures µK,n where for each n we define

µK,n(A) =
m(A ∩ SK,n)

m(SK,n)

for Borel sets A ⊆ [0, 1). From the probabilistic point of view, µK,n(A) is the
conditional probability of finding a particular path in A given that the path
has stayed within [−K, K] through the first n steps.

Let In0,k be an arbitrary dyadic interval of the n0th generation. Then for
n ≥ n0, write

µK,n(In0,k) =
m(In0,k ∩ SK,n)

m(SK,n)
=

m(In0,k)
m(SK,n)

[
m(SK,n ∩ In0,k)

m(In0,k)

]
, (3.4)

where the bracketed quantity at the far right is now the conditional probability
that the random walk stays within [−K, K] during the first n steps given that
the path lies in the interval In0,k. If, at the n0th step, In0,k is not contained
in SK,n0 , then this probability is zero. On the other hand, if In0,k ⊆ SK,n0 ,
then, as before, we can compute the probability of remaining in [−K, K] by
summing the entries of Qn−n0v0 (for a different initial distribution vector v0),
and the conclusion is again that

m(SK,n ∩ In0,k)
m(In0,k)

≤ c1r
n−n0 . (3.5)

Combining (3.4), (3.5), and the first inequality in (3.2) now yields

µK,n(In0,k) ≤ 2−n0

pK,n

(
c1r

n−n0
)
≤

(
c1

c0

)
1

2n0rn0
=

(
c1

c0

)
|In0,k|α ,

which holds as long as n ≥ n0. The fact that the approximating sets SK,n are
nested makes it straightforward to verify that µK = wk- limn→∞ µK,n exists
and satisfies (3.3) as required.

All that remains is to compute the eigenvalue r. The eigenvalue equation

Qv = rv where v = (vj)K
j=−K

reduces to the system

1
2
vj−1 +

1
2
vj+1 = rvj , −K ≤ j ≤ K,
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with the added convention that vK+1 = v−K−1 = 0. The form of this equation
suggests setting vj = cos λj which immediately yields the solution r = cos λ
provided cos λ(K + 1) = 0, or

λ =
π

2(K + 1)
+

mπ

K + 1
, m ∈ Z.

Because r is the largest positive eigenvalue for Q, we take m = 0 and thus
r = cos

(
π

2(K+1)

)
as desired.

Theorem 5 gives a satisfying description of the size of SK(f) for functions
f ∈ Λ∗d,1 and, as the next proposition illustrates, it can also be used for
estimating the size of SK(f) for special classes of functions in Λ∗d. We point out
that the full story for functions in Λ∗d has not yet been determined. However,
we offer the following observations.

By Theorem 2, every f ∈ Λ∗d has the form

f(x) = f0 +
∞∑

n=0

2n−1∑
k=0

an,ktn,k(x)

where an,k = Dn+1f(x)−Dnf(x) are the “jumps” in the martingale Dnf(x).
For each f ∈ Λ∗d, define f̃ ∈ Λ∗d,1 by

f̃(x) = f0 +
∞∑

n=0

2n−1∑
k=0

ãn,ktn,k(x)

where ãn,k = an,k/|an,k| when an,k 6= 0 and ãn,k = 1 when an,k = 0.
It would be natural to conjecture that the size of of the set SK(f) decreases

as the coefficients increase, and thus conclude SK(f̃) ⊆ SK(f) for a function f
with jumps of size less than one. This is not the case, as the following modest
alteration to the van der Waerden-Takagi function shows. Let

w∗(x) =
1
2
h(x) +

∞∑
n=1

1
2n

h(2nx).

For this function, the first step of the associated random walk is ±1/2 and
all the subsequent steps are ±1. Considering K = 1, we can see that the set
S1(w∗) consists of the two points x = 1/3, 2/3. However, for the the van der
Waerden-Takagi function w(x), the set S1(w) has dimension 1/2 by Theorem
5. In this example, the dimension of the set S1 is determined not by the size
of the coefficients, but by complicated arithmetical considerations.

