Yuri Dimitrov, Department of Mathematics, The Ohio State University, Columbus, Ohio 43210, USA. email: yuri@math. ohio-state.edu
G. A. Edgar, Department of Mathematics, The Ohio State University, Columbus, Ohio 43210, USA. email: edgar@math.ohio-state.edu

SOLUTIONS OF SELF-DIFFERENTIAL FUNCTIONAL EQUATIONS

$$
\begin{align*}
& \text { Abstract } \\
& \text { The system of functional differential equations (1) has a continuously } \\
& \text { differentiable solution for every value of the parameter } a \text {. The boundary } \\
& \text { values and } a \text { are related with } d(2-a)=c(2+a) \text {. When } a \in S \text { where } \\
& \qquad S=\left\{2^{2 n+1}: n=1,2,3, \ldots\right\} \text {, } \\
& \text { the system (1) has infinitely many solutions with boundary values } c=0 \\
& \text { and } d=0 \text {. For all other values of } a \text {, the system (1) has a unique solution. } \\
& \qquad \begin{cases}F^{\prime}(x)=a F(2 x) & \text { if } 0 \leq x \leq \frac{1}{2} \\
F^{\prime}(x)=a F(2-2 x) & \text { if } \frac{1}{2} \leq x \leq 1 \\
F(0)=c, F(1)=d .\end{cases} \tag{1}
\end{align*}
$$

1 Introduction.

A function $f:[a, b] \rightarrow \mathbb{R}$ is self-differential if $[a, b]$ can be subdivided into a finite number of sub-intervals, and on each sub-interval the derivative of f is equal to f by the graph transformed by an affine map. The case to be studied here is (1), where $[0,1]$ is decomposed into $\left[0, \frac{1}{2}\right]$ and $\left[\frac{1}{2}, 1\right]$, and the affine transformed images of F are $a F(2 x)$ and $a F(2-2 x)$.

In [4] Fabius showed that the distribution function F_{2} of the random variable $U=\sum_{n=1}^{\infty} 2^{-n} U_{n}$, where U_{1}, U_{2}, \ldots are independent random variables uniformly distributed on $[0,1]$, is the solution of (1) for a value of the parameter $a=2$ and boundary values $c=0$ and $d=1$. The function F_{2} is infinitely

[^0]differentiable and nowhere analytic on $[0,1]$. The derivatives of F_{2} of order $2 n$ are also solutions of (1) for $a=2^{2 n+1}$ and $c=d=0$. In Theorem $2.1(i)$, we show that (1) has a unique solution for all other values of a. We prove the existence of the solution using a modification of the method of the successive approximations on a sub-interval $\left[0, \frac{1}{4^{n}}\right]$ and extend it to $[0,1]$ with formulas (4.3). This method is used by Kato and McLeod [5] for the solution of the initial value functional differential equation $y(x)=\alpha y^{\prime}(\lambda x)+\beta y(x), y(0)=1$. Similar initial value functional differential equations have been studied by De Bruijn [1]. A distinctive feature of the solution F of (1) is that if it is known on any sub-interval, then it can be extended to $[0,1]$ using only polynomials. This property of the solutions of boundary value self-differential equations is analogous to the notion of self-similarity for fractals (p. 135, Edgar [3]).

Definition 1.1. A differentiable function f is polynomially divided on the interval $[0,1]$ if for every $N \geq 0$ there exists an integer $n \geq N$ and polynomials $\left\{p_{n, i}(x)\right\}_{i=1}^{n-1}$ such that either $f\left(\frac{i}{n}+x\right)=f\left(\frac{i}{n}-x\right)+p_{n, i}(x)$ or $f\left(\frac{i}{n}+x\right)=f\left(\frac{i-1}{n}+x\right)+p_{n, i}(x)$ for $i=1,2, \ldots, n-1$ and $x \in\left[0, \frac{1}{n}\right]$.

This definition means that if $[0,1]$ is partitioned to n sub-intervals of equal length, the values of f on two neighboring intervals differ only by a polynomial. The solutions of (1) are polynomially divided by Lemma 3.1. In Section 2 we find a relation between the boundary values which allows us to decompose equations (1) to the simpler functional differential equations ($*$) and ($* *$). The decomposition of the solutions is different, depending on whether or not a belongs to the set $S=\left\{2^{n+1}: n=1,2,3, \ldots\right\}$. The main motivation to study self-differential equations is to generalize the exponential functions which have derivatives constant multiples of themselves. It is an interesting question to find self-differential equations which have practical applications.

This work is part of the Ph.D. thesis [2] of the first author, written under the direction of the second author.

2 Basic Properties.

When $a=0$, equations (1) have a solution $F(x)=c$ with boundary values $c=d$. For boundary conditions $c=d=0$, equations (1) have a solution $F(x)=0$ for all values of the parameter a. The Fabius function $d F_{2}(x)$ is a solution of (1) for $a=2, c=0$ and every value of $F(1)=d$. Other solutions are obtained from the derivatives of $F_{2}(x)$ of even order.

