WAVELETS AND BESOV SPACES ON MAULDIN-WILLIAMS FRACTALS

Abstract

A. Jonsson has constructed wavelets of higher order on self-similar sets, and characterized Besov spaces on totally disconnected self-similar sets, by means of the magnitude of the coefficients in the wavelet expansion of the function. For a class of self-similar sets, W. Jin shows that such wavelets can be constructed by recursively calculating moments. We extend their results to a class of graph-directed self-similar sets, introduced by R. D. Mauldin and S. C. Williams.

1 Introduction.

Wavelet bases and multiresolution analysis on fractals has been studied in several papers (see e.g. [14, 11, 15, 3, 9]). R. S. Strichartz [9] defines continuous piecewise linear wavelets, and constructs a multiresolution analysis on several fractals.
A. Jonsson introduces Haar type wavelets of higher order on self-similar sets in [15]; i.e., piecewise polynomials of degree $\leq m$, which are continuous on totally disconnected self-similar sets, and constructs wavelet bases using multiple Haar type mother wavelets of higher order. Jonsson then characterizes Besov spaces on a class of totally disconnected self-similar sets, by means of the magnitude of the coefficients in the wavelet expansion of a function. Following his method, we generalize this in Theorem 5.2, and Theorem 5.4, to graph-directed self-similar sets, introduced by R. D. Mauldin and S. C. Williams in [10].

Jonsson's construction of the wavelet bases involves the Gram-Schmidt procedure, which in general is difficult to apply, because the inner product in

[^0]$L^{2}(\mu)$ is not easily calculated on fractals. However, for Haar type polynomials, the Gram-Schmidt procedure can be reduced to calculating moments. W. Jin [14] shows that, for a class of self-similar sets in \mathbb{R}^{n}, the moments can be calculated recursively. We extend the result by Jin to a class of strongly connected Mauldin-Williams fractals in Theorem 4.3.

2 Mauldin-Williams Fractals.

A digraph is a finite directed graph (V, E), in which every vertex has at least one edge leaving it, and there is one edge with two vertices leaving it. We allow several edges between vertices and edges from a vertex to itself, and enumerate the vertices from 1 to q; i.e., $V=\{1,2, \ldots, q\}$.

Let $E_{i j}$ be the set of edges from vertex i to vertex j, and let E_{i} be the set of edges leaving the vertex i.

For $i, j \in V$ and positive integers k, let $\mathcal{E}_{i j}^{k}$ denote the set of paths of length k from i to j. When we leave out an index in $\mathcal{E}_{i j}^{k}$ and write $\mathcal{E}_{i}^{k}, \mathcal{E}^{k}, \mathcal{E}_{i j}$, or \mathcal{E}_{i}, we mean that the index left out can take on any admissible value. For notational purposes, we let the set of vertices be included in \mathcal{E}. If $e=e_{1} e_{2} \ldots e_{n}$ and $\tilde{e}=\tilde{e}_{1} \tilde{e}_{2} \ldots \tilde{e}_{m}$ are paths, we write $e \tilde{e}$ for the path $e_{1} e_{2} \ldots e_{n} \tilde{e}_{1} \tilde{e}_{2} \ldots \tilde{e}_{m}$.

By an infinite path, we mean a sequence $e^{*}=e_{1} e_{2} \ldots$, such that the restriction $e^{*} \mid n=e_{1} e_{2} \ldots e_{n}$ of e^{*} to the first n characters, is a path. Let \mathcal{E}^{*} be the set of all infinite paths, and let \mathcal{E}_{i}^{*} be the set of infinite paths with initial vertex i.

Define $t(e)=j$ for a path e that terminates at the vertex j, and let $t(i)=i$ for a vertex i.

A similitude with contraction factor r is a transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, such that $|T(x)-T(y)|=r|x-y|$ for all $x, y \in \mathbb{R}^{n}$, for some fix $0<r<1$.

Definition 2.1. The ordered pair $\left((V, E),\left\{T_{e}\right\}_{e \in E}\right)$, is a Mauldin-Williams graph (MW-graph), if (V, E) is a digraph, and T_{e} is a similitude with contraction factor $0<r_{e}<1$ for each e in E.

We use the notation $T_{e}=T_{e_{1}} \circ T_{e_{2}} \circ \ldots \circ T_{e_{m}}$ and $r_{e}=r_{e_{1}} r_{e_{2}} \cdots r_{e_{m}}$, for $e=e_{1} e_{2} \ldots e_{m} \in \mathcal{E}^{m}$.

Given a MW-graph, it is shown in [10] that there exist a unique collection $\left\{K_{i}\right\}_{i \in V}$, of non-empty compact sets, which we will refer to as MauldinWilliams sets (MW-sets), such that

$$
\begin{equation*}
K_{i}=\bigcup_{i=1}^{q} \bigcup_{e \in E_{i j}} T_{e}\left(K_{j}\right) \tag{1}
\end{equation*}
$$

Iterating (1) we get that $K_{i}=\cup_{e \in \mathcal{E}_{i}^{m}} K_{e}$, where $K_{e}=T_{e}\left(K_{t(e)}\right)$.
We call $K=\cup_{i \in V} K_{i}$ a Mauldin-Williams fractal (MW-fractal), which is called the graph-directed construction object in [10]. For a more on MauldinWilliams graphs, see for example [13, 16, 10].

To a MW-graph we associate a matrix $A(t)$, for $t \geq 0$, by defining the (i, j)-th entry of $A(t)$ to be $a_{i j}(t)=\sum_{e \in E_{i j}} r_{e}^{t}$, with $a_{i j}=0$ if $E_{i j}=\emptyset$.

If A is a square matrix, then the spectral radius $\rho(A)$ of A, is the largest, in absolute value, eigenvalue of A. It can be shown that there exists a unique $d \geq 0$, such that $\rho(A(d))=1$. This d is called the dimension of the $M W$-graph and we call $A(d)$ the construction matrix. Let H^{d} denote the d-dimensional Hausdorff measure, and $H^{d} \mid F$ the restriction of H^{d} to the set F.

A MW-graph is strongly connected if for every pair of vertices i and j in V, there is a directed path from i to j.
Theorem 2.2. [10] If a strongly connected $M W$-graph has dimension d, then $H^{d}\left(K_{i}\right)<\infty$ for all $i \in V$.

It is not necessary that the MW-graph is strongly connected for the Hausdorff measure to be finite. It does however depend on the structure of the graph; see [10] for details.

A MW-graph satisfies the open set condition (OSC) if there exist nonempty open sets $\left\{U_{i}\right\}_{i \in V}$ such that for each $i \in V \cup_{e \in E_{i j}} T_{e}\left(U_{j}\right) \subset U_{i}$, with disjoint union.

Theorem 2.3. [8] If a strongly connected $M W$-graph has dimension d, then

$$
O S C \Longleftrightarrow H^{d}\left(K_{i}\right)>0 \text { for all } i \in V \Longleftrightarrow H^{d}(K)>0
$$

The proof of the implication \Longrightarrow of the left \Longleftrightarrow can be found in [10], while the converse is proven in [8], as is the right implication \Longleftrightarrow.

We say that two sets E and F are essentially disjoint (with respect to the d-dimensional Hausdorff measure) if $H^{d}(E \cap F)=0$.
Proposition 2.4. [8] If a $M W$-graph is strongly connected, then the sets $\left\{K_{e}\right.$: $\left.e \in E_{i}\right\}$ are pairwise essentially disjoint for all $i \in V$.
Corollary 2.5. If a $M W$-graph is strongly connected, the sets $\left\{K_{e}\right\}_{e \in \mathcal{E}_{i}^{k}}$ are pairwise essentially disjoint for all $k \geq 1$ and $i \in V$.

Assume that the MW-sets $\left\{K_{i}\right\}$ are pairwise essentially disjoint, and let $\mu_{i}=H^{d} \mid K_{i}$. Then $\mu=\sum_{i \in V} \mu_{i}$ has support K, and $\mu \mid K_{i}=\mu_{i}$. Each measure μ_{i} is invariant in the sense that

$$
\begin{equation*}
\mu_{i}(A)=\sum_{j=1}^{q} \sum_{e \in E_{i j}} r_{e}^{d} \mu_{j}\left(T_{e}^{-1}(A)\right) \tag{2}
\end{equation*}
$$

for all Borel sets $A \subseteq \mathbb{R}^{n}$. By (2) it follows that

$$
\begin{equation*}
\int_{K_{i}} f(x) \mathrm{d} \mu_{i}(x)=\sum_{j=1}^{q} \sum_{e \in E_{i j}} r_{e}^{d} \int_{K_{j}} f\left(T_{e}(x)\right) \mathrm{d} \mu_{j}(x) \tag{3}
\end{equation*}
$$

for all Borel measurable functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. Furthermore, we have that

$$
\begin{equation*}
\int_{K_{e}} f(x) \mathrm{d} \mu_{i}(x)=r_{e}^{d} \int_{K_{j}} f\left(T_{e}(x)\right) \mathrm{d} \mu_{j}(x) \text { for all } e \in \mathcal{E}_{i j} \tag{4}
\end{equation*}
$$

and especially $\mu_{i}\left(K_{e}\right)=r_{e}^{d} \mu_{j}\left(K_{j}\right)$. Since $\operatorname{diam} K_{e}=r_{e} \operatorname{diam} K_{j}$, we also have that

$$
\begin{equation*}
\mu_{i}\left(K_{e}\right)=\left(\operatorname{diam} K_{e}\right)^{d} \mu_{j}\left(K_{j}\right)\left(\operatorname{diam} K_{j}\right)^{-d} \tag{5}
\end{equation*}
$$

Definition 2.6. Let $0<d \leq n$ and let μ be a non-negative Borel measure on \mathbb{R}^{n} with $\operatorname{supp}(\mu)=F$. Then μ is a d-measure on F if there exists constants $c_{1}, c_{2}>0$ such that $c_{1} r^{d} \leq \mu(F \cap B(x, r)) \leq c_{2} r^{d}$ for all closed balls $B(x, r)$, with $x \in F$ and $0<r \leq 1$. If there exists a d-measure on a closed set F we say that F is a d-set.

Remark. We can replace $0<r \leq 1$ with $0<r \leq r_{0}$, where $r_{0}>0$, in Definition 2.6 without altering the meaning. The restriction of the d-dimensional Hausdorff measure to a d-set F will act as a canonical d-measure on F (see [17]).

Proposition 2.7. If a strongly connected $M W$-graph has dimension d, then the $M W$-graph satisfies the OSC iff the $M W$-fractal K is a d-set.

Proof. If K is a d-set, then, by Theorem 2.3, the OSC is satisfied, since the Hausdorff measure acts as a canonical d-measure on any d-set. Let $\mu=$ $\sum_{i=1}^{q} \mu_{i}$, where $\mu_{i}=H^{d} \mid K_{i}$, and put $M=\max _{j} \mu_{j}\left(K_{j}\right), m=\min _{j} \mu_{j}\left(K_{j}\right)$, $D=\max _{j} \operatorname{diam} K_{j}, r_{0}=\min _{j} \operatorname{diam} K_{j}$ and $r_{\min }=\min _{e \in E} r_{e}$. We will use r_{0} in Definition 5 according with the remark above.