In the positive direction, the following theorem shows that we can say
something conclusive when the coefficients decrease monotonically.
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Theorem 6. Let f ∈ Λ∗d satisfy ‖f‖∗d ≤ 1/2. If for every x =
⋂∞

n=0 In,kn the
sequence (|an,kn

|) is decreasing, then SK(f̃) ⊆ SK(f).

Proof. Using the summation by parts formula we can write

Dnf(x) =
n−1∑
j=0

(Dj+1f(x)−Djf(x)) =
n−1∑
j=0

|aj,kj
| ãj,kj

= Dnf̃(x)|an,kn
|+

n−1∑
j=0

Dj+1f̃(x)
(
|aj,kj

| − |aj+1,kj+1 |
)
.

Now |an,k| ≤ 2‖f‖∗d ≤ 1 for all n and k, and assuming that x ∈ SK(f̃), we
may conclude

|Dnf(x)| ≤ K|an,kn |+ K

n−1∑
j=0

(
|aj,kj | − |aj+1,kj+1 |

)
= K|a0,k0 | ≤ K,

so that x ∈ SK(f) as well.

The argument in Theorem 6 can also be used to show that if x is slow for
f̃ , then x is slow for f whenever the sequence an,kn that coincides with the
point x can be written as the difference of monotone decreasing sequences.

4 The Van der Waerden–Takagi Function.

For a function f ∈ Λ∗d and constant P > 0, define LP = LP (f) to be the set
of points that satisfy a regular Lipschitz condition with constant P :

LP = LP (f) = {x : |f(x)− f(y)| ≤ P |x− y| for all y 6= x}.

Slow points are points that satisfy a dyadic Lipschitz condition:

SK = SK(f) = {x : |f((k + 1)/2n)− f(k/2n)| ≤ K2−n for all In,k 3 x}.

The remainder of this paper is devoted to exploring the relationship between
these two classes of sets in the context of functions in Λ∗d and Λ∗d,1. We begin
with the important specific case of the van der Waerden–Takagi function w(x)
defined above in (1.2) and sketched in Figure 2. For this particular function,
we show that all slow points are regular Lipschitz points.
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Theorem 7. For the van der Waerden–Takagi function w(x), slow points
with constant K ≥ 3 satisfy a regular Lipschitz condition with constant 3K −
log2(K)−3. Slow points with constant K = 1 or 2 require a Lipschitz constant
of K + 1.

0

0.5

0.2 0.4 0.6 0.8 1

Figure 2: The van der Waerden–Takagi function w(x) =∑∞
n=0(1/2n)h(2nx).

The argument for Theorem 7 is organized into a sequence of lemmas. The
first of these has a generalization to an arbitrary Λ∗d function, but the others
are specific to w(x). For notational convenience, we let

mf (x, y) =
f(y)− f(x)

y − x
.

For each x, let TK,x be given by

TK,x =
{

m + 1 if x ∈ SK,m\SK,m+1

∞ if x ∈ SK

which we can interpret to be the time at which Dnw(x) first leaves the interval
[−K, K]. Now consider the sequence of functions

wK,n(x) =
min{n,TK,x}∑

j=0

1
2j

h(2jx).
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Lemma 8. (a) The limit function

wK(x) = lim
n→∞

wK,n(x)

satisfies |mwK
(x, y)| ≤ K + 1 for all x 6= y in the domain.

(b) If z ∈ SK , then wK(z) = w(z).
(c) If x, z ∈ SK , then |mw(x, z)| ≤ K + 1.

Proof. Each wK,n is a continuous, piece-wise linear function consisting of
segments all with slope less than K+1 in absolute value. Because |wK,n+1(x)−
wK,n(x)| ≤ 2−n, the sequence converges uniformly and (a) follows. Statement
(b) is evident from the construction of wK,n(x), and (c) is a consequence of
(a) and (b).