Lemma 2.1. The function $F_{2}^{(2 n)}$ is a solution of (1) with $a=2^{2 n+1}$ and boundary values $c=d=0$, for all $n=1,2, \ldots$

Proof. The Fabius function F_{2} satisfies

$$
\begin{cases}F_{2}^{\prime}(x)=2 F_{2}(2 x) & \text { if } 0 \leq x \leq \frac{1}{2} \\ F_{2}^{\prime}(x)=2 F_{2}(2-2 x) & \text { if } \frac{1}{2} \leq x \leq 1\end{cases}
$$

By differentiating $2 n$ times these equations, we obtain

$$
\begin{cases}F_{2}^{(2 n+1)}(x)=2^{2 n+1} F_{2}^{(2 n)}(2 x) & \text { if } 0 \leq x \leq \frac{1}{2} \\ F_{2}^{(2 n+1)}(x)=2^{2 n+1} F_{2}^{(2 n)}(2-2 x) & \text { if } \frac{1}{2} \leq x \leq 1\end{cases}
$$

From the first formula and $x=0$ we obtain

$$
F_{2}^{(2 n+1)}(0)=F_{2}^{(2 n)}(0)=\cdots=F_{2}^{\prime}(0)=F_{2}(0)=0
$$

and by the second formula and $x=1$ we have that

$$
F_{2}^{(2 n+1)}(1)=2^{2 n+1} F_{2}^{(2 n)}(0)=0 .
$$

Therefore $F_{2}^{(2 n)}$ satisfies (1) with parameter $a=2^{2 n+1}$ and boundary values $c=d=0$.

The graphs of the solutions of (1) for $a=2,8$ and 32 are given in Fig. 1. Every constant multiple function of $F_{2}^{(2 n)}(x)$ is also a solution of (1). Therefore (1) has infinitely many solutions for every $a \in S$. In Section 3 we show that equations (1) have a unique solution for all other values of $a \notin S$. Now we want to find a relation between the boundary values and the parameter a. Suppose that the function $F(x)$ is a solution of the system of equations (1).

Proposition 2.1. The solution F of (1) satisfies

$$
\begin{equation*}
F\left(\frac{1}{2}+x\right)+F\left(\frac{1}{2}-x\right)=c+d \tag{2.1}
\end{equation*}
$$

Fig. 1: The solutions $4 F_{2}, F_{2}^{\prime \prime}$ and $F_{2}^{(4)}$ of (1) for $a=2,8$ and $a=32$

Proof.

$$
\begin{aligned}
\text { Let } G(x) & =F\left(\frac{1}{2}+x\right)+F\left(\frac{1}{2}-x\right) \text { for } 0 \leq x \leq \frac{1}{2} \\
\text { Then } G^{\prime}(x) & =F^{\prime}\left(\frac{1}{2}+x\right)+F^{\prime}\left(\frac{1}{2}-x\right) \\
G^{\prime}(x) & =a F\left(2-2\left(\frac{1}{2}+x\right)\right)+a F\left(2\left(\frac{1}{2}-x\right)\right) \\
G^{\prime}(x) & =a F(1-2 x)-a F(1-2 x)=0 .
\end{aligned}
$$

Therefore,

$$
G(x)=G\left(\frac{1}{2}\right)=F(0)+F(1)=c+d
$$

From (2.1) and $x=\frac{1}{2}$, we obtain $F\left(\frac{1}{2}\right)=\frac{c+d}{2}$.
Lemma 2.2. The boundary values of equations (1) satisfy $d(2-a)=c(2+a)$.
Proof. We evaluate $\int_{0}^{1} F(x) d x$ in two ways:

$$
\int_{0}^{1} F(x) d x=\int_{0}^{\frac{1}{2}} F(x) d x+\int_{\frac{1}{2}}^{1} F(x) d x=\int_{0}^{\frac{1}{2}} F(x) d x+\int_{0}^{\frac{1}{2}} F(1-u) d u
$$

and

$$
\int_{0}^{1} F(x) d x=\int_{0}^{\frac{1}{2}}[F(u)+F(1-u)] d u
$$

By Proposition 2.1 we have that $F(u)+F(1-u)=c+d$. Then

$$
\begin{equation*}
\int_{0}^{1} F(x) d x=\int_{0}^{\frac{1}{2}}[c+d] d x=\frac{c+d}{2} \tag{2.2}
\end{equation*}
$$

Let $x=2 y$.

$$
\begin{align*}
\int_{0}^{1} F(x) d x & =2 \int_{0}^{\frac{1}{2}} F(2 y) d y=\frac{2}{a} \int_{0}^{\frac{1}{2}} F^{\prime}(y) d y \tag{2.3}\\
& =\frac{2}{a}\left(F\left(\frac{1}{2}\right)-F(0)\right)=\frac{2}{a}\left(\frac{c+d}{2}-c\right)=\frac{d-c}{a}
\end{align*}
$$