Let $i \in V, x \in K_{i}$ and $0<r \leq r_{0}$. First we show that $\mu_{i}(B(x, r)) \geq c_{0} r^{d}$ for some $c_{0}>0$. We can find $e \in \mathcal{E}_{i}^{p}$, for some integer $p \geq 1$, such that $r r_{\text {min }} \leq \operatorname{diam} K_{e}<r$, and with $x \in K_{e}$. Then $K_{e} \subseteq B(x, r)$, so by (5) we have that

$$
\mu_{i}(B(x, r)) \geq \mu_{i}\left(K_{e}\right) \geq r^{d} \frac{r_{\min }^{d} m}{D^{d}}
$$

Next we will show that $\mu_{i}(B(x, r)) \leq c_{1} r^{d}$ for some $c_{1}>0$. If $e^{*}=e_{1} e_{2} \ldots \in$ \mathcal{E}^{*} is an infinite path, then $K_{e^{*}}=\cap_{m \geq 1} K_{e^{*} \mid m}$ is a singleton. If $z \in K_{i}$, there is at least one infinite path $e^{*} \in \mathcal{E}^{*}$ such that $z=K_{e^{*}}$. Choose exactly one such
infinite path e_{y} to each $y \in B(x, r) \cap K_{i}$ and let p_{y} be the smallest positive integer such that

$$
\begin{equation*}
r_{\min } r \leq \operatorname{diam} K_{e_{y} \mid p_{y}}=r_{e_{1}} \cdot \ldots \cdot r_{e_{p_{y}}} \operatorname{diam} K_{t\left(e_{p_{y}}\right)}<r \tag{6}
\end{equation*}
$$

Let I be the restrictions of all such infinite paths with initial vertex i, that is

$$
I=\bigcup_{y \in B(x, r) \cap K_{i}}\left\{e_{y} \mid p_{y}\right\}
$$

where we have chosen e_{y} and p_{y}, as explained above.
Note that, if $e_{z}\left|p_{1}, e_{w}\right| p_{2} \in I$, and $e_{w}\left|p_{1}=e_{z}\right| p_{1}$, then $p_{1}=p_{2}$ because otherwise p_{2} would not be the smallest possible integer satisfying (6). Therefore, by Corollary $2.5,\left\{K_{e}\right\}_{e \in I}$ is a collection of pairwise essentially disjoint sets.

The number of elements in I is bounded by a constant $c>0$, where c does not depend on r. To see this, let $\left\{U_{j}\right\}$ be the sets in the OSC and assume each U_{j} contains a ball with radius R. If $U_{e}=T_{e_{1}} \circ \ldots \circ T_{e_{p}}\left(U_{t(e)}\right)$, then $\left\{U_{e}\right\}_{e \in I}$ is a family of pairwise disjoint sets, where each U_{e} contains a ball with radius $r_{e_{1}} \ldots r_{e_{p}} R \geq R r_{\min } r_{0} r$. Then there must be a constant $c>0$ so that the number of elements in I is less then c.

It now follows, since $B(x, r) \cap K_{i} \subseteq \cup_{e \in I} K_{e}$, that

$$
\begin{aligned}
\mu_{i}(B(x, r)) & \leq \sum_{e \in I} \mu_{i}\left(K_{e}\right)=\sum_{e \in I} r_{e}^{d} H^{d}\left(K_{t(e)}\right) \\
& \leq \sum_{e \in I} r_{e_{1}}^{d} \ldots r_{e_{p}}^{d}\left(\operatorname{diam} K_{t(e)}\right)^{d} \frac{M}{r_{0}^{d}} \leq \frac{c M}{r_{0}^{d}} r^{d}=c_{1} r^{d}
\end{aligned}
$$

Hence each μ_{i} is a d-measure on K_{i}. It is easy to see that μ is a d-measure on $K=\cup_{i \in V} K_{i}$.

3 Sets Preserving Markov's Inequality.

We use the notation $\mathbb{N}=\{0,1,2, \ldots\}$, and write $z^{m}=z_{1}^{m_{1}} z_{2}^{m_{2}} \cdots z_{n}^{m_{n}}$ for $z \in \mathbb{R}^{n}$ and $m \in \mathbb{N}^{n}$. Let \mathcal{P}_{m} denote the set of real polynomials in \mathbb{R}^{n} of total degree at most m.

Definition 3.1. A closed set $F \subseteq \mathbb{R}^{n}$ preserves Markov's inequality if for every fixed positive integer m there exist a constant $c>0$, such that for all polynomials $P \in \mathcal{P}_{m}$ and closed balls $B=B(x, r), x \in F, 0<r \leq 1$, we have that

$$
\begin{equation*}
\max _{F \cap B}|\nabla P| \leq \frac{c}{r} \max _{F \cap B}|P| \tag{7}
\end{equation*}
$$

Remark. We can replace $0<r \leq 1$ with $0<r \leq r_{0}$, where $r_{0}>0$, without altering the meaning of Definition 3.1.

The space \mathcal{P}_{m} has dimension $D_{0}=\binom{n+m}{n}$ as a vector space, and if F preserves Markov's inequality and μ is a d-measure on F, then \mathcal{P}_{m} will have the same dimension D_{0} as a subspace of $L^{2}(\mu)$ (see [4]).

We let $\|f\|_{p}$ denote the standard L^{p}-norm with respect to μ, and $\|f\|_{p, F}$ the L^{p}-norm with respect to $\mu \mid F$.

If each MW-set K_{i} preserves Markov's inequality and $1 \leq p \leq \infty$ there exists constants $c_{1}, c_{2}>0$ such that

$$
\begin{equation*}
c_{1}\|P\|_{\infty, K_{e}} \leq\left[\mu_{i}\left(K_{e}\right)\right]^{-p}\|P\|_{p, K_{e}} \leq c_{2}\|P\|_{\infty, K_{e}} \tag{8}
\end{equation*}
$$

for all $e \in \mathcal{E}_{i}$ and $P \in \mathcal{P}_{m}$. To show (8) we will use that, if a set F preserves Markov's inequality, then there exists a constant $c>0$ such that $\|P\|_{\infty, F} \leq$ $c\|P\|_{p, F}$, for all $P \in \mathcal{P}_{m}$ (see [17]). If $e \in \mathcal{E}_{i j}$, (4) gives us that

$$
\begin{aligned}
\|P\|_{\infty, K_{e}} & =\left\|P \circ T_{e}\right\|_{\infty, K_{j}} \\
& \leq c\left(\int_{K_{j}}\left|P \circ T_{e}\right|^{p} \mathrm{~d} \mu_{j}\right)^{1 / p}=c\left(r_{e}^{-d} \int_{K_{e}}|P|^{p} \mathrm{~d} \mu_{i}\right)^{1 / p} \\
& =c\left(\frac{\mu_{j}\left(K_{j}\right)}{\mu_{i}\left(K_{e}\right)} \int_{K_{e}}|P|^{p} \mathrm{~d} \mu_{i}\right)^{1 / p} \leq \frac{1}{c_{1}}\left(\frac{1}{\mu_{i}\left(K_{e}\right)} \int_{K_{e}}|P|^{p} \mathrm{~d} \mu_{i}\right)^{1 / p}
\end{aligned}
$$

The right inequality in (8) is trivial.
Proposition 3.2. Let $\left\{K_{i}\right\}$ be the $M W$-sets associated with a $M W$-graph. If K_{i} is not a subset of any $n-1$ dimensional subspace of \mathbb{R}^{n} for any $i \in V$, then each K_{i} preserves Markov's inequality.
Remark. The MW-graph in Proposition 3.2 does not need to satisfy the OSC, nor be strongly connected.

Theorem 3.3. [7] $F \subseteq \mathbb{R}^{n}$ preserves Markov's inequality if there exists a constant $c>0$ so that for every closed ball $B=B(x, r)$, where $x \in F$ and $0<$ $r \leq 1$, there are $n+1$ affinely independent points $a_{i} \in F \cap B, i=1, \ldots, n+1$, such that the n-dimensional ball inscribed in the convex hull of a_{1}, \ldots, a_{n+1} has radius no less then cr .

We will use Theorem 3.3 (see [7] for a proof) to prove Proposition 3.2. Proposition 3.2 is known for IFS, cf. [6].
Proof of Proposition 3.2. Let $r_{\text {min }}=\min _{e \in E} r_{e}, D=\max _{j} \operatorname{diam} K_{j}$ and $r_{0}=\min _{j} \operatorname{diam} K_{j}$. Suppose $x \in K_{i}$ and that $0<r \leq r_{0}$. Since $x \in K_{i}$ there
exists $e \in \mathcal{E}_{i}^{*}$ such that $x=\cap_{m=1}^{\infty} K_{e \mid m}$. Let p be the smallest positive integer such that $r_{\text {min }} r \leq \operatorname{diam} K_{e \mid p}<r$. Since K_{m} is not a subset of any $n-1$ dimensional subspace of \mathbb{R}^{n}, there exists $n+1$ affinely independent points $y_{l}^{m} \in K_{m}, l=1, \ldots, n+1$. Assume we can inscribe a ball with radius c_{m} in the simplex spanned by $\left\{y_{1}^{m}, \ldots, y_{n+1}^{m}\right\}$ and let $c_{0}=\min _{m} c_{m}$. Suppose that $t(e \mid p)=j$ and define $a_{l}=T_{e \mid p}\left(y_{l}^{j}\right)$ for $l=1, \ldots, n+1$. Then $a_{l} \in K_{e \mid p} \subseteq$ $B(x, r) \cap K_{i}$ and we can inscribe a ball with radius $r^{*} \geq r_{e_{1}} r_{e_{2}} \ldots . \cdot r_{e_{p}} c_{j}$ in the simplex spanned by $\left\{a_{1}, \ldots, a_{n+1}\right\}$, since $T_{e \mid p}$ is a similitude. Therefore we can inscribe a ball in the convex hull of a_{1}, \ldots, a_{n+1}, with radius $r^{*} \geq$ $c_{0} r_{e_{1}} r_{e_{2}} \cdot \ldots \cdot r_{e_{p}}=c_{0} \operatorname{diam} K_{e \mid p} / \operatorname{diam} K_{j} \geq c_{0} r_{\min } r / D=c r$. By Theorem 3.3, K_{i} preserves Markov's inequality.

4 Moments and Wavelets.

In this section we will describe one way of constructing a wavelet basis for $L^{2}(\mu)$, introduced in [15], and show that moments can be calculated recursively for a class of strongly connected MW-fractals.

The key assumptions in the construction of the wavelets are: (i) the MWsets are d-sets, (ii) they preserves Markov's inequality, and (iii) $\mu(K)=$ $\sum_{e \in E} \mu\left(K_{e}\right)$, where μ is a d-measure on K. A strongly connected MW-graph that satisfies the OSC and has essentially disjoint MW-sets fulfils (i) and (iii), while Proposition 3.2 helps us determine that (ii) is fulfilled.
Example 4.1. An example of a strongly connected MW-fractal is the Hany fractal, introduced in [2] and further studied in [1]. All twelve similitudes in the MW-graph describing the Hany fractal (Figure 2) have contraction factor $1 / 3$.

Figure 1: The first four iterations in the construction of the Hany fractal.

In Example 4.5 we give another example of a MW-fractal that is given by a strongly connected MW-graph. An example of a MW-fractal that is not

Figure 2: The digraph for the Hany fractal.
strongly connected but still fulfils (i)-(iii) is the von Koch snowflake domain. However, the boundary of the snowflake; i.e., the closed von Koch curve, is a strongly connected MW-fractal, as are all fractals that are an essentially disjoint union of n copies of a self-similar fractal.