The Lipschitz condition

|mw(z, x)| =
∣∣∣∣w(x)− w(z)

x− z

∣∣∣∣ ≤ M

is equivalent to the two inequalities

w(x) ≤ w(z) + M |x− z| and w(x) ≥ w(z)−M |x− z|, (4.1)

which amounts to saying that w satisfies a Lipschitz condition “from above”
and “from below,” respectively.

Lemma 9. If z ∈ SK , then w(x) ≥ w(z)− (K + 1)|x− z| for all x 6= z.

Proof. This follows from the fact that the sequence wK,n(x) is increasing
and bounded above by w(x).

Obtaining the other inequality in (4.1) is more involved. Given a point
x ∈ [0, 1], the dyadic expansion

x = .a1a2a3 . . . =
∞∑

j=1

aj

2j
where aj ∈ {0, 1}

is useful because Dnf(x) =
∑n

j=1(−1)aj , (provided we use the representation
ending in repeating 1s for dyadic rational points.) For instance, it should be
evident that the point

x1 = .010101 · · · = 1
4

( 1
1− 1/4

)
=

1
3
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satisfies x1 ∈ S1 as well as x1 = inf S1. In addition, y1 = w(x1) = 2/3 is the
maximum value for w(x). In fact, w(x) attains this maximum if and only if
x ∈ S1, which makes the Lipschitz estimate “from above” trivial in the case
K = 1.

In general, the points (xk, yk) on the graph of w(x) given by

xk = .0 . . . 01010 . . . =
0
2

+ · · ·+ 0
2k

+
1

2k+1
+

0
2k+2

+
1

2k+3
+

0
2k+4

+ · · ·

=
1

2k+1

( 1
1− 1/4

)
=

1
3 · 2k−1

yk = w(xk) =
k + 1

3 · 2k−1

have special significance.

Lemma 10. For each k ∈ N, the point (xk, yk) described above satisfies the
following:

(a) xk ∈ Sk and xk = inf Sk

(b) (xk, yk) falls on an extreme point of the closed convex hull of the graph
of w(x)

(c) yk = w(xk) ≤ w(z) for all z ∈ Sk.

Proof. Part (a) follows by observing {Dnf(xk)} = {1, 2, . . . , k, k − 1, k, . . .}
and realizing that the dyadic expansion for xk begins with as many zeros as
possible.

For (b), we return to the observation that w(x) attains its maximum value
of 2/3 if and only if x ∈ S1. This implies that the line segment from (1/3, 2/3)
to (2/3, 2/3) is part of the boundary of the convex hull of the graph of w(x)
over the interval [0, 1]. Now fix k ∈ N, and notice that if we restrict our
attention to the interval [0, 1/2k], then

w(x)− kx =
∞∑

n=k

1
2n

h(2nx) = w(2kx)

is a copy of the original function w(x) scaled by a factor of 1/2k. Thus,
w(x)− kx has a maximum value of 2/(3 · 2k) occurring between x = 1/(3 · 2k)
and x = 2/(3 · 2k). It follows that the line segment connecting the points(

1
3·2k , k+2

3·2k

)
and

(
1

3·2k−1 , k+1
3·2k−1

)
is part of the boundary of the convex hull of

the graph, proving part (b).
We prove (c) by induction. The case k = 1 is clear, so assume w(xk) ≤

w(x) for all x ∈ Sk, and let z ∈ Sk+1 be arbitrary. Using the symmetry of
the sawtooth function h(x), we can find a new point z+ ∈ Sk+1 such that
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Dnw(z+) ≥ 0 for all n and w(z+) = w(z). Necessarily, z+ < 1/2, and by
considering the dyadic expansion for z+, we can show that 2z+ ∈ Sk. But
using the induction hypothesis and the fact that xk+1 ≤ z+, we see that

w(z) = w(z+) = h(z+) +
∞∑

n=1

1
2n

h(2nz+) = h(z+) +
1
2
w(2z+)

≥ h(xk+1) +
1
2
w(xk) = w(xk+1)

which completes the proof.