By (2.2) and (2.3) we obtain $\frac{d-c}{a}=\frac{c+d}{2}$. Therefore, $c(a+2)=d(2-a)$.
In Lemma 2.2 we showed that if equations (1) have a solution, then the boundary values satisfy $c(a+2)=d(2-a)$. In this way we have the following four possibilities for the values of the parameters c and d depending on the values of a :

- $a \neq \pm 2$. The value of d is determined from c with $d=\frac{(a+2) c}{2-a}$.
- $a=2$. Then $c=0$ and d is an arbitrary real number.
- $a=-2$. Then $d=0$ and c is an arbitrary real number. These relations of the boundary values lead to the following system of functional differential equations.

$$
\begin{cases}f^{\prime}(x)=a f(2 x) & \text { if } 0 \leq x \leq \frac{1}{2} \tag{*}\\ f^{\prime}(x)=a f(2-2 x) & \text { if } \frac{1}{2} \leq x \leq 1 \\ f(0)=2-a, f(1)=2+a . & \end{cases}
$$

In Theorem 2.1 we show that $(*)$ has a unique solution when $a \notin S$.

- $c=d=0$ and a is an arbitrary real number. With these values of the parameters equations (1) become

$$
\begin{cases}f^{\prime}(x)=a f(2 x) & \text { if } 0 \leq x \leq \frac{1}{2} \tag{**}\\ f^{\prime}(x)=a f(2-2 x) & \text { if } \frac{1}{2} \leq x \leq 1 \\ f(0)=0, f(1)=0 & \end{cases}
$$

In Lemma 2.2 we have already found infinitely many nonzero solutions of $(* *)$ for every $a \in S$. The solution of (1) is either a constant multiple of a solution of $(*)$ or it is a solution of $(* *)$ if $c=d=0$. These results are summarized in Theorem 2.1 and Corollary 2.1.

Theorem 2.1. (i) Equations (*) have a unique C^{1} solution for all $a \notin S$ and have no solution if $a \in S$.
(ii) Equations (**) have infinitely many C^{1} solutions $\left\{r F_{2}^{(2 n)} \mid r \in R\right\}$ for every $a=2^{2 n+1} \in S$ and have no nonzero solutions if $a \notin S$.

The proof of Theorem 2.1 is divided into lemmas. In Section 3 we show that a necessary condition for a solution of equations $(*)$ is that $a \notin S$ and we prove that all solutions of $(* *)$ with parameter $a=2^{2 n+1}$ are constant multiples of $F_{2}^{(2 n)}$. In Section 4 we construct the solution of $(*)$ using a modification of the method of the successive approximations. The solution of equations (1) is derived from the solution of $(*)$ in the following way.

Corollary 2.1. Let $a \notin S$ and $f(x)$ be the unique solution of equations (*). If $d(2-a)=c(a+2)$, then equations (1) have a unique C^{1} solution $F(x)$ where $F(x)=\frac{c f(x)}{2-a}$ if $a \neq 2$. When $a=2$ and $c=0$ the solution is $F(x)=\frac{d}{4} f(x)$.

3 Necessary Conditions.

In Section 2 we found infinitely many solutions of $(* *)$ for every $a \in S$. In this Section we prove that these are the only solutions of $(* *)$ and that $(*)$ has no solution if $a \in S$. Let $f(x)$ be a solution of $(*)$ or $(* *)$ and denote $b_{k}=f\left(\frac{1}{2^{k}}\right)$. In Proposition 2.1 we showed that $f\left(\frac{1}{2}+x\right)+f\left(\frac{1}{2}-x\right)=c+d$. Now we show that similar property holds at each point $\frac{1}{2^{n}}$.
Lemma 3.1. The function f satisfies

$$
\begin{equation*}
f\left(\frac{1}{2^{n}}+x\right)+(-1)^{n+1} f\left(\frac{1}{2^{n}}-x\right)=p_{n}(x) \tag{3.1}
\end{equation*}
$$

for $0 \leq x \leq \frac{1}{2^{n}}$. The polynomials p_{n} are defined recursively by

$$
\left\{\begin{array}{l}
p_{2 l-1}^{\prime}(x)=a p_{2 l-2}(2 x) \tag{3.2}\\
p_{2 l-1}(0)=2 b_{2 l-1}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
p_{2 l}^{\prime}(x)=a p_{2 l-1}(2 x) \tag{3.3}\\
p_{2 l}(0)=0
\end{array}\right.
$$

where

$$
p_{1}(x)= \begin{cases}4 & \text { if } f \text { is a solution of }(*) \\ 0 & \text { if } f \text { is a solution of }(* *)\end{cases}
$$