For $i \in V$ let $S_{0}^{i}=\mathcal{P}_{m}$ and S_{k}^{i} be the space of functions f, as a subspace of $L^{2}\left(\mu_{i}\right)$, such that f is a polynomial in \mathcal{P}_{m} on each K_{e}, for $e \in \mathcal{E}_{i}^{k}$, except perhaps in points belonging to several different K_{e}. Note that the set of all such points has zero μ-measure. We then get a nested sequence $S_{0}^{i} \subset S_{1}^{i} \subset S_{2}^{i} \ldots$ of subspaces of $L^{2}\left(\mu_{i}\right)$. Let $W_{0}^{i}=S_{0}^{i}$ and $W_{k+1}^{i}=S_{k+1}^{i} \ominus S_{k}^{i}$ for $k \geq 0$, where \ominus denotes the orthogonal complement. Then W_{1}^{i} will have dimension $D_{1}^{i}=D_{0}\left|E_{i}\right|-D_{0}$. Suppose that we have an orthonormal basis $\psi^{i, 1}, \ldots, \psi^{i, D_{1}^{i}}$ in W_{1}^{i} each with support in K_{i} and define

$$
\psi_{e}^{\sigma}(x)=\left[\frac{\mu_{i}\left(K_{e}\right)}{\mu_{j}\left(K_{j}\right)}\right]^{-1 / 2}\left(\psi^{t(e), \sigma} \circ T_{e}^{-1}\right)(x)
$$

for $e \in \mathcal{E}_{i}$ and $\sigma=1, \ldots, D_{e}$, where $D_{e}=D_{1}^{t(e)}$. Then $\left\{\psi_{e}^{\sigma}\right\}_{e \in \mathcal{E}_{i}^{k}}$ will form an orthonormal basis in W_{k+1}^{i} for $k \geq 1$. Let $\phi_{1}^{i}, \ldots, \phi_{D_{0}}^{i}$ be an orthonormal basis in $W_{0}^{i}=S_{0}^{i}$. To simplify the notation, we let $\mathcal{E}^{0}=V$ with $\mathcal{E}_{i}^{0}=$ $\{i\}$, and $\psi_{i}^{\sigma}=\psi^{i, \sigma}$ for $i \in V$. Then $\left\{\psi_{e}^{\sigma}: k \geq 0, e \in \mathcal{E}_{i}^{k}, 1 \leq \sigma \leq D_{e}\right\}$ together with $\left\{\phi_{l}^{i}: 1 \leq l \leq D_{0}\right\}$ will form a orthonormal basis in $\bar{L}^{2}\left(\mu_{i}\right)$ since $L^{2}\left(\mu_{i}\right)=\bigoplus_{k \geq 0} W_{k}^{i}$. Since the MW-sets K_{i} are assumed to be pairwise essentially disjoint, we have that $L^{2}(\mu)=\bigoplus_{k \geq 0} \bigoplus_{i=1}^{q} W_{k}^{i}$. Therefore

$$
\begin{equation*}
f=\sum_{i=1}^{q} \sum_{l=1}^{D_{0}} \alpha_{l}^{i} \phi_{l}^{i}+\sum_{k=0}^{\infty} \sum_{e \in \mathcal{E}^{k}} \sum_{\sigma=1}^{D_{e}} \beta_{e}^{\sigma} \psi_{e}^{\sigma} \tag{9}
\end{equation*}
$$

is a valid representation for f in $L^{2}(\mu)$, where $\beta_{e}^{\sigma}=\int f \psi_{e}^{\sigma} \mathrm{d} \mu$ and $\alpha_{l}^{i}=$ $\int f \phi_{l}^{i} \mathrm{~d} \mu$. Furthermore, this representation also holds in $L^{p}(\mu)$ for $1 \leq p \leq \infty$, see [15] for a proof of this in the case of an IFS.

Lemma 4.2. With the notation above, there exists a constant $c>0$, not depending on the wavelet basis, such that

$$
\begin{equation*}
\left\|\psi_{e}^{\sigma}\right\|_{p} \leq c \mu\left(K_{e}\right)^{(1 / p-1 / 2)} \text { for all } e \in \mathcal{E} \tag{10}
\end{equation*}
$$

Remark. By (5), Lemma 4.2 remains true if we replace $\mu\left(K_{e}\right)$ in (10) with $\operatorname{diam}\left(K_{e}\right)^{d}$.

Proof of Lemma 4.2. Assume that $e \in \mathcal{E}_{i j}$. Since $\psi^{j, \sigma}$ is a polynomial on each $K_{\tilde{e}}$ for $\tilde{e} \in E_{j}$ we can use (8) twice to show that there is a constant $c_{0}>0$ not depending on the wavelet basis such that $\left\|\psi^{j, \sigma}\right\|_{p} \leq c_{0}$.

$$
\begin{aligned}
\left\|\psi^{j, \sigma}\right\|_{p} & \leq \sum_{\tilde{e} \in E_{j}}\left\|\psi^{j, \sigma}\right\|_{p, K_{\tilde{e}}} \leq c_{2} \sum_{\tilde{e} \in E_{j}} \mu\left(K_{\tilde{e}}\right)^{p}\left\|\psi^{j, \sigma}\right\|_{\infty, K_{\tilde{e}}} \\
& \leq c_{3} \sum_{\tilde{e} \in E_{j}} \mu\left(K_{\tilde{e}}\right)^{p} \mu\left(K_{\tilde{e}}\right)^{-2}\left\|\psi^{j, \sigma}\right\|_{2, K_{\tilde{e}}} \\
& \leq c_{0} \sum_{\tilde{e} \in E_{j}}\left\|\psi^{j, \sigma}\right\|_{\infty, K_{\tilde{e}}}=c_{0}\left\|\psi^{j, \sigma}\right\|_{2}=c_{0} .
\end{aligned}
$$

Then, by using (5) and (4), we get that

$$
\begin{aligned}
\left\|\psi_{e}^{\sigma}\right\|_{p}^{p} & =\int_{K_{e}}\left|\left(\frac{\mu\left(K_{e}\right)}{\mu\left(K_{j}\right)}\right)^{-1 / 2}\left(\psi^{j, \sigma} \circ T_{e}^{-1}\right)\right|^{p} \mathrm{~d} \mu \\
& =\left(\frac{\mu\left(K_{e}\right)}{\mu\left(K_{j}\right)}\right)^{-p / 2} r_{e}^{d}\left\|\psi^{j, \sigma}\right\|_{p}^{p} \leq c_{0}^{p} \mu\left(K_{e}\right)^{-p / 2} r_{e}^{d} \\
& \leq c \mu\left(K_{e}\right)^{d(1 / p-1 / 2) p}
\end{aligned}
$$

For $F \subset \mathbb{R}^{n}$, and multi-indices $\mathbf{m} \in \mathbb{N}^{n}$ and $\mathbf{z} \in \mathbb{R}^{n}$, we define the moments of μ over F by

$$
M(F, \mathbf{m}):=\int_{F} \mathbf{z}^{\mathbf{m}} \mathrm{d} \mu=\int_{F} z_{1}^{m_{1}} z_{2}^{m_{2}} \cdots z_{n}^{m_{n}} \mathrm{~d} \mu
$$

and call $|\mathbf{m}|=m_{1}+m_{2}+\ldots+m_{n}$ the order of the moment. Recall that the D_{0} is the dimension of \mathcal{P}_{m} seen as a subspace of $L^{2}(\mu)$. Let $P_{1}, \ldots, P_{D_{0}}$ be the monomials of degree $\leq m$ and define $g_{k}^{i}=P_{k} \chi_{i}, k=1,2, \ldots, D_{0}$, where χ_{i} denotes the characteristic function on K_{i}.

Enumerate all $e \in E_{i}$ so that $E_{i}=\left\{e_{i 0}, \ldots, e_{i k_{i}}\right\}$, where $k_{i}=\left|E_{i}\right|-1$ and let $g_{j k}^{i}=P_{k}$ on $K_{e_{i j}}$ and 0 elsewhere, for $j=1,2, \ldots, k_{i}$, and $k=$ $1,2, \ldots, D_{0}$. Then $\left\{g_{k}^{i}\right\}_{k}$ together with $\left\{g_{j k}^{i}\right\}_{j, k}$ form a linearly independent set in S_{1}^{i} which we will orthogonalize using the Gram-Schmidt procedure and
obtain orthonormal basis for S_{0}^{i} and W_{1}^{i}. We use the standard inner product $<f, g>=\int_{K} f g \mathrm{~d} \mu$ and L^{2}-norm $\|f\|_{2}=<f, f>^{1 / 2}$. Let

$$
\phi_{1}^{i}=\frac{g_{1}^{i}}{\left\|g_{1}^{i}\right\|_{2}} \text { and } h_{k}^{i}=g_{k}^{i}-\sum_{l=1}^{k-1}<g_{l}^{i}, \phi_{l}^{i}>\phi_{l}^{i} \text { where } \phi_{k}^{i}=\frac{h_{k}^{i}}{\left\|h_{k}^{i}\right\|_{2}}
$$

for $k=2,3, \ldots, D_{0}$. Then $\left\{\phi_{k}^{i}\right\}_{k=1}^{D_{0}}$ will be an orthonormal basis in S_{0}^{i}. Continuing the Gram-Schmidt procedure on the remaining functions $g_{j k}^{i}$, we obtain an orthonormal basis $\left\{\psi_{j k}^{i}: j=1,2, \ldots, k_{i}\right.$ and $\left.k=1, \ldots, D_{0}\right\}$ for W_{1}^{i}. In this construction we need to calculate all moments of order $\leq 2 m$ over the MW-sets K_{i}, and over the sets K_{e}, for $e \in E$.

If $B=\left[b_{i j}\right]$ is a $n \times n$ matrix we define the matrix norm by

$$
\|B\|=\max _{1 \leq i \leq n} \sum_{j=1}^{n}\left|b_{i j}\right|
$$

The similitudes $T_{e}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ can be written as $T_{e}(\mathbf{z})=A_{e} \mathbf{z}+\mathbf{b}_{e}$, where $A_{e}=\left[a_{e i j}\right]$ is an $n \times n$ matrix, and $\mathbf{b}_{e} \in \mathbb{R}^{n}$.

Theorem 4.3. Suppose a strongly connected $M W$-graph, that satisfies the OSC, has construction matrix $A=A(d)$, essentially disjoint $M W$-sets, and similitudes $T_{e}(\mathbf{z})=A_{e} \mathbf{z}+\boldsymbol{b}_{e}$. If

$$
\begin{equation*}
\|A\| \max _{e \in E}\left\|A_{e}\right\|<1 \tag{11}
\end{equation*}
$$

then the moments of all orders over K_{i} can be calculated recursively.
If we know the moments over all K_{i}, then we can calculate the moments over K_{e} for all $e \in E$ by using (4). Note that the condition (11) implies that $\left\|A_{e}\right\|<1$ for all $e \in E$ since $\|A\| \geq \rho(A)=1$.

Example 4.4. The dimension of the Hany fractal is $d=\ln ((7+\sqrt{17}) / 2) / \ln 3$. If the similitudes are given by $T_{e}(\mathbf{z})=A_{e}(\mathbf{z})+b_{e}$, then $\left\|A_{e}\right\|=1 / 3$ for all edges e. The construction matrix is

$$
A=\left[\begin{array}{rr}
3\left(\frac{1}{3}\right)^{d} & \left(\frac{1}{3}\right)^{d} \\
4\left(\frac{1}{3}\right)^{d} & 4\left(\frac{1}{3}\right)^{d}
\end{array}\right]=\left[\begin{array}{cc}
\frac{6}{7+\sqrt{17}} & \frac{2}{7+\sqrt{17}} \\
\frac{8}{7+\sqrt{17}} & \frac{8}{7+\sqrt{17}}
\end{array}\right]
$$

Hence it follows by Theorem 4.3 that the moments can be calculated recursively.