Lemma 11. If z ∈ SK ∩ [0, 1/2] and x ∈ [1/2, 1], then mw(z, x) ≤ K −
log2(K + 1).

Proof. Straightforward geometric considerations show that we need only
worry about the case where z ∈ [1/4, 1/2] and x ∈ [1/2, 3/4], and over each of
these intervals we find a (scaled and translated) copy of the original graph of
w(x). This allows us to appeal to Lemma 10 to assert that mw(z, x) attains its
maximum as a function of x for some x′ ∈ Sk where k ≤ K. At this point, we
could appeal to lemma 8(c) and content ourselves with a Lipschitz constant
of K + 1, but Lemma 10 gives us enough information to do a bit better. In
particular, for x ∈ [1/2, 1], we have

mw(z, x) ≤ mw(z, x′) =
w(x′)− w(z)

(x′ − 1/2) + (1/2− z)

≤ (k + 1)/(3 · 2k−1)− (K + 1)/(3 · 2K−1)
1/(3 · 2k−1) + 1/(3 · 2K−1)

=
(k + 1)2K − (K + 1)2k

2K + 2k
.

This last estimate is less than K − log2(K + 1) if and only if

(4.2) r(k) = 2K [K − log2(K + 1)− (k + 1)] + 2k[2K − log2(K + 1) + 1] ≥ 0

for all k ≤ K. The case where K = 1 is clear. If K ≥ 2, some calculus
shows that the function r(k) attains its minimum at the point k0 satisfying
2k0 = 2K

(2K−log2(K+1)+1) ln 2 . Substituting back into (4.2) yields

2K

[
log2

(
2K − log2(K + 1) + 1

K + 1

)
+

(
1

ln 2
− 1 + log2(ln 2)

)]
≥ 0
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which is equivalent to

2K − log2(K + 1) + 1
K + 1

≥ 2(1− 1
ln 2 )

ln 2
.

This inequality is easy to check when K = 2, and the expression on the left is
increasing with increasing K, so the proof is complete.

The bound in Lemma 11 is essentially sharp. If we let

mK = sup
x,z

{mw(z, x) : z ∈ SK∩[0, 1/2], x ∈ [1/2, 1]} and aK = K−log2(K+1),

then an argument similar to the one in Lemma 11 shows that aK − mK is
bounded by 1

ln 2 + log2(ln 2) and, moreover, that limK→∞(aK −mK) = 1
ln 2 +

log2(ln 2).
Having accumulated a list of useful facts, we are now ready to prove that

all slow points on w(x) satisfy a regular Lipschitz condition.

Proof of Theorem 7. Fix z ∈ SK and let x 6= z. Lemma 9 gives us

w(x) ≥ w(z)− (K + 1)|x− z|,

which is stronger than we need to get the Lipschitz “from below” estimate
required for Theorem 7, so it just remains to prove the other inequality in
(4.1).

Let I = In′,k′ be the smallest dyadic interval containing both x and z, and
consider the function

w̃(x) =
∞∑

n=n′

1
2n

h(2nx) = w(x)− l(x).

On the interval I, l(x) = w(x)− w̃(x) is linear and, because z ∈ SK , the slope
necessarily satisfies |l′(x)| ≤ K. In the case |l′(x)| < K, consider the modified
function w̃(x). The point z is still a slow point with respect to this function,
but it is slow with constant K + (K − 1). By rescaling so that I corresponds
to [0, 1], we can apply Lemma 11 to assert that

w̃(x) ≤ w̃(z) + (2K − log2(K)− 2)|x− z|.

Finally, because w(x) = l(x) + w̃(x) and |l′(x)| ≤ K − 1, we conclude that

w(x) ≤ w(z) + (3K − log2(K)− 3)|x− z|,

as desired.
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If |l′(x)| = K, then the slow point z must necessarily fall on the “high”
side of the interval I and not too close to the midpoint. Using the ideas in
Lemma 10(a) and (c), we can prove something as strong as w(x) ≤ w(z), and
the proof is complete.