Proof. We prove Lemma 3.1 by induction on n. When $n=1$ equation (3.1) is satisfied by Proposition 2.1. Suppose that

$$
f\left(\frac{1}{2^{n}}+x\right)+(-1)^{n+1} f\left(\frac{1}{2^{n}}-x\right)=p_{n}(x)
$$

Put $x=2 t$ to obtain

$$
f\left(\frac{1}{2^{n}}+2 t\right)+(-1)^{n+1} f\left(\frac{1}{2^{n}}-2 t\right)=p_{n}(2 t)
$$

From the second equations of $(*)$ and $(* *)$ with $x=\frac{1}{2^{n}}+2 t$ and $x=\frac{1}{2^{n}}-2 t$ we have that

$$
f\left(\frac{1}{2^{n}}-2 t\right)=\frac{1}{a} f^{\prime}\left(\frac{1}{2^{n+1}}-t\right)
$$

and

$$
f\left(\frac{1}{2^{n}}+2 t\right)=\frac{1}{a} f^{\prime}\left(\frac{1}{2^{n+1}}+t\right) .
$$

Then

$$
f^{\prime}\left(\frac{1}{2^{n+1}}+t\right)+(-1)^{n+1} f^{\prime}\left(\frac{1}{2^{n+1}}-t\right)=a p_{n}(2 t)
$$

By integrating the above equation from 0 to x we obtain

$$
\begin{aligned}
& \int_{0}^{x}\left[f^{\prime}\left(\frac{1}{2^{n+1}}+t\right)+(-1)^{n+1} f^{\prime}\left(\frac{1}{2^{n+1}}-t\right)\right] d t=\int_{0}^{x} a p_{n}(2 t) d t \\
& {\left[f\left(\frac{1}{2^{n+1}}+t\right)+(-1)^{n+2} f\left(\frac{1}{2^{n+1}}-t\right)\right]_{0}^{x} }=a \int_{0}^{x} p_{n}(2 t) d t \\
& f\left(\frac{1}{2^{n+1}}+x\right)+(-1)^{n+2} f\left(\frac{1}{2^{n+1}}-x\right)-\gamma f\left(\frac{1}{2^{n+1}}\right)=a \int_{0}^{x} p_{n}(2 t) d t
\end{aligned}
$$

where $\gamma=1+(-1)^{n+2}$.

Case $1 n$ is even. Then $\gamma=0$, and when $n=2 l$, we have that

$$
\begin{aligned}
& f\left(\frac{1}{2^{2 l+1}}+x\right)+f\left(\frac{1}{2^{2 l+1}}-x\right)-2 f\left(\frac{1}{2^{2 l+1}}\right)=a \int_{0}^{x} p_{2 l}(2 t) d t \\
& f\left(\frac{1}{2^{2 l+1}}+x\right)+f\left(\frac{1}{2^{2 l+1}}-x\right)=2 b_{2 l+1}+a \int_{0}^{x} p_{2 l}(2 t) d t
\end{aligned}
$$

Therefore, f satisfies (3.1) with $n=2 l+1$ and

$$
\begin{equation*}
p_{2 l+1}(x)=2 b_{2 l+1}+a \int_{0}^{x} p_{2 l}(2 t) d t \tag{3.4}
\end{equation*}
$$

Case $2 n$ is odd. Then $\gamma=0$, and when $n=2 l-1$ we have that

$$
\begin{align*}
f\left(\frac{1}{2^{2 l}}+x\right)-f\left(\frac{1}{2^{2 l}}-x\right) & =a \int_{0}^{x} p_{2 l-1}(2 t) d t \\
p_{2 l}(x) & =a \int_{0}^{x} p_{2 l-1}(2 t) d t \tag{3.5}
\end{align*}
$$

We obtain equations (3.2) and (3.3) from (3.4) and (3.5) by differentiation with respect to x.

The solution f of (1) is polynomially divided because it satisfies (3.1). If f is known on the interval $\left[0, \frac{1}{2^{m}}\right]$, then we can extend it to $\left[0, \frac{1}{2^{m-1}}\right]$ with formula (3.1) and $n=m$. By using the same procedure $m-1$ times with $n=m-1, m-2, \ldots, 1$ we can reconstruct f on the interval $[0,1]$. Even more, if the function f is known on an arbitrary sub-interval (a, b) of $[0,1]$ where $a<\frac{s}{2^{m}}<\frac{s+1}{2^{m}}<b$, for some integers s and m, then using the reverse procedure we can find the values of f on $\left[0, \frac{1}{2^{m}}\right]$ and then extend f to the interval $[0,1]$. In this way, we can reconstruct the solution of (1) from any subinterval of $[0,1]$ using only the polynomials p_{n}. Now we express the coefficients of $p_{2 n}(x)$ with $b_{1}, b_{3}, \ldots, b_{2 n-1}$. From (3.1) and $x=\frac{1}{2^{n}}$ we can find the values of p_{n} and $x=\frac{1}{2^{n}}$.
Corollary 3.1. Suppose that f is a solution of (*). Then

$$
p_{2 n}\left(\frac{1}{2^{2 n}}\right)=b_{2 n-1}-2+a \text { and } p_{2 n+1}\left(\frac{1}{2^{2 n+1}}\right)=b_{2 n}+2-a
$$