Example 4.5. In this example we will illustrate the method described in this section. Let $K=K_{1} \cup K_{2}$, where K_{1} is the Sierpinski gasket with vertices $(0,0),(1,0)$ and $(1 / 2,1 / 2)$, and K_{2} is K_{1} reflected in the x-axis. We consider K as a MW-fractal given by the digraph (V, E) in Figure 4 together with the similitudes

$$
\begin{array}{ll}
T_{a}(z)=z / 2+(1 / 4,1 / 4) & T_{b}(z)=z / 2+(1 / 2,0) \\
T_{c}(z)=-z / 2+(1 / 2,0) & T_{d}(z)=-z / 2+(1 / 2,0) \\
T_{e}(z)=z / 2+(1 / 4,-1 / 4) & T_{f}(z)=z / 2+(1 / 2,0)
\end{array}
$$

where $z=(x, y)$. Let us begin the construction of an orthonormal basis for $L^{2}(K)$. We do this with polynomials of at most degree one, which means that (18) in Theorem 5.2 below, will be valid for $0<\alpha<2$.

Figure 3: The first four iterates in the construction of K.

Figure 4: The directed graph generating K.
It is easy to see that (11) is satisfied, so we can calculate the moments recursively. We need to calculate the moments of order ≤ 2 over K_{i}. Let μ be the restriction of the d-dimensional Hausdorff measure to K, where $d=$ $\ln 3 / \ln 2$, such that $\mu\left(K_{i}\right)=1$. Let $M_{i}(k, l)$ be the moment

$$
M_{i}(k, l)=\int_{K_{i}} x^{k} y^{l} \mathrm{~d} \mu
$$

and let the $\mathbf{M}_{1}=\left(M_{1}(1,0), M_{1}(0,1), M_{2}(1,0), M_{2}(0,1)\right)$ be the moments of order 1. Note that $M_{i}(0,0)=\mu\left(K_{i}\right)=1$. Using (12) we have that

$$
\begin{aligned}
& M_{1}(1,0)=\int_{K_{1}} x \mathrm{~d} \mu=\frac{1}{3} \int_{K_{2}} x \circ T_{c} \mathrm{~d} \mu+\frac{1}{3} \int_{K_{1}} x \circ T_{a} \mathrm{~d} \mu+\frac{1}{3} \int_{K_{1}} x \circ T_{b} \mathrm{~d} \mu \\
& \quad=\frac{1}{3} \int_{K_{2}}(-x / 2+1 / 2) \mathrm{d} \mu+\frac{1}{3} \int_{K_{1}}(x / 2+1 / 4) \mathrm{d} \mu+\frac{1}{3} \int_{K_{1}}(x / 2+1 / 2) \mathrm{d} \mu \\
& \quad=-\frac{1}{6} M_{2}(1,0)+\frac{1}{3} M_{1}(1,0)+\frac{5}{12}
\end{aligned}
$$

Doing this for every moment of order 1 , we arrive at the equation system $\left(I-\Gamma_{1}\right) \mathbf{M}_{1}=\mathbf{R}_{1}$, where

$$
\Gamma_{1}=\left[\begin{array}{rrrr}
\frac{1}{3} & 0 & -\frac{1}{6} & 0 \\
0 & \frac{1}{3} & 0 & -\frac{1}{6} \\
-\frac{1}{6} & 0 & \frac{1}{3} & 0 \\
0 & -\frac{1}{6} & 0 & \frac{1}{3}
\end{array}\right] \text { and } \mathbf{R}_{1}=\left[\begin{array}{r}
\frac{5}{12} \\
\frac{1}{12} \\
\frac{5}{12} \\
-\frac{1}{12}
\end{array}\right]
$$

Solving this equation system we get that $\mathbf{M}_{1}=(1 / 2,1 / 6,1 / 2,-1 / 6)$. In a similar way, the moments of order 2 are

$$
\begin{aligned}
\mathbf{M}_{2} & =\left(M_{1}(2,0), M_{1}(1,1), M_{1}(0,2), M_{2}(2,0), M_{2}(1,1), M_{2}(0,2)\right) \\
& =(11 / 36,1 / 12,5 / 108,11 / 36,-1 / 12,5 / 108)
\end{aligned}
$$

Let χ_{i} be the characteristic functions on K_{i}. Put $g_{1}=\chi_{1}, g_{2}=x \chi_{1}$ and define $h_{1}=g_{1}$ and let the first function in the Gram-Schmidt procedure be $\phi_{1}^{1}=h_{1} /\left\|h_{1}\right\|_{2}=\chi_{1}$. Continuing the orthonormalization procedure, we let

$$
\begin{aligned}
h_{2} & =g_{2}-<g_{2}, \phi_{1}^{1}>\phi_{1}^{1}=x \chi_{1}-\chi_{1} \int_{K_{1}} x \mathrm{~d} \mu \\
& =x \chi_{1}-\chi_{1} M(1,0)=\left(x-\frac{1}{2}\right) \chi_{1}
\end{aligned}
$$

and since

$$
\begin{aligned}
\left\|h_{2}\right\|_{2}^{2} & =\int_{K_{1}}\left(x-\frac{1}{2}\right)^{2} \mathrm{~d} \mu=\int_{K_{1}}\left(x^{2}-x+\frac{1}{4}\right) \mathrm{d} \mu \\
& =M_{1}(2,0)-M_{1}(1,0)+\frac{1}{4} M_{1}(0,0)=\frac{1}{18}
\end{aligned}
$$

we let $\phi_{2}^{1}=h_{2} /\left\|h_{2}\right\|_{2}=3 \sqrt{2}(x-1 / 2) \chi_{1}$. Continuing, we get the functions

$$
\phi_{1}^{i}=\chi_{i}, \quad \phi_{2}^{i}=\frac{3}{\sqrt{2}}(2 x-1) \chi_{i}, \quad \phi_{3}^{i}=\frac{3}{\sqrt{6}}\left(6 y+(-1)^{i}\right) \chi_{i}
$$

Then $\left\{\phi_{j}^{i}\right\}_{j}$ will be an ON-basis for S_{0}^{i}, so that $\left\{\phi_{j}^{i}\right\}_{i, j}$ is the required basis for $S_{0}=S_{0}^{1} \oplus S_{0}^{2}$. In a similar way we can produce an ON-basis $\left\{\psi_{j}^{i}\right\}_{i, j}$ for $W_{1}=W_{1}^{1} \oplus W_{1}^{2}$, where $W_{1}^{i}=S_{1}^{i} \backslash S_{0}^{i}$.

To prove Theorem 4.3, we need the following lemma; see e.g. [14] for a proof.

Lemma 4.6. If $D=\left[d_{i j}\right]$ is an $n \times n$ matrix such that $d_{i i}>0$ and $d_{i i}>$ $\sum_{i \neq j}\left|d_{i j}\right|, i=1,2, \ldots, n$, then D is non-singular.

Proof of Theorem 4.3. Observe that the moment of order 0 over K_{i} is $M\left(K_{i}, \mathbf{0}\right)=\mu\left(K_{i}\right)$. Assume that $\mathbf{m}=\left(m_{1}, m_{2}, \ldots, m_{n}\right) \neq \mathbf{0}$ and that all moments of order less then $|\mathbf{m}|$ are known. By (3), we get that

$$
\begin{align*}
M\left(K_{i}, \mathbf{m}\right) & =\int_{K_{i}} \mathbf{z}^{\mathbf{m}} \mathrm{d} \mu=\sum_{j=1}^{q} \sum_{e \in E_{i j}} r_{e}^{d} \int_{K_{j}} \mathbf{z}^{\mathbf{m}} \circ T_{e} \mathrm{~d} \mu \\
& =\sum_{j=1}^{q} \sum_{e \in E_{i j}} r_{e}^{d} \int_{K_{j}} \prod_{k=1}^{n}\left(\sum_{l=1}^{n} a_{e k l} z_{l}+b_{e k}\right)^{m_{k}} \mathrm{~d} \mu . \tag{12}
\end{align*}
$$

By the multinomial theorem, we have that

$$
\left(\sum_{l=1}^{n} a_{e k l} z_{l}\right)^{m_{k}}=\sum \frac{m_{k}!}{p_{1}!p_{2}!\cdots p_{n}!} a_{e k 1}^{p_{1}} a_{e k 2}^{p_{2}} \cdots a_{e k n}^{p_{n}} z_{1}^{p_{1}} z_{2}^{p_{2}} \cdots z_{n}^{p_{n}}
$$

where the sum is taken over $p_{1}+p_{2}+\ldots+p_{n}=m_{k}$ and $p_{l} \geq 0$. Thus, expanding $\prod_{k=1}^{n}\left(\sum_{l=1}^{n} a_{e k l} z_{l}\right)^{m_{k}}$ yields a polynomial of degree equal to $|\mathbf{m}|=$ $m_{1}+m_{2}+\ldots+m_{n}$. Using that $(a+b)^{m_{k}}=\sum_{l=0}^{m_{k}}\binom{m_{k}}{l} a^{m_{k}-l} b^{l}=a^{m_{k}}+$ $\sum_{l=1}^{m_{k}}\binom{m_{k}}{l} a^{m_{k}-l} b^{l}$, letting $a=\sum_{l=1}^{n} a_{e k l} z_{l}$ and $b=b_{e k}$, it follows that

$$
\prod_{k=1}^{n}\left(\sum_{l=1}^{n} a_{e k l} z_{l}+b_{e k}\right)^{m_{k}}=\prod_{k=1}^{n}\left(\sum_{l=1}^{n} a_{e k l} z_{l}\right)^{m_{k}}+P(e, \mathbf{m})
$$

where $P(e, \mathbf{m})$ is a polynomial of degree at most $|\mathbf{m}|-1$.
There are p moments of order equal to $|\mathbf{m}|$, where p is the number of combinations of $m_{1}, m_{2}, \ldots, m_{n}$ such that $m_{1}+m_{2}+\ldots+m_{n}=|\mathbf{m}|$. Enumerate the moments over K_{i} of order $|\mathbf{m}|$ from 1 to p, denoting them $M_{i s}$ for $1 \leq s \leq p$. Let m be the enumeration of the moment \mathbf{m}; i.e., $M_{i m}=M\left(K_{i}, \mathbf{m}\right)$. Then, by (12), we get that

$$
M_{i m}=\sum_{j=1}^{q} \sum_{e \in E_{i j}} r_{e}^{d} \int_{K_{j}} \prod_{k=1}^{n}\left(\sum_{l=1}^{n} a_{e k l} z_{l}\right)^{m_{k}} \mathrm{~d} \mu+R(i, m)
$$

where $R(i, m)$ is a sum of moments of order less then or equal to $|\mathbf{m}|-1$.
Now, consider the product

$$
\begin{equation*}
\prod_{k=1}^{n}\left(\sum_{l=1}^{n} d_{k l} z_{l}\right)^{m_{k}} \tag{13}
\end{equation*}
$$

where $\mathbf{m}=\left(m_{1}, m_{2}, \ldots, m_{n}\right)$, and $\left[d_{k l}\right]$ is an $n \times n$ matrix. Let s be the number of the moment over K_{i}, given by $\mathbf{s}=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$; i.e., $M_{i s}=M\left(K_{i}, \mathbf{s}\right)$. If $\Lambda_{m}\left(s,\left[d_{k l}\right]\right)$ is the sum of all coefficients of terms in the expansion of (13) with polynomial part $z_{1}^{s_{1}} z_{2}^{s_{2}} \cdots z_{n}^{s_{n}}$, then $\left|\Lambda_{m}\left(s,\left[d_{k l}\right]\right)\right| \leq \Lambda_{m}\left(s,\left[\left|d_{k l}\right|\right]\right)$, and

$$
\sum_{s=1}^{p} \Lambda_{m}\left(s,\left[d_{k l}\right]\right)=\prod_{k=1}^{n}\left(\sum_{k=1}^{n} d_{k l}\right)^{m_{k}}
$$