Another example of some interest is the alternating van der Waerden–
Takagi function

v(x) =
∞∑

n=0

(−1)n

2n
h(2nx),

sketched in Figure 3. By applying the technique in Lemmas 8 and 9 to the odd
and even partial sums of v(x), we can show that every slow point of constant
K satisfies a Lipschitz condition of constant K +2. We also add that for each
n, the discontinuities of Dnv(x) are bounded in modulus by 4, from which it
follows that v ∈ Λ∗ (see, e.g., the remark at the bottom of page 564 of [AP2]).

0

0.5

0.2 0.4 0.6 0.8 1

Figure 3: The alternating van der Waerden–Takagi function where
SK ⊆ LK+2

5 Lipschitz Points for General Functions in Λ∗
d and Λ∗

d,1.

We begin this section with examples of functions in Λ∗d that contain slow points
that do not satisfy a regular Lipschitz condition.
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Given a dyadic interval I = [a, b) = [k/2n, (k + 1)/2n), let

wI(x) = 1I(x) · 1
2n

w

(
x− a

2−n

)
,

which we can verify is a Λ∗d function and supported on the interval I.

Example 12. (a) One easy example of a non-Lipschitz slow point can be found
by considering a particular function wI(x) where, say, I = [0, 1/2). Because
we have defined DnwI(x) so that it is continuous on the right, DnwI(1/2) = 0
for all n and thus x = 1/2 is a slow point. On the other hand, for the original
van der Waerden–Takagi function, w(1/2m) = w(1 − 1/2m) = m/2m. This
yields a modulus of continuity of δ log(1/δ) at 0 and 1, and the resulting cusps
are inherited by WI at the endpoints of the interval I. To be more precise,
observe that

wI(1/2− 1/2m)
1/2m

=
w(1− 1/2m−1)

1/2m−1
= m− 1,

which is unbounded as m → ∞, and consequently x = 1/2 is not a Lipschitz
point.

(b) The previous example is a bit unsatisfactory because the point in ques-
tion is a dyadic rational point. However, it is possible to modify this con-
struction to produce a Λ∗d function with a non-dyadic slow point that does not
satisfy a Lipschitz condition. The example we seek is of the form

f(x) =
∞∑

m=1

wIm(x)

where {Im} is a sequence of disjoint dyadic intervals which are monotone in
the the sense that Im+1 always falls to the right of Im. To define the sequence
inductively, set I1 = [0, 1/2) and let y1 = 1. Now, assuming we have an interval
Im = [am, bm) = [knm

/2nm , (knm
+ 1)/2nm) and a point ym > bm, first pick a

new point ym+1 satisfying

(i) bm < ym+1 ≤ ym, and

(ii) ym+1 − bm ≤ 1
2m |Im| = 1

2m+nm .

Now pick Im+1 to be a dyadic interval falling in the open interval (bm, ym+1).
The fact that {Im} are all disjoint implies f ∈ Λ∗d, and the monotonicity gives
us

0 ≤ a− bm <
1

2m+nm
(5.1)
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where a = lim am is, as we now show, a non-Lipschitz slow point that is also
irrational.

The point a is slow because f(x) = 0 over every dyadic interval containing
a. To see that it is not Lipschitz, consider the sequence αm = bm − 1/2m+nm

which converges to a, and observe that∣∣∣∣f(a)− f(αm)
a− αm

∣∣∣∣ =
wIm

(αm)
(a− bm) + 1/2m+nm

≥ 1/2nmw (1− 1/2m)
(1/2m+nm) + 1/2m+nm

=
m/2m

1/2m + 1/2m
=

m

2
,

which is unbounded as m → ∞. Finally, note that if a were rational, then
substituting a = p/q and bm = (knm + 1)/2nm into (5.1) would yield

0 ≤ p 2nm − (knm + 1)q < q/2m,

which is impossible when p and q are integers and m is sufficiently large.