Corollary 3.2. Suppose that f is a solution of (**). Then

$$
p_{n}\left(\frac{1}{2^{n}}\right)=b_{n-1} .
$$

In the next lemma we find a formula for the polynomials $p_{2 n}$.
Lemma 3.2. The polynomials p_{n} with even index are given by

$$
\begin{equation*}
p_{2 n}(x)=\sum_{k=1}^{n} \frac{a^{2 k-1} 2^{2 k^{2}-3 k+2} b_{2 n-2 k+1} x^{2 k-1}}{(2 k-1)!} \tag{3.6}
\end{equation*}
$$

Proof. By Lemma 3.1, $p_{2 n}$ is a polynomial of degree $2 n-1$. The coefficients may be computed by Taylor's formula. Compute successive derivatives using Lemma 3.1:

$$
\begin{aligned}
& p_{2 n}^{\prime}(x)=a p_{2 n-1}(2 x) \\
& p_{2 n}^{\prime \prime}(x)=2 a p_{2 n-1}^{\prime}(2 x)=2 a^{2} p_{2 n-2}(4 x) \\
& p_{2 n}^{\prime \prime \prime}(x)=8 a^{2} p_{2 n-2}^{\prime}(4 x)=22^{2} a^{3} p_{2 n-3}(8 x)=2^{3} a^{3} p_{2 n-3}(8 x) \\
& p_{2 n}^{(4)}(x)=64 a^{3} p_{2 n-3}^{\prime}(8 x)=22^{2} 2^{3} a^{4} p_{2 n-4}(16 x)=2^{6} a^{4} p_{2 n-4}(16 x),
\end{aligned}
$$

and in general, by induction

$$
p_{2 n}^{(l)}(x)=2^{1+2+3+\cdots+(l-1)} a^{l} p_{2 n-l}\left(2^{l} x\right)=2^{\frac{l(l-1)}{2}} a^{l} p_{2 n-l}\left(2^{l} x\right)
$$

But $p_{2 n-2 k}(0)=0$ and $p_{2 n-2 k+1}(0)=2 b_{2 n-2 k+1}$; so

$$
p_{2 n}(x)=\sum_{k=1}^{2 n-1} \frac{p_{2 n}^{(l)}(0) x^{l}}{l!}=\sum_{k=1}^{n} \frac{a^{2 k-1} 2^{2 k^{2}-3 k+2} b_{2 n-2 k+1} x^{2 k-1}}{(2 k-1)!} .
$$

In Lemma 2.1, we found infinitely many solutions

$$
f(x)=r F_{2}^{(2 n)}(x)
$$

of equations $(* *)$ for $a=2^{2 n+1} \in S$ and $r \in \mathbb{R}$. In the next corollary, we show that $a \in S$ is a necessary condition for a solution of $(* *)$.

Corollary 3.3. Let f be a nonzero solution of $(* *)$ such that $b_{1}=\cdots=b_{2 n-1}=0$ and $b_{2 n+1} \neq 0$. Then $a=2^{2 n+1}$.

Proof. By Lemma 3.2,

$$
p_{2 n+2}(x)=\sum_{k=1}^{n+1} \frac{a^{2 k-1} 2^{2 k^{2}-3 k+2} b_{2 n-2 k+3} x^{2 k-1}}{(2 k-1)!}=2 a b_{2 n+1} x
$$

Then

$$
f\left(\frac{1}{2^{2 n+2}}+x\right)-f\left(\frac{1}{2^{2 n+2}}-x\right)=2 a b_{2 n+1} x
$$

Put $x=\frac{1}{2^{2 n+2}}$ to obtain

$$
f\left(\frac{1}{2^{2 n+1}}\right)-f(0)=\frac{a b_{2 n+1}}{2^{2 n+1}} \text { and } b_{2 n+1}=\frac{a b_{2 n+1}}{2^{2 n+1}}
$$

Therefore, $a=2^{2 n+1}$ as required.
Now we use Lemma 3.2 to find a formula which relates the numbers $b_{1}, b_{3}, \ldots, b_{2 n-1}$.

Lemma 3.3. The numbers $\left\{b_{2 n-1}\right\}_{n=0}^{\infty}$ satisfy
$b_{2 n-1}\left(2^{2 n-1}-a\right)=2^{2 n-1}\left(2-a+\sum_{k=2}^{n} \frac{a^{2 k-1} 2^{2 k^{2}-3 k+2-2 n(2 k-1)} b_{2 n-2 k+1}}{(2 k-1)!}\right)$.