Hence it follows that

$$
\sum_{s=1}^{p}\left|\Lambda_{m}\left(s,\left[a_{e k l}\right]\right)\right| \leq \sum_{s=1}^{p} \Lambda_{m}\left(s,\left[\left|a_{e k l}\right|\right]\right)=\prod_{k=1}^{n}\left(\sum_{l=1}^{n}\left|a_{e k l}\right|\right)^{m_{k}}
$$

Then

$$
\begin{equation*}
\sum_{s=1}^{p}\left|\alpha_{e m s}\right| \leq \prod_{k=1}^{n}\left(\sum_{l=1}^{n}\left|a_{e k l}\right|\right)^{m_{k}} \leq \prod_{k=1}^{n}\left\|A_{e}\right\|^{m_{k}}=\left\|A_{e}\right\|^{|\mathbf{m}|} \tag{14}
\end{equation*}
$$

where $\alpha_{\text {ems }}=\Lambda_{m}\left(s,\left[a_{e k l}\right]\right)$. We now get that

$$
M_{i m}=\sum_{j=1}^{q} \sum_{e \in E_{i j}} r_{e}^{d} \sum_{k=1}^{p} \alpha_{e m k} M_{j k}+R(i, m)=\sum_{k=1}^{p} \sum_{j=1}^{q} \gamma_{i j m k} M_{j k}+R(i, m)
$$

where $\gamma_{i j m k}=\sum_{e \in E_{i j}} r_{e}^{d} \alpha_{e m k}$. Put

$$
\begin{aligned}
& \mathbf{M}=\left(M_{11}, M_{12}, \ldots, M_{1 p}, M_{21}, M_{22}, \ldots, M_{q p}\right), \\
& \mathbf{R}(|\mathbf{m}|)=\left(R_{11}, R_{12}, \ldots, R_{1 p}, R_{21}, R_{22} \ldots, R_{q p}\right)
\end{aligned}
$$

where $R_{k l}=R(k, l)$, and

$$
\Gamma_{|\mathbf{m}|}=\left[\begin{array}{cccccccc}
\gamma_{1111} & \gamma_{1112} & \ldots & \gamma_{111 p} & \gamma_{1211} & \gamma_{1212} & \ldots & \gamma_{1 q 1 p} \\
\gamma_{1121} & \gamma_{1122} & \ldots & \ldots & \ldots & \ldots & \ldots & \gamma_{1 q 2 p} \\
\vdots & \vdots & \ddots & & & & & \vdots \\
\gamma_{11 p 1} & \gamma_{11 p 2} & \ldots & \ldots & \gamma_{11 p p} & & & \gamma_{1 q p p} \\
\gamma_{2111} & \gamma_{2112} & \ldots & \ldots & \gamma_{211 p} & \gamma_{2211} & \ldots & \gamma_{2 q 1 p} \\
\vdots & & & & \ddots & & & \vdots \\
\vdots & & & & & \ddots & & \vdots \\
\vdots & & & & & & \ddots & \vdots \\
\gamma_{q 1 p 1} & \gamma_{q 1 p 2} & \ldots & \gamma_{q 1 p p} & \gamma_{q 2 p 1} & \ldots & \ldots & \gamma_{q q p p}
\end{array}\right] .
$$

Note that $\operatorname{diag}\left(\Gamma_{|\mathbf{m}|}\right)=\left(\gamma_{1111}, \gamma_{1122}, \ldots, \gamma_{11 p p}, \gamma_{2211}, \ldots, \gamma_{q q p p}\right)$. We are then left to solve the equation system

$$
\left(I-\Gamma_{|\mathbf{m}|}\right) \mathbf{M}=\mathbf{R}(|\mathbf{m}|),
$$

where I is the identity matrix. The vector $\mathbf{R}(|\mathbf{m}|)$ is known by assumption, so we need to show that $\left(I-\Gamma_{|\mathbf{m}|}\right)$ is non-singular, which we will do using Lemma 4.6. If $x_{i}=H^{d}\left(K_{i}\right)$, we have that

$$
x_{i} \sum_{e \in E_{i i}} r_{e}^{d}=\sum_{e \in E_{i i}} r_{e}^{d} x_{i} \leq \sum_{j=1}^{q} \sum_{e \in E_{i j}} r_{e}^{d} x_{j}=x_{i}
$$

and since $x_{i}>0$ we have that $\sum_{e \in E_{i i}} r_{e}^{d} \leq 1$. First we show that the diagonal elements of $\left(I-\Gamma_{|\mathbf{m}|}\right)$ are greater then 0 . Using that $\left\|A_{e}\right\|<1$ and $|\mathbf{m}| \geq 1$, we have that

$$
\begin{aligned}
\left|\gamma_{i i m m}\right| & =\left|\sum_{e \in E_{i i}} r_{e}^{d} \alpha_{e m m}\right| \leq \sum_{e \in E_{i i}} r_{e}^{d}\left|\alpha_{e m m}\right| \\
& \leq \sum_{e \in E_{i i}} r_{e}^{d}\left\|A_{e}\right\|^{|\mathbf{m}|}<\sum_{e \in E_{i i}} r_{e}^{d} \leq 1
\end{aligned}
$$

which proves that the diagonal elements $\left(1-\gamma_{i i m m}\right)>0$. Next we investigate the second condition in Lemma 4.6. We need to show that

$$
\sum_{(j, k) \neq(i, m)}\left|-\gamma_{i j m k}\right|<\left(1-\gamma_{i i m m}\right) .
$$

We get, by (14), that

$$
\begin{aligned}
\gamma_{i i m m} & +\sum_{(j, k) \neq(i, m)}\left|-\gamma_{i j m k}\right| \leq \sum_{k=1}^{p} \sum_{j=1}^{q}\left|\sum_{e \in E_{i j}} r_{e}^{d} \alpha_{e m k}\right| \\
& \leq \sum_{j=1}^{q} \sum_{e \in E_{i j}} r_{e}^{d}\left(\sum_{k=1}^{p}\left|\alpha_{e m k}\right|\right) \leq \sum_{j=1}^{q} \sum_{e \in E_{i j}} r_{e}^{d}\left\|A_{e}\right\|^{|\mathbf{m}|} \\
& \leq \sum_{j=1}^{q} \sum_{e \in E_{i j}} r_{e}^{d}\left\|A_{e}\right\| \leq \max _{e \in E}\left\|A_{e}\right\| \sum_{j=1}^{q} \sum_{e \in E_{i j}} r_{e}^{d} \\
& \leq\|A\| \max _{e \in E}\left\|A_{e}\right\|<1
\end{aligned}
$$

So by Lemma 4.6, $\left(I-\Gamma_{|\mathbf{m}|}\right)$ is non-singular and the proof is complete.

5 Besov Spaces.

The Besov spaces $B_{\alpha}^{p, q}(F)$ by Jonsson and Wallin, are defined on d-sets $F \subseteq$ \mathbb{R}^{n}, see [17] for a thorough treatment.

A net of mesh r is a subdivision of \mathbb{R}^{n} into equally sized half open cubes Q with side length r; i.e., cubes of the form $Q=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: a_{i} \leq\right.$ $\left.x_{i}<a_{i}+r\right\}$. Let \mathcal{N}_{ν} be the net with mesh $2^{-\nu}$ with one cube in the net having a corner at the origin and define $\mathcal{N}_{\nu}(F)=\left\{Q \in \mathcal{N}_{\nu}: Q \cap F \neq \emptyset\right\}$. Suppose μ is a d-measure on $F \subseteq \mathbb{R}^{n}$, with F preserving Markov's inequality, $1 \leq p, q \leq \infty$, $\alpha>0$, and $[\alpha]$ denotes the integer part of α. For $Q \in \mathcal{N}_{\nu}(F)$ let $P_{Q}(f)$ be the orthogonal projection of $L^{1}(\mu, 2 Q)$ onto the subspace $\mathcal{P}_{[\alpha]}$ of $L^{2}(\mu, 2 Q)$, that is $P_{Q}(f)=\sum_{|j| \leq[\alpha]} \pi_{j} \int_{2 Q} f \pi_{j} \mathrm{~d} \mu$, where $\left\{\pi_{j}\right\}_{j}$ is an orthonormal basis in the subspace $\mathcal{P}_{[\alpha]}$ of $L^{2}(\mu, 2 Q)$. Here $2 Q$ denotes the cube with the same center as Q but with sides two times that of Q.

Definition 5.1. Let ν_{0} be an integer and suppose $f: F \rightarrow \mathbb{R}$ is given. Define the sequence $\left\{A_{\nu}\right\}_{\nu=\nu_{0}}^{\infty}$ by

$$
\begin{equation*}
\left(\sum_{Q \in \mathcal{N}_{\nu}(F)} \int_{2 Q}\left|f-P_{Q}(f)\right|^{p} \mathrm{~d} \mu\right)^{1 / p}=2^{-\nu \alpha} A_{\nu} \tag{15}
\end{equation*}
$$

Then a function $f \in L^{p}(\mu)$ belongs to $B_{\alpha}^{p, q}(F)$ if

$$
\begin{equation*}
\|f\|_{B_{\alpha}^{p, q}(F)}:=\|f\|_{p}+\left(\sum_{\nu \geq \nu_{0}} A_{\nu}^{q}\right)^{1 / q}<\infty \tag{16}
\end{equation*}
$$

If p or q equals infinity, we interpret the expressions in Definition 5.1 in the natural limiting way.

Let $J_{\nu}=\left\{e \in \mathcal{E}: 2^{-\nu} \leq \operatorname{diam} K_{e}<2^{-\nu+1}\right\}$ and let ν_{1} be an integer. Define $\left\|\left\{\beta_{e}^{\sigma}\right\}\right\|$ for a sequence $\left\{\beta_{e}^{\sigma}\right\}_{e \in J_{\nu}, \nu \geq \nu_{1}}$ by

$$
\begin{equation*}
\left\|\left\{\beta_{e}^{\sigma}\right\}\right\|=\left(\sum_{\nu \geq \nu_{1}}\left(2^{\nu \alpha p} 2^{\nu d(p / 2-1)} \sum_{e \in J_{\nu}} \sum_{\sigma=1}^{D_{e}}\left|\beta_{e}^{\sigma}\right|^{p}\right)^{q / p}\right)^{1 / q} \tag{17}
\end{equation*}
$$

Theorem 5.2. Let $1 \leq p, q \leq \infty, \alpha>0, f \in B_{\alpha}^{p, q}(K), m \geq[\alpha]$ and f has the representation (9). Then

$$
\begin{equation*}
\left(\sum_{i \in V} \sum_{l=1}^{D_{0}}\left|\alpha_{l}^{i}\right|^{p}\right)^{1 / p}+\left\|\left\{\beta_{e}^{\sigma}\right\}\right\| \leq c\|f\|_{B_{\alpha}^{p, q}(K)} \tag{18}
\end{equation*}
$$

where c does not depend on f or the wavelet basis.
Remark. Note that the m in Theorem 5.2 refers to \mathcal{P}_{m} in the wavelet construction in Section 4.