The previous examples prompt us to explore what extra assumptions we
might add in order to conclude that a slow point is also a Lipschitz point. One
result (which we state without proof) is that if f ∈ Λ∗, then every slow point
is Lipschitz. Another approach that focuses on functions in Λ∗d is to insist
that our slow point falls relatively close to the middle of each dyadic interval
in which it falls.

Fix m ∈ N and, for each dyadic interval In,k, let Mm
n,k be the closed middle

proportion of the interval given by

Mm
n,k =

[
k

2n
+

1
2n+m+1

,
k + 1
2n

− 1
2n+m+1

]
.

Then let

Mm
n =

2n−1⋃
k=0

Mm
n,k and Mm =

∞⋂
n=0

Mm
n .

So, for example, M2 would be the “middle 3/4ths” set

M2 =
[
1
8
,
7
8

]
∩

([
1
16

,
7
16

]
∪

[
9
16

,
15
16

])
∩ · · · .

A useful way to characterize the sets Mm is to observe that if x ∈ [0, 1] has
dyadic expansion x = .a1a2a3 . . ., then

x /∈ Mm if and only if an = an+1 = · · · = an+m for some n ∈ N.
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Lemma 13. If x is a slow point for a function f ∈ Λ∗d and x ∈ Mm for some
m, then x is a Lipschitz point.

Proof. Let x ∈ SK(f), fix y 6= x, and let In,k be the smallest dyadic interval
that contains both x and y. By Lemma 4,

|f(y)− f(x)| ≤ (K + 4‖f‖∗d) 2−n.

Now if c is the midpoint of In,k, then x ∈ Mm implies

|y − x| ≥ |c− x| ≥ εm2−(n+1)

where εm > 0 can be chosen independently of x and y. Finally,

|f(y)− f(x)|
|y − x|

≤ (K + 4‖f‖∗d) 2−n

εm2−(n+1)
=

2(K + 4‖f‖∗d)
εm

,

and x satisfies a Lipschitz condition.

Set

M =
∞⋃

m=1

Mm.

Also, recall that LP = LP (f) is the set of points that satisfy a Lipschitz
condition with constant P > 0 for a function f , and let

L = L(f) =
⋃

P>0

LP (f)

be the set of all Lipschitz points for f . The next proposition should be com-
pared to Zygmund’s result, cited in the opening paragraph, that every Λ∗

function admits a dense set of Lipschitz points.

Theorem 14. For every f ∈ Λ∗d,1, we have dim(SK ∩ L) = dim(SK).

Proof. By Lemma 13,

SK ∩M ⊆ SK ∩ L ⊆ SK ,

so it suffices to prove dim(SK ∩M) = dim(SK).
Let’s take K to be odd (the proof for even K is similar) and let m ≥ 4

be even. The first step is to define a set Sm
K ⊆ L as the intersection of a

decreasing sequence of sets Sm
K,n, similar to the sequence SK,n in the proof of

Theorem 5, but defined inductively on n. For n = 1, set Sm
K,1 = [0, 1]. For the

inductive step, we consider several cases.
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If n 6= −2 or − 1 (mod m) we set

Sm
K,n+1 = {x ∈ Sm

K,n : |Dn+1f(x)| ≤ K}.

If n = −2 (mod m), we define Sm
K,n+1 in the following way. Take each

dyadic interval In,k ⊆ Sm
K,n and bisect it. Because K is odd and Dnf(x) is

even, |Dn+1f(x)| ≤ K on both halves of In,k. However, we shall just keep a
half that ensures we eventually wind up in the middle set Mm. To be precise,
if In,k was the right half of its “parent” interval In−1,k′ at the (n−1)st dyadic
stage, then we include only the left half of In,k in the composition of Sm

K,n+1.
If In,k was the left half of In−1,k′ , then we keep only the right half. The
punch-line of this part of the construction (once the rest is finished) will be
that

∞⋂
n=1

Sm
K,n ⊆ Mm.