Proof. By Corollary 3.1,

$$
p_{2 n}\left(\frac{1}{2^{2 n}}\right)=b_{2 n-1}-2+a
$$

From (3.6) and $x=\frac{1}{2^{2 n}}$ we have that

$$
p_{2 n}\left(\frac{1}{2^{2 n}}\right)=\sum_{k=1}^{n} \frac{a^{2 k-1} 2^{2 k^{2}-3 k+2-2 n(2 k-1)} b_{2 n-2 k+1}}{(2 k-1)!}
$$

Then

$$
b_{2 n-1}\left(1-\frac{a}{2^{2 n-1}}\right)=2-a+\sum_{k=2}^{n} \frac{a^{2 k-1} 2^{2 k^{2}-3 k+2-2 n(2 k-1)} b_{2 n-2 k+1}}{(2 k-1)!} .
$$

So far we have found formulas to compute the polynomials $p_{2 n}(x)$ and the numbers $b_{2 n-1}$.

Corollary 3.4. Let f be a solution of $(*)$ or $(* *)$. The numbers $b_{2 n}$ and the coefficients of $p_{2 n+1}$ are obtained from $\left\{b_{2 k-1}\right\}_{k=1}^{n}$ by

$$
p_{2 n+1}(x)=\sum_{k=0}^{n} \frac{a^{2 k} 2^{2 k^{2}-k+1} b_{2 n-2 k+1} x^{2 k}}{(2 k)!}
$$

and

$$
b_{2 n}= \begin{cases}\sum_{k=0}^{n} \frac{a^{2 k} 2^{2 k^{2}-k+1-2 k(2 n+1)} b_{2 n-2 k+1}}{(2 k)!}+a-2 & \text { if } f \text { satisfies }\left({ }^{*}\right) \tag{3.8}\\ \sum_{k=0}^{n} \frac{a^{2 k} 2^{2 k^{2}-k+1-2 k(2 n+1)} b_{2 n-2 k+1}}{(2 k)!} & \text { if } f \text { satisfies }\left({ }^{* *}\right)\end{cases}
$$

Proof. We have that

$$
p_{2 n+1}(x)=2 b_{2 n+1}+a \int_{0}^{x} p_{2 n}(2 t) d t
$$

From (3.6) and $x=2 t$,

$$
p_{2 n}(2 t)=\sum_{k=1}^{n} \frac{a^{2 k-1} 2^{2 k^{2}-k+1} b_{2 n-2 k+1} t^{2 k-1}}{(2 k-1)!}
$$

Then

$$
\begin{aligned}
p_{2 n+1}(x) & =2 b_{2 n+1}+a \sum_{k=1}^{n} \int_{0}^{x} \frac{a^{2 k-1} 2^{2 k^{2}-k+1} b_{2 n-2 k+1} t^{2 k-1}}{(2 k-1)!} d t \\
& =\sum_{k=0}^{n} \frac{a^{2 k} 2^{2 k^{2}-k+1} b_{2 n-2 k+1} x^{2 k}}{(2 k)!}
\end{aligned}
$$

If f is a solution of $(*)$, then $p_{2 n+1}\left(\frac{1}{2^{2 n+1}}\right)=b_{2 n}+2-a$ and

$$
b_{2 n}=\sum_{k=0}^{n} \frac{a^{2 k} 2^{2 k^{2}-k+1-2 k(2 n+1)} b_{2 n-2 k+1}}{(2 k)!}+a-2
$$

If f is a solution of $(* *)$, then $p_{2 n+1}\left(\frac{1}{2^{2 n+1}}\right)=b_{2 n}$ and

$$
b_{2 n}=\sum_{k=0}^{n} \frac{a^{2 k} 2^{2 k^{2}-k+1-2 k(2 n+1)} b_{2 n-2 k+1}}{(2 k)!}
$$

Remark 3.1. If $a \notin S$ and f is a solution of $(*)$, then the values $b_{n}=f\left(\frac{1}{2^{n}}\right)$ are computed with formulas (3.7) and (3.8). The values of f on the set

$$
D=\left\{\left.\frac{k}{2^{n}} \right\rvert\, k=1, \ldots, 2^{n}, n \in N\right\}
$$

are computed from $\left\{b_{n}\right\}$ with formula (3.1). The set D is dense in $[0,1]$ and the values of f are determined for every $x \in[0,1]$ from the values of f on D with $f(x)=\lim _{n \rightarrow \infty} f\left(d_{n}\right)$ where $d_{n} \in D$ and $\lim _{n \rightarrow \infty} d_{n}=x$. Therefore, $(*)$ has at most one solution for every $a \notin S$. We show that $(*)$ has a unique solution for all $a \notin S$ in Section 4 .