Lemma 5.3. If $Q \in \mathcal{N}_{\nu-2}$ there exists a constant $c_{1}>0$, independent of ν and Q, such that there are at most c_{1} of the $e \in J_{\nu}$ with $K_{e} \cap Q \neq \emptyset$.

Proof. Let $r_{0}=\max _{e \in E} r_{e}$ and define $I_{Q}=\left\{e \in J_{\nu}: K_{e} \cap Q \neq \emptyset\right\}$. To each $e \in I_{Q}$ define e^{*} to be the shortest path $e^{*} \in I_{Q}$ with $K_{e} \subseteq K_{e^{*}}$ and let $M=\left\{e^{*}: e \in I_{Q}\right\}$. Then $\left\{K_{e}\right\}_{e \in M}$ is an collection of pairwise essentially disjoint sets. If $e \in I_{Q}$ then $K_{e} \subseteq 2 Q$, and since μ is a doubling measure, we have that

$$
\sum_{e \in M} \mu\left(K_{e}\right) \leq \mu(2 Q) \leq \mu\left(B\left(x, 8 \sqrt{n} 2^{-\nu}\right)\right) \leq c_{2} 2^{-\nu d}
$$

for any $x \in Q \cap K$. By (5) it follows that there is a constant c_{3}, such that $\mu\left(K_{e}\right) \geq c_{3} 2^{-\nu d}$ so the number of elements in M is bounded by c_{2} / c_{3}. If $e \in M$ and there is $e_{1} \in I_{Q}$ such that $K_{e_{1}} \subseteq K_{e}$, then $e_{1}=e \tilde{e}$ for some path \tilde{e}. Since $2^{-\nu} \leq \operatorname{diam} K_{e_{1}} \leq r_{0}^{|\bar{e}|} \operatorname{diam} K_{e} \leq r_{0}^{|\bar{e}|} 2^{-\nu+1}$, there is a constant k such that $|\tilde{e}| \leq k$. Therefore the number of elements in I_{Q} is less then $c_{1}=c_{4} c_{2} / c_{3}$ if c_{4} is the number of elements in \mathcal{E}^{k}.

Proof of Theorem 5.2. We give the proof for $1 \leq p, q<\infty$, since only minor modifications are needed for the other cases. Let c denote constant that can differ from line to line. Let ν_{1} be an integer such that $\max _{i} \operatorname{diam} K_{i}<$ $2^{-\nu_{1}+1}$. To each $e \in J_{\nu}, \nu \geq \nu_{1}$, choose exactly one $Q_{e} \in \mathcal{N}_{\nu-2}$ such that
$K_{e} \cap Q_{e} \neq \emptyset$, and let $P_{Q_{e}}=P_{Q_{e}}(f)$. Then $K_{e} \subseteq 2 Q_{e}$ and since ψ_{e}^{σ} is orthogonal to $P_{Q_{e}}$ whenever $m \geq[\alpha]$, we have that

$$
\begin{aligned}
\left|\beta_{e}^{\sigma}\right| & =\left|\int f \psi_{e}^{\sigma} \mathrm{d} \mu\right|=\left|\int\left(f-P_{Q_{e}}\right) \psi_{e}^{\sigma} \mathrm{d} \mu\right| \\
& \leq\left(\int_{K_{e}}\left|f-P_{Q_{e}}\right|^{p} \mathrm{~d} \mu\right)^{1 / p}\left(\int\left|\psi_{e}^{\sigma}\right|^{p^{\prime}} \mathrm{d} \mu\right)^{1 / p^{\prime}} \\
& \leq c\left(\int_{2 Q_{e}}\left|f-P_{Q_{e}}\right|^{p} \mathrm{~d} \mu\right)^{1 / p} \mu\left(K_{e}\right)^{\left(1 / p^{\prime}-1 / 2\right)} .
\end{aligned}
$$

Then, by the remark after Lemma 4.2, we have that

$$
\left|\beta_{e}^{\sigma}\right| \leq c 2^{-\nu d\left(1 / p^{\prime}-1 / 2\right)}\left(\int_{2 Q_{e}}\left|f-P_{Q_{e}}\right|^{p} \mathrm{~d} \mu\right)^{1 / p}
$$

The right side is independent of σ, and p^{\prime} is the dual index to p so it follows that

$$
\sum_{\sigma=1}^{D_{e}}\left|\beta_{e}^{\sigma}\right|^{p} \leq c 2^{-\nu d(p / 2-1)} \int_{2 Q_{e}}\left|f-P_{Q_{e}}\right|^{p} \mathrm{~d} \mu
$$

By Lemma 5.3 a cube $Q \in \mathcal{N}_{\nu-2}(K)$ can intersect only a finite number c_{1} of the K_{e} for $e \in J_{\nu}$, where c_{1} is independent of ν and Q. By this we get that

$$
\begin{aligned}
\sum_{e \in J_{\nu}} \sum_{\sigma=1}^{D_{e}}\left|\beta_{e}^{\sigma}\right|^{p} & \leq c 2^{-\nu d(p / 2-1)} \sum_{e \in J_{\nu}} \int_{2 Q_{e}}\left|f-P_{Q_{e}}\right|^{p} \mathrm{~d} \mu \\
& \leq c c_{1} 2^{-\nu d(p / 2-1)} \sum_{\substack{ \\
\mathcal{N}_{\nu-2}(K)}} \int_{2 Q}\left|f-P_{Q}\right|^{p} \mathrm{~d} \mu \\
& \leq c 2^{-\nu d(p / 2-1)} 2^{-(\nu-2) \alpha p} A_{\nu-2}^{p}
\end{aligned}
$$

where A_{ν} is given by (15). Then it follows that

$$
\left\|\left\{\beta_{e}^{\sigma}\right\}\right\|=\left(\sum_{\nu \geq \nu_{1}}\left(2^{\nu \alpha p} 2^{\nu d(p / 2-1)} \sum_{e \in J_{\nu}} \sum_{\sigma=1}^{D_{e}}\left|\beta_{e}^{\sigma}\right|^{p}\right)^{q / p}\right)^{1 / q} \leq c\left(\sum_{\nu \geq \nu_{1}-2} A_{\nu}^{q}\right)^{1 / q}
$$

It is clear that $\left|\alpha_{l}^{i}\right| \leq c\|f\|_{p}$ and then (18) follows if we let $\nu_{0}=\nu_{1}-2$ and $F=K$ in Definition 5.1.

Next we will prove a partial converse of Theorem 5.2. We can not expect a complete converse to be true, since the functions in the wavelet basis do not need to be in $B_{\alpha}^{p, q}(K)$, see [15].

Theorem 5.4. Let $\alpha>0$ and $1 \leq p, q \leq \infty$. If the sets $\left\{K_{e}\right\}_{e \in E}$ are pairwise disjoint and $f \in L^{1}(\mu)$, then

$$
\begin{equation*}
\|f\|_{B_{\alpha}^{p, q}(K)} \leq c\left(\left(\sum_{i \in V} \sum_{l=1}^{D_{0}}\left|\alpha_{l}^{i}\right|^{p}\right)^{1 / p}+\left\|\left\{\beta_{e}^{\sigma}\right\}\right\|\right) \tag{19}
\end{equation*}
$$

where c does not depend on f or the wavelet basis.
We will prove this using a characterization of $B_{\alpha}^{p, q}(K)$ using atoms; see e.g. [15], and [5] (see [12] for details). We write π_{ν} instead of \mathcal{N}_{ν} when we consider the elements as closed cubes. Suppose that F is a d-set with d-measure μ, $\alpha>0$ and $1 \leq p, q \leq \infty$. Let k be the integer such that $k<\alpha \leq k+1$. A function $a \in C^{k}\left(\mathbb{R}^{n}\right)$ is an (α, p)-atom if there exist a closed cube Q in \mathbb{R}^{n} with $\operatorname{supp}(a) \subset 3 Q$ and that

$$
\left|D^{j} a(x)\right| \leq s(Q)^{\alpha-|j|-d / p}, x \in \mathbb{R}^{n},|j| \leq k
$$

where $s(Q)$ denotes the side length of Q. We write a_{Q} for an atom associated to Q.
Definition 5.5. Let ν_{0} be an integer. Then $f \in B_{\alpha}^{p, q}(F)$ if there are (α, p) atoms a_{Q} and $s_{Q} \in \mathbb{R}$ such that

$$
\begin{equation*}
f=\sum_{\nu=\nu_{0}}^{\infty} \sum_{Q \in \pi_{\nu}} s_{Q} a_{Q} \tag{20}
\end{equation*}
$$

with convergence in $L^{p}(\mu)$ and that

$$
\begin{equation*}
\left(\sum_{\nu=\nu_{0}}^{\infty}\left(\sum_{Q \in \pi_{\nu}}\left|s_{Q}\right|^{p}\right)^{q / p}\right)^{1 / q}<\infty \tag{21}
\end{equation*}
$$

The norm of f is the infimum of (21) taken over all possible representations of f on the form in (20).

Suppose $g \in C^{\infty}\left(\mathbb{R}^{n}\right), e=e_{1} e_{2} \ldots e_{k} \in \mathcal{E}_{i j}^{k}$, and $g_{e}(x)=g \circ T_{e}^{-1}(x)$. Let $x^{*}=T_{e}^{-1}(x)$ so that $g_{e}(x)=g\left(x^{*}\right)$ and let $\mathbf{u} \in \mathbb{R}^{n}$ be a unit vector. Then for some unit vector $\mathbf{v} \in \mathbb{R}^{n}$, we have that

$$
\begin{align*}
\left(D_{\mathbf{u}} g_{e}\right)(x) & =\lim _{h \rightarrow 0} \frac{g_{e}(x+h \mathbf{u})-g_{e}(x)}{h}=\lim _{h \rightarrow 0} \frac{g\left((x+h \mathbf{u})^{*}\right)-g\left(x^{*}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{g_{e}\left(x^{*}+r_{e_{1}}^{-1} r_{e_{2}}^{-1} \cdot \ldots \cdot r_{e_{k}}^{-1} h \mathbf{v}\right)-g\left(x^{*}\right)}{h} \tag{22}\\
& =r_{e_{1}}^{-1} r_{e_{2}}^{-1} \cdot \ldots \cdot r_{e_{k}}^{-1} D_{\mathbf{v}} g\left(x^{*}\right)=r_{e_{1}}^{-1} r_{e_{2}}^{-1} \cdot \ldots \cdot r_{e_{k}}^{-1}\left(D_{\mathbf{v}} g\right)_{e}(x) \\
& =\frac{\operatorname{diam} K_{j}}{\operatorname{diam} K_{e}}\left(D_{\mathbf{v}} g\right)_{e}(x)
\end{align*}
$$

Let $\mathbf{l}=\left(l_{1}, \ldots, l_{n}\right)$ be a multi-index. Then, by iterating (22), there is a sequence of unit vectors $\mathbf{v}_{1}, \mathbf{v}_{2} \ldots, \mathbf{v}_{|| |}$such that

$$
\begin{aligned}
\left(D^{\mathbf{1}} g_{e}\right)(x) & =\left(\frac{\operatorname{diam} K_{j}}{\operatorname{diam} K_{e}}\right)^{|1|}\left(D_{\mathbf{v}_{1}} D_{\mathbf{v}_{2}} \ldots D_{\mathbf{v}_{|1|}} g\right)_{e}(x) \\
& =\left(\frac{\operatorname{diam} K_{j}}{\operatorname{diam} K_{e}}\right)^{|1|} D_{\mathbf{v}_{1}} D_{\mathbf{v}_{2}} \ldots D_{\mathbf{v}_{|1|}} g\left(x^{*}\right)
\end{aligned}
$$

We then get that

$$
\begin{equation*}
\left|\left(D^{\mathbf{1}} g_{e}\right)(x)\right| \leq c\left(\operatorname{diam} K_{e}\right)^{-|\mathbf{1}|} \max _{|\mathbf{m}|=|\mathbf{1}|}\left|D^{\mathbf{m}} g\left(x^{*}\right)\right| \tag{23}
\end{equation*}
$$

Let $d(A, B)=\inf \{|x-y|: x \in A, x \in B\}$ be the distance between two sets.