If n = −1 (mod m), then we have just carried out the “middle set adjust-
ment,” and we want to follow this with a step that returns the random walk
Dnf(x) to its previous distribution (scaled by 1/4.) To do this, set

Sm
K,n+1 = {x ∈ Sm

K,n : Dn+1f(x) = Dn−1f(x)}.

In effect, this again means looking at each dyadic interval In,k in Sm
K,n and

keeping exactly half. It follows that when n = −1 (mod m),

m(Sm
K,n+1) =

1
2
m(Sm

K,n) =
1
4
m(Sm

K,n−1).

We now define Sm
K by

Sm
K =

∞⋂
n=1

Sm
K,n.

To compute the Hausdorff dimension, we proceed just as in Theorem 5. The
key step in this argument is estimating the probabilities p

(m)
K,n = m(Sm

K,n). Let
QK be the same sub-stochastic matrix as before with dominant eigenvalue
r > 0, and let D1/4 = (1/4)I where I is the 2K+1 dimensional identity matrix.
Then p

(m)
K,mn can be computed by summing the entries of [D1/4Q

m−2
K ]nv0, and

this time we may assert that there are strictly positive constants d0 and d1 such
that d0r

n
m ≤ p

(m)
K,mn ≤ d1r

n
m, where rm = (1/4)rm−2. Following the argument

in Theorem 5 through, we are led to the conclusion that

dim(Sm
K ) = 1 + (1/m) log2 rm.
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By its construction, Sm
K ⊆ SK ∩ Mm, and the proof is then completed by

observing

lim
m→∞

[dim(Sm
K )] = lim

m→∞
[1 + (1/m) log2 rm] = 1 + log2 r = dim(SK).

6 Random Coefficients.

The middle set M , crucial to the proof of Theorem 14, is universal in that
it does not depend on a particular function f . What is especially curious
here is that M has measure zero and, for each f ∈ Λ∗d,1, the set SK(f) also
has measure zero. Yet still these sets intersect, and the overlap is substantial
enough to yield Theorem 14.

For the van der Waerden–Takagi function w(x), it is the case that SK(w)
is contained in M and hence L(w). This observation offers an extremely short
proof of Theorem 7, albeit without the estimates on the Lipschitz constants.
The alternating van der Waerden function v(x) represents the other extreme
where SK(v) ∩ M is quite small. For this latter example, we were again
able to prove that SK(v) ⊆ L(v), but the argument here rests on the nested
cancellations innate to alternating series. Examples where all slow points
satisfy a Lipschitz condition are, in fact, the rare exceptions. For a “random”
function in Λ∗d,1, we should not anticipate being so fortunate.

Theorem 15. Let f(x, ω) ∈ Λ∗d,1 be the random function

f = f(x, ω) =
∞∑

n=0

2n−1∑
k=0

bn,k(ω)tn,k(x)

where bn,k(ω) are i.i.d. Bernoulli random variables on a probability space Ω
taking values ±1 with probability 1/2. For each K, let Hα be α–dimensional
Hausdorff measure where α = 1 + log2 r as in Theorem 5. Then

Hα(SK(f) ∩ L(f)) = 0 ω–almost surely.

For the following discussion fix a constant P > 0 and natural number K.
Before beginning the proof, we establish the following geometric fact.

Lemma 16. Let f ∈ Λ∗d,1 be given, and consider two adjacent dyadic intervals
Im,k and Im,k+1. If |Dmf(x)| ≤ K for x ∈ Im,k and |Dmf(x)| ≥ 2P + K + 1
for x ∈ Im,k+1, then no point in Im,k can satisfy a Lipschitz condition with
constant P .
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Figure 4: Critical case where Dmf = −K on Im,k and Dmf = 2P+K+1
on Im,k+1.

Proof. Set y = (k + 2)/2m and let x ∈ Im,k be arbitrary. Then (see Figure
4), ∣∣∣∣f(y)− f(x)

y − x

∣∣∣∣ >
[(2P + K + 1)− (K + 1)]2−m

2 · 2−m
= P.