Remark 3.2. If $a=2^{2 n+1}$ and f is a solution of $(* *)$, then $b_{1}=0$ and $b_{3}, \ldots, b_{2 n-1}$ are computed with (3.7), but the value of $b_{2 n+1}$ cannot be computed with (3.7). If we choose $b_{2 n+1}$ to be an arbitrary number, then $b_{2 n+3}, b_{2 n+5}, \ldots$ may also be computed with (3.7). The values of $b_{2 n}$ may be computed from the values of $b_{2 n-1}$ with formula (3.8). Similarly to Remark 3.1, the values of f on D may be computed with (3.1). Therefore, $(* *)$ has at most one solution for every choice of $b_{2 n+1}$. This solution is $\frac{b_{2 n+1} F_{2}^{(2 n)}(x)}{F_{2}^{(2 n)}\left(\frac{1}{2^{2 n+1}}\right)}$. Therefore, all solutions of $(* *)$ are $\left\{r F_{2}^{(2 n)}(x) \mid r \in R\right\}$.

The graphs of f obtained by calculating the values of f on D for $a=-32,-4,7.9,8.1,16,50$ are given on Fig. 2. Now we show that ($*$) has no solution when $a \in S$. Let $a=2^{2 m-1}$. With this value of a, equation (3.7) becomes

$$
\begin{gather*}
b_{2 n-1}\left(2^{2 n-1}-2^{2 m-1}\right)=2^{2 n-1}\left(2-2^{2 m-1}+\right. \\
\left.\sum_{k=2}^{n} \frac{2^{(2 m-1)(2 k-1)} 2^{2 k^{2}-3 k+2-2 n(2 k-1)} b_{2 n-2 k+1}}{(2 k-1)!}\right) \\
b_{2 n-1}\left(1-2^{2(m-n)}\right)=2-2^{2 m-1}+ \tag{3.9}\\
\left.\sum_{k=2}^{n} \frac{2^{2 k^{2}-3 k+2+(2 m-2 n-1)(2 k-1)} b_{2 n-2 k+1}}{(2 k-1)!}\right) \\
b_{2 n-1}=\frac{1}{1-4^{m-n}}\left(2\left(1-4^{m-1}\right)+\sum_{k=2}^{n} \frac{2^{2 k^{2}-3 k+2+(2 m-2 n-1)(2 k-1)} b_{2 n-2 k+1}}{(2 k-1)!}\right)
\end{gather*}
$$

Fig. 2: The solutions of equations $(*)$ for $a=-4,16$ (top), $a=7.9,8.1$ and $a=7.99,8.01$ (middle) and $a=-32,50$ (bottom)

The numbers $b_{1}=2, b_{3}, \ldots, b_{2 m-3}$ are computed with the above formula. When $n=m$, formula (3.9) becomes

$$
\begin{align*}
0 & =2\left(1-4^{m-1}\right)+\sum_{k=2}^{m} \frac{2^{2 k^{2}-5 k+3} b_{2 m-2 k+1}}{(2 k-1)!} \\
4^{m-1}-1 & =\sum_{k=2}^{m} \frac{2^{2 k^{2}-5 k+2} b_{2 m-2 k+1}}{(2 k-1)!} . \tag{3.10}
\end{align*}
$$

Formula (3.10) gives a relation between $b_{1}, \ldots, b_{2 m-3}$ and is a necessary condition for existence of a solution of equations $(*)$ when $a=2^{2 m-1}$. In Lemma 3.5 we show that (3.10) is not satisfied. In the proof of Lemma 3.5 we use Proposition 3.1 and Lemma 3.4.

Proposition 3.1. Let e_{k} be the power of 3 in $(2 k-1)$!. Then $e_{k} \leq k-1$.
Proof.

$$
e_{k}=\sum_{3^{r} \leq 2 k-1}\left\lfloor\frac{2 k-1}{3^{r}}\right\rfloor \leq \sum_{r=1}^{r_{0}} \frac{2 k-1}{3^{r}}
$$

where $r_{0}=\left\lfloor\log _{3}(2 k-1)\right\rfloor$.

$$
e_{k} \leq \frac{2 k-1}{3} \frac{1-\frac{1}{3^{r_{0}}}}{1-\frac{1}{3}}=\frac{2 k-1}{2}\left(1-\frac{1}{3^{r_{0}}}\right)<\frac{2 k-1}{2}<k
$$

Therefore, $e_{k} \leq k-1$.
The numbers $b_{1}, b_{3}, \ldots, b_{2 m-3}$ are rational numbers in lowest terms. Let $d_{2 n-1}$ be the power of 3 in the denominator of $b_{2 n-1}$. The sequence $\left\{d_{2 n-1}\right\}_{n=1}^{m-1}$ is increasing and satisfies the following inequality.