Lemma 5.6. Suppose that the sets $\left\{K_{e}\right\}_{e \in E}$ are pairwise disjoint and that δ is the minimum distance between any two of these sets. If $e=e_{1} e_{2} \ldots e_{k+1} \in$ \mathcal{E}^{k+1}, where $k \geq 1$, then

$$
d\left(K_{e}, K \backslash K_{e}\right) \geq r_{e_{1}} r_{e_{2}} \cdot \ldots \cdot r_{e_{k}} \delta
$$

Proof. Since $K=\cup_{\tilde{e} \in \mathcal{E}^{k+1}} K_{\tilde{e}}$, with a disjoint union, we have that $d\left(K_{e}, K \backslash\right.$ $\left.K_{e}\right)=\min \left\{d\left(K_{e}, K_{\tilde{e}}\right): \tilde{e} \in \mathcal{E}^{k+1}, \tilde{e} \neq e\right\}$. Suppose that $\tilde{e}=\tilde{e}_{1} \tilde{e}_{2} \ldots \tilde{e}_{k+1} \in$ \mathcal{E}^{k+1} and let l be the smallest integer such that $e_{l+1} \neq \tilde{e}_{l+1}$ so that $\tilde{e}=$ $e_{1} e_{2} \ldots e_{l} \tilde{e}_{l+1} \ldots \tilde{e}_{k+1}$. If $l=1$, then $d\left(K_{e}, K_{\tilde{e}}\right) \geq \delta$. If $l>1$ we have that

$$
\begin{aligned}
d\left(K_{e}, K_{\tilde{e}}\right) & =d\left(T_{e_{1} e_{2} \ldots e_{l}}\left(K_{e_{l+1} \ldots e_{k+1}}\right), T_{e_{1} e_{2} \ldots e_{l}}\left(K_{\tilde{e}_{l+1} \ldots \tilde{e}_{k+1}}\right)\right) \\
& \geq r_{e_{1}} r_{e_{2}} \cdot \ldots \cdot r_{e_{l}} d\left(K_{e_{l+1}}, K_{\tilde{e}_{l+1}}\right) \geq r_{e_{1}} r_{e_{2}} \cdot \ldots \cdot r_{e_{l}} \delta
\end{aligned}
$$

Assume that the sets $\left\{K_{e}\right\}_{e \in E}$ are pairwise disjoint and let δ be as in Lemma 5.6. If $P \in S_{1}^{j}$, meaning that P is a polynomial of degree $\leq m$ on each K_{e} with $e \in E_{j}$. We let P be defined for $x \in \mathbb{R}^{n}$ with $d\left(x, K_{j}\right)<\delta / 2$ by extending P to such x by letting P coincide with the polynomial defined by P on K_{e} whenever $d\left(x, K_{e}\right)<\delta / 2$, and $P(x)=0$ if $d\left(x, K_{j}\right) \geq \delta / 2$. For $e=e_{1} e_{2} \ldots e_{k+1} \in \mathcal{E}_{i j}$, let $P_{e}(x)=P \circ T_{e}^{-1}(x)$, so that $P_{e}(x)=0$ if $d\left(x, K_{e}\right) \geq r_{e_{1}} \cdot \ldots \cdot r_{e_{k}} \delta / 2$. Now, choose $\Phi^{j} \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ such that $\Phi^{j}(x) \equiv 1$ on K_{j} and $\Phi^{j}(x) \equiv 0$ if $d\left(x, K_{j}\right) \geq \delta / 2$ and define $\Phi_{e}(x)=\Phi^{j} \circ T_{e}^{-1}(x)$ and $\Phi_{j}=\Phi^{j}$ for $j \in V$. Then $\Phi_{e}(x) P_{e}(x)=\left(\Phi^{j} P\right)_{e}(x) \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ and $\left(\Phi^{j} P\right)_{e} \neq 0$ only if $d\left(x, K_{e}\right) \leq(\delta / 2) r_{e_{1}} \cdot \ldots \cdot r_{e_{k}}=\left(\delta \operatorname{diam} K_{e}\right) /\left(2 \operatorname{diam} K_{j}\right)$. Then, since $\delta \leq \operatorname{diam} K_{j}$, we have that $\operatorname{diam}\left(\operatorname{supp}\left(\Phi_{e}\right)\right) \leq 2 \operatorname{diam}\left(K_{e}\right)$.

Lemma 5.7. If 1 is a multi-index, $e \in \mathcal{E}$ and $j \in V$, there exists a constant $c>0$ such that

$$
\begin{equation*}
\left\|D^{\mathbf{1}}\left(\Phi_{e} \psi_{e}^{\sigma}\right)\right\|_{\infty} \leq c\left(\operatorname{diam} K_{e}\right)^{-|1|}\left(\mu\left(K_{e}\right)\right)^{-1 / 2} \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|D^{\mathbf{1}}\left(\Phi^{j} \phi_{l}^{j}\right)\right\|_{\infty} \leq c\left(\operatorname{diam} K_{j}\right)^{-|1|}\left(\mu\left(K_{j}\right)\right)^{-1 / 2}, \tag{25}
\end{equation*}
$$

where c depends on K_{j}, Φ^{j}, n, m and \mathbf{l}.
Remark. We can of course replace the right side of (25) with just a constant c, but choose to express us this way in order to simplify the notation later in this section.
Proof of Lemma 5.7. If $P \in S_{1}^{j}, d\left(x, K_{e}\right)<\delta / 2, x_{0} \in K_{e}$ and $x \in B=$ $B\left(x_{0}, \delta / 2\right)$ we have, by the remark after Definition 3.1, that

$$
\begin{aligned}
\left|D^{\mathbf{1}} P(x)\right| & \leq \max _{x \in B}\left|D^{1} P(x)\right| \leq c \max _{x \in K_{j} \cap B}\left|D^{1} P(x)\right| \\
& \leq c \max _{x \in K_{j} \cap B}|P(x)|=c\|P\|_{\infty, K_{e}}
\end{aligned}
$$

Therefore, by (8),

$$
\begin{equation*}
\left|D^{1} \psi^{j, \sigma}(x)\right| \leq c\left\|\psi^{j, \sigma}\right\|_{\infty, K_{e}} \leq c\left\|\psi^{j, \sigma}\right\|_{2, K_{e}} \leq c\left\|\psi^{j, \sigma}\right\|_{2, K_{j}}=c, \tag{26}
\end{equation*}
$$

which gives us (24) for $e \in V$. Similarly we have that $\left|D^{1} \phi_{l}^{j}(x)\right| \leq c$ which implies (25). Inequality (24) follows from (23) and (26), since

$$
D^{1}\left(\Phi_{e} \psi_{e}^{\sigma}\right)(x)=D^{1}\left(\Phi^{j} \psi^{j, \sigma}\right)_{e}(x)\left(\frac{\mu\left(K_{e}\right)}{\mu\left(K_{j}\right)}\right)^{-1 / 2},
$$

for $e \in \mathcal{E}_{i j}$.
Proof of theorem 5.4. Assume that the right side of (19) is finite and let ν_{1} be an integer such that $\max _{i} \operatorname{diam}_{K_{i}}<2^{-\nu_{1}+1}$. To each $K_{e}, e \in J_{\nu}$ and $\nu \geq \nu_{1}$, we associate exactly one $Q_{e} \in \pi_{\nu-2}$ with $Q_{e} \cap K_{e} \neq \emptyset$. For $Q \in \pi_{\nu-2}$, we define $I_{Q}=\left\{e \in J_{\nu}: Q\right.$ is associated to $\left.K_{e}\right\}$. Lemma 5.3 holds if we replace $\mathcal{N}_{\nu-2}$ with $\pi_{\nu-2}$, so there is a constant c_{1} not depending on ν or Q such that I_{Q} contains no more then c_{1} elements. Define the partial sum f_{N} as

$$
f_{N}=\sum_{i \in V} \sum_{l=1}^{D_{0}} \alpha_{l}^{i} \phi_{l}^{i}+\sum_{\nu=\nu_{1}}^{N-1} \sum_{e \in J_{\nu}} \sum_{\sigma=1}^{D_{e}} \beta_{e}^{\sigma} \psi_{e}^{\sigma} .
$$

Combining Lemma 5.3 with the fact that, for a fixed k, the functions ψ_{e}^{σ} have disjoint support for different $e \in \mathcal{E}^{k}$, and using the inequality

$$
\begin{equation*}
\left(\sum_{m=1}^{n} x_{m}\right)^{p} \leq n^{p-1} \sum_{m=1}^{n} x_{m}^{p} \tag{27}
\end{equation*}
$$

we get that

$$
\begin{aligned}
\left|\sum_{e \in J_{\nu}} \sum_{\sigma=1}^{D_{e}} \beta_{e}^{\sigma} \psi_{e}^{\sigma}(x)\right|^{p} & \leq\left(\sum_{e \in J_{\nu}} \sum_{\sigma=1}^{D_{e}}\left|\beta_{e}^{\sigma} \| \psi_{e}^{\sigma}(x)\right|\right)^{p} \\
& \leq c_{1}^{p-1} D^{p-1} \sum_{e \in J_{\nu}} \sum_{\sigma=1}^{D_{e}}\left|\beta_{e}^{\sigma}\right|^{p}\left|\psi_{e}^{\sigma}(x)\right|^{p}
\end{aligned}
$$

where $D=\max _{e \in E} D_{e}$. By the remark after Lemma 4.2, $\left\|\psi_{e}^{\sigma}\right\|_{p}^{p} \leq 2^{v d(p / 2-1)}$. If q^{\prime} is the dual index to q and $M>N>1$, we have that

$$
\begin{aligned}
\left\|f_{M}-f_{N}\right\|_{p} & =\left\|\sum_{\nu=N}^{M-1} \sum_{e \in J_{\nu}} \sum_{\sigma=1}^{D_{e}} \beta_{e}^{\sigma} \psi_{e}^{\sigma}\right\|_{p} \leq \sum_{\nu=N}^{M-1}\left(\int_{K}\left|\sum_{e \in J_{\nu}} \sum_{\sigma=1}^{D_{e}} \beta_{e}^{\sigma} \psi_{e}^{\sigma}(x)\right|^{p} \mathrm{~d} \mu\right)^{1 / p} \\
& \leq c \sum_{\nu=N}^{M-1}\left(\sum_{e \in J_{\nu}} \sum_{\sigma=1}^{D_{e}}\left|\beta_{e}^{\sigma}\right|^{p}\left\|\psi_{e}^{\sigma}\right\|_{p}^{p}\right)^{1 / p} \\
& \leq c \sum_{\nu=N}^{M-1} 2^{-v \alpha}\left(2^{\nu d(p / 2-1)} 2^{\nu \alpha p} \sum_{e \in J_{\nu}} \sum_{\sigma=1}^{D_{e}}\left|\beta_{e}^{\sigma}\right|^{p}\right)^{1 / p} \\
& \leq c\left(\sum_{\nu=N}^{M-1} 2^{-\nu \alpha q^{\prime}}\right)^{1 / q^{\prime}}\left(\sum_{\nu=N}^{M-1}\left(2^{\nu d(p / 2-1)} 2^{\nu \alpha p} \sum_{e \in J_{\nu}} \sum_{\sigma=1}^{D_{e}}\left|\beta_{e}^{\sigma}\right|^{p}\right)^{q / p}\right)^{1 / q} \\
& \leq c 2^{-\alpha N}\left\|\left\{\beta_{e}^{\sigma}\right\}\right\|
\end{aligned}
$$