Proof of Theorem 15. The crux of the argument is to use the divergent
quality of the modulus of a random walk to show that the situation described
in Lemma 16 occurs with sufficient frequency. In particular, if {Yl}∞l=0 is a
classical random walk starting from 0, we can choose l′ so that

prob{|Yl| > 2(P + K + 1)} ≥ 1
2

for all l ≥ l′.

Now fix l0 > l′. For each f(x, ω) ∈ Λ∗d,1, we define a sequence of sets
{SP

K,nl0
}∞n=0 inductively on n. The reference point for this sequence is (again)

the sequence SK,n from the proof of Theorem 5.2 Although the sets SK,nl0

depend on the function f , it is significant that the measures m(SK,nl0) do not.

2Although it is similar, this notation should not be associated or confused with that used
in the proof of Theorem 14.
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For n = 0, set SP
K,0 = SK,0 = [0, 1]. Given SP

K,nl0
, let SP

K,(n+1)l0
⊆

SK,(n+1)l0∩SP
K,nl0

consist of those dyadic intervals in SK,(n+1)l0 of the (n+1)l0
generation that are not eliminated after applying the criterion in Lemma 16.
That is,

SP
K,(n+1)l0

= [SK,(n+1)l0 ∩ SP
K,nl0 ] \

⋃
k′

I(n+1)l0,k′ ,

where I(n+1)l0,k′ is part of the union to be removed if we can determine that
a Lipschitz condition with constant P is impossible because |D(n+1)l0f(x)| ≥
2P + K + 1 for x ∈ I(n+1)l0,k′±1.

It follows that LP , the set of all Lipschitz points of f with constant P ,
satisfies

SK ∩ LP ⊆
∞⋂

n=0

SP
K,nl0 . (6.1)

In an effort to derive a statement about the size of SP
K,nl0

, let’s fix our
attention on an arbitrary interval Inl0,k ⊆ SP

K,nl0
and look ahead l0 steps to

the (n + 1)l0 generation. For each interval I(n+1)l0,k′ in SK,(n+1)l0 ∩ Inl0,k,
one of the endpoints is necessarily a dyadic point of the (n + 1)l0 generation,
but the other is from some earlier generation. Let p0 > 0 be the probability,
which depends only on l0 and l′, that the other endpoint is of the (n+1)l0− l′

generation or earlier. If I(n+1)l0,k′ is such an interval, then our choice of l′

implies that with probability at least 1/2

|D(n+1)l0f(x)| ≥ ||Dnl0+1f(x)| − 2(P + K + 1)|
≥ |(K + 1)− 2(P + K + 1)| = 2P + K + 1

for all x in an interval adjacent to I(n+1)l0,k′ , and we may apply Lemma 16.
Thus, to construct the sequence {SP

K,nl0
}, we begin with the intervals in the

corresponding sequence {SK,nl0}, but at each stage remove them at a rate
sufficient to conclude that

E[m(SP
K,nl0)] ≤

(
1− p0

2

)n

m(SK,nl0). (6.2)

To finish the proof, it suffices to show that

E [Hα (SK ∩ LP )] = 0 for all P > 0,

and this will follow from (6.1) if we can establish

E

[
Hα

( ∞⋂
n=0

SP
K,nl0

)]
= 0 for all P > 0.
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Returning to the technique from the proof of Theorem 5, let NP
K,nl0

be the
number of intervals from the nl0 generation that make up SP

K,nl0
so that

Hα

( ∞⋂
n=0

SP
K,nl0

)
≤ lim inf

n→∞
NP

K,nl0

(
2−nl0

)α

= lim inf
n→∞

m(SP
K,nl0)2

(1−α)nl0

= lim inf
n→∞

m(SP
K,nl0)r

−nl0 .

Taking expectations and combining (6.2) with the estimate on m(SK,nl0) from
(3.2) yields

E

[
Hα

( ∞⋂
n=0

SP
K,nl0

)]
≤ lim inf

n→∞

(
1− p0

2

)n

c1 = 0,

and the proof is complete.
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