Thus $\left\{f_{N}\right\}$ is a Cauchy sequence in $L^{p}(\mu)$, which implies that the wavelet series (9) of f converges to f in $L^{p}(\mu)$. Therefore, by defining $\psi_{e}^{\sigma}, \phi^{j}$ and Φ^{j} as discussed earlier, we can represent f as

$$
f=\sum_{i \in V} \sum_{l=1}^{D_{0}} \alpha_{l}^{i} \Phi^{i} \phi_{l}^{i}+\sum_{k=0}^{\infty} \sum_{e \in \mathcal{E}^{k}} \sum_{\sigma=1}^{D_{e}} \beta_{e}^{\sigma} \Phi_{e} \psi_{e}^{\sigma}
$$

For $Q \in \pi_{\nu}$ define

$$
f_{Q}=\sum_{i \in V}\left[\sum_{l=1}^{D_{0}} \alpha_{l}^{i} \Phi^{i} \phi_{l}^{i}\right]_{Q}+\sum_{e \in I_{Q}} \sum_{\sigma=1}^{D_{e}} \beta_{e}^{\sigma} \Phi_{e} \psi_{e}^{\sigma}
$$

where $[\cdot]_{Q}$ means that it is present only if Q is associated to K_{i}, and put $f_{Q}=0$ if $I_{Q}=\emptyset$.

Let $k_{Q}=\max _{|\mathbf{l}| \leq[\alpha]+1} 2^{-(\nu-2)|\mathbf{l}|}\left\|D^{\mathbf{1}} f_{Q}\right\|_{\infty}$ and

$$
a_{Q}= \begin{cases}f_{Q} 2^{-(\nu-2)(\alpha-d / p)} / k_{Q} & \text { if } k_{Q} \neq 0 \\ 0 & \text { if } k_{Q}=0\end{cases}
$$

Then a_{Q} is an (α, p)-atom with $k=[\alpha]+1$. If we let $s_{Q}=k_{Q} 2^{(\nu-2)(\alpha-d / p)}$ we have that $f_{Q}=s_{Q} a_{Q}$ and that $f=\sum_{\nu=\nu_{1}}^{\infty} \sum_{Q \in \pi_{\nu-2}} s_{Q} a_{Q}$. By Lemma 5.7, we get that

$$
\begin{aligned}
\left|D^{\mathbf{1}} f_{Q}(x)\right| \leq & \sum_{i \in V}\left[\sum_{l=1}^{D_{0}}\left|\alpha_{l}^{i}\right|\left|D^{\mathbf{1}}\left(\Phi^{i} \phi_{l}^{i}\right)\right|\right]_{Q}+\sum_{e \in I_{Q}} \sum_{\sigma=1}^{D_{e}}\left|\beta_{e}^{\sigma} \| D^{\mathbf{1}} \Phi_{e} \psi_{e}^{\sigma}\right| \\
\leq & c \sum_{i \in V}\left[\sum_{l=1}^{D_{0}}\left|\alpha_{l}^{i}\right|\left(\operatorname{diam} K_{i}\right)^{-|\mathbf{1}|} \mu\left(K_{i}\right)^{-1 / 2}\right]_{Q} \\
& +c \sum_{e \in I_{Q}} \sum_{\sigma=1}^{D_{e}}\left|\beta_{e}^{\sigma}\right|\left(\operatorname{diam} K_{e}\right)^{-|\mathbf{1}|} \mu\left(K_{e}\right)^{-1 / 2} \\
\leq & c\left(\sum_{i \in V}\left[\sum_{l=1}^{D_{0}}\left|\alpha_{l}^{i}\right| 2^{\nu|\mathbf{1}|}\right]_{Q}+\sum_{e \in I_{Q}} \sum_{\sigma=1}^{D_{e}}\left|\beta_{e}^{\sigma}\right| 2^{\nu|\mathbf{1}|} 2^{\nu d / 2}\right)
\end{aligned}
$$

Since the number of elements in I_{Q} is bounded by a constant independent of Q and ν, we can use (27) and get that

$$
\left\|D^{1} f_{Q}\right\|_{\infty} \leq c 2^{\nu|1|}\left(\sum_{i \in V}\left[\sum_{l=1}^{D_{0}}\left|\alpha_{l}^{i}\right|^{p}\right]_{Q}+2^{\nu d p / 2} \sum_{e \in I_{Q}} \sum_{\sigma=1}^{D_{e}}\left|\beta_{e}^{\sigma}\right|^{p}\right)^{1 / p}
$$

By this we can estimate k_{Q}, using (27), with

$$
k_{Q} \leq c\left(\sum_{i \in V}\left[\sum_{l=1}^{D_{0}}\left|\alpha_{l}^{i}\right|^{p}\right]_{Q}+2^{\nu d p / 2} \sum_{e \in I_{Q}} \sum_{\sigma=1}^{D_{e}}\left|\beta_{e}^{\sigma}\right|^{p}\right)^{1 / p},
$$

so that

$$
\begin{aligned}
& \sum_{Q \in \pi_{\nu-2}}\left|s_{Q}\right|^{p}=\sum_{Q \in \pi_{\nu-2}} k_{Q}^{p} 2^{(\nu-2)(\alpha p-d)} \\
& \quad \leq c\left(\sum_{Q \in \pi_{\nu-2}} \sum_{i \in V}\left[\sum_{l=1}^{D_{0}}\left|\alpha_{l}^{i}\right|^{p}\right]_{Q}+\sum_{Q \in \pi_{\nu-2}} 2^{\nu \alpha p} 2^{\nu d(p / 2-1)} \sum_{e \in I_{Q}} \sum_{\sigma=1}^{D_{e}}\left|\beta_{e}^{\sigma}\right|^{p}\right) \\
& \quad=c\left(\sum_{Q \in \pi_{\nu-2}} \sum_{i \in V}\left[\sum_{l=1}^{D_{0}}\left|\alpha_{l}^{i}\right|^{p}\right]_{Q}+2^{\nu \alpha p} 2^{\nu d(p / 2-1)} \sum_{e \in J_{\nu}} \sum_{\sigma=1}^{D_{e}}\left|\beta_{e}^{\sigma}\right|^{p}\right)
\end{aligned}
$$

Using (27) or that $(a+b)^{r} \leq a^{r}+b^{r}$ for $0<r \leq 1$, we get that

$$
\begin{aligned}
\left(\sum_{Q \in \pi_{\nu-2}}\left|s_{Q}\right|^{p}\right)^{q / p} \leq & c \sum_{Q \in \pi_{\nu-2}}\left(\sum_{i \in V}\left[\sum_{l=1}^{D_{0}}\left|\alpha_{l}^{i}\right|^{p}\right]_{Q}\right)^{q / p} \\
& +c\left(2^{\nu \alpha p} 2^{\nu d(p / 2-1)} \sum_{e \in J_{\nu}} \sum_{\sigma=1}^{D_{e}}\left|\beta_{e}^{\sigma}\right|^{p}\right)^{q / p}
\end{aligned}
$$

Hence, we get that

$$
\sum_{\nu=\nu_{1}}^{\infty}\left(\sum_{Q \in \pi_{\nu-2}}\left|s_{Q}\right|^{p}\right)^{q / p} \leq c\left(\left(\sum_{i \in V} \sum_{l=1}^{D_{0}}\left|\alpha_{l}^{i}\right|^{p}\right)^{q / p}+\left\|\left\{\beta_{e}^{\sigma}\right\}\right\|^{q}\right)
$$

and (19) follows.

References

[1] Volker Metz, The Laplacian of the Hany fractal, Arab. J. Sci. Eng. Sect. C Theme Issues, 28 (2003), 199-211.
[2] B. M. Hambly and S. O. G. Nyberg, Finitely ramified graph-directed fractals, spectral asymptotics and the multidimensional renewal theorem, Proc. Edinb. Math. Soc. (2), 46 (2003), 1-34.
[3] Juha Rissanen, Wavelets on self-similar sets and the structure of the spaces $M^{1, p}(E, \mu)$, Dissertation, University of Jyväskylä, Jyväskylä, 2002, Ann. Acad. Sci. Fenn. Math. Diss., 125 (2002), 46.
[4] Alf Jonsson, Markov's inequality and local polynomial approximation, Function spaces and applications (Lund, 1986), Lecture Notes in Math., Springer, Berlin, 1302, 1988, 303-316.
[5] Alf Jonsson, Atomic decomposition of Besov spaces on closed sets, Function spaces, differential operators and nonlinear analysis (Friedrichroda, 1992), Teubner-Texte Math., Teubner, Stuttgart, 1993, 133, 285-289.
[6] Hans Wallin, Self-similarity, Markov's inequality, and d-sets, Constructive theory of functions: proceedings of the international conference, Varna, May 28-June 3, 1991, Publishing House of the Bulgarian Academy of Sciences, Sofia, (1992) 285-297.
[7] Peter Wingren, Lipschitz spaces and interpolating polynomials on subsets of Euclidean space, Function spaces and applications (Lund, 1986), Lecture Notes in Math., Springer, Berlin, 1302, 1988, 424-435.
[8] JingLing Wang, The open set conditions for graph directed self-similar sets, Random Comput. Dyn., 5 (1997), 283-305.
[9] Robert S. Strichartz, Piecewise linear wavelets on Sierpinski gasket type fractals, J. Fourier Anal. Appl., The Journal of Fourier Analysis and Applications, 3 (1997), 387-416.
[10] R. Daniel Mauldin and S. C. Williams, Hausdorff dimension in graph directed constructions, Trans. Amer. Math. Soc., 309 (1988), 811-829.
[11] Alf Jonsson and Anna Kamont, Piecewise linear bases and Besov spaces on fractal sets, Anal. Math., Analysis Mathematica, 27 (2001), 77-117.
[12] Alf Jonsson, Besov spaces on closed sets by means of atomic decompositions, Research Reports No. 7, Dept. of Mathematics, Umeå University, (1993).
[13] Gerald A. Edgar, Measure, topology, and fractal geometry, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1990.
[14] Weiqiang Jin, An Explicit Construction of Wavelets on Self-similar Fractals, Research Reports No. 5, Dept. of Mathematics, Umeå University, 1998.
[15] Alf Jonsson, Wavelets on fractals and Besov spaces, J. Fourier Anal. Appl., 4 (1998), 329-340.
[16] Kenneth Falconer, Techniques in fractal geometry, John Wiley \& Sons Ltd., Chichester, 1997.
[17] Alf Jonsson and Hans Wallin, Function spaces on subsets of \mathbf{R}^{n}, Math. Rep., 2 (1984).

[^0]: Key Words: Besov spaces, wavelets, graph-directed self-similar sets
 Mathematical Reviews subject classification: Primary: 42C15, 46E35; Secondary: 42C40, 28A80

 Received by the editors December 27, 2005
 Communicated by: Clifford E. Weil