Lemma 3.4.

$$
\begin{equation*}
d_{2 n-1}-d_{2 n-3} \geq 2 \tag{3.11}
\end{equation*}
$$

Proof. We prove (3.11) by induction on $n . b_{1}=2$ and $d_{1}=0$. By (3.7),

$$
\begin{aligned}
b_{3} & =\frac{1}{1-4^{m-2}}\left(2\left(1-4^{m-1}\right)+\frac{2^{8-6+2+1+(2 m-5) 3}}{3!}\right) \\
& =\frac{6\left(1-4^{m-1}\right)+2^{6 m-11}}{3\left(1-4^{m-2}\right)}
\end{aligned}
$$

Let's denote by $d(k)$ the power of 3 in $4^{k}-1$. Then $d(k) \geq 1$ because

$$
4^{k}-1=3\left(4^{k-1}+4^{k-2}+\cdots+1\right) .
$$

The numerator of b_{3} is not divisible by 3 . Therefore $d_{3}=d(m-2)+1 \geq 2$ and (3.11) is satisfied for $n=2$. Suppose that $d_{2 k-1}-d_{2 k-3} \geq 2$ for every $k=2,3, \ldots, n-1$.

$$
\begin{aligned}
& b_{2 n-1}=\frac{1}{1-4^{m-n}}\left(2\left(1-4^{m-1}\right)+\frac{64^{m-n} b_{2 n-3}}{3}+\right. \\
& \left.\quad \sum_{k=3}^{n} 2^{2 k^{2}-3 k+2+(2 m-2 n-1)(2 k-1)} \frac{b_{2 n-2 k+1}}{(2 k-1)!}\right) .
\end{aligned}
$$

By the induction assumption,

$$
\begin{aligned}
d_{2 n-3}-d_{2 n-2 k+1}= & \sum_{l=2}^{k-1}\left[d_{2 n-2 l+1}-d_{2 n-2 l-1}\right] \geq 2(k-2)=2 k-4 \\
& d_{2 n-2 k+1}+2 k-4 \leq d_{2 n-3}
\end{aligned}
$$

The power of 3 in the denominator of $\frac{b_{2 n-2 k+1}}{(2 k-1)!}$ is $d_{2 n-2 k+1}+e_{k}$. From Proposition 3.1, we have that
$d_{2 n-2 k+1}+e_{k} \leq d_{2 n-2 k+1}+k-1 \leq d_{2 n-2 k+1}+2 k-4 \leq d_{2 n-3}<d_{2 n-3}+1$
for $3 \leq k \leq n$. The power of 3 in the denominator of $\frac{b_{2 n-3}}{3!}$ is $d_{2 n-3}+1$. Therefore, the power of 3 in the denominator of $\frac{b_{2 n-3}}{3!}$ is greater than the power of 3 in the denominator of $\frac{b_{2 n-2 k+1}}{(2 k-1)!}$ for every $k=3,4, \ldots, n$. Then the power of 3 in the denominator of

$$
\frac{64^{m-n} b_{2 n-3}}{3}+\sum_{k=2}^{n} 2^{2 k^{2}-3 k+2-(2 m-2 n-1)(2 k-1)} \frac{b_{2 n-2 k+1}}{(2 k-1)!}
$$

is exactly $d_{2 n-3}+1$, and so the power of 3 in the denominator of

$$
\frac{1}{1-4^{m-n}}\left(\frac{64^{m-n} b_{2 n-3}}{3}+\sum_{k=3}^{n} 2^{2 k^{2}-3 k+2-(2 m-2 n-1)(2 k-1)} \frac{b_{2 n-2 k+1}}{(2 k-1)!}\right)
$$

is equal to $d_{2 n-3}+d(m-n)+1$. Then

$$
d_{2 n-1}=d_{2 n-3}+d(m-n)+1 \geq d_{2 n-3}+2
$$

In Lemma 3.5, we prove that the necessary condition (3.10) for a solution of $(*)$ is not satisfied.

Lemma 3.5.

$$
4^{m-1}-1 \neq \sum_{k=2}^{n} \frac{2^{2 k^{2}-5 k+2} b_{2 m-2 k+1}}{(2 k-1)!} .
$$

Proof. We want to show that the denominator of

$$
\sum_{k=2}^{n} 2^{2 k^{2}-5 k+2} \frac{b_{2 m-2 k+1}}{(2 k-1)!}
$$

is divisible by 3 .

$$
\sum_{k=2}^{n} 2^{2 k^{2}-5 k+2} \frac{b_{2 m-2 k+1}}{(2 k-1)!}=\frac{b_{2 m-3}}{3!}+\sum_{k=3}^{n} 2^{2 k^{2}-5 k+2} \frac{b_{2 m-2 k+1}}{(2 k-1)!}
$$

The power of 3 in the denominator of

$$
2^{2 k^{2}-5 k+2} \frac{b_{2 m-2 k+1}}{(2 k-1)!}
$$

is $d_{2 m-2 k+1}+e_{k}$. By Proposition 3.1 and Lemma 3.4, we have that $d_{2 m-2 k+1}+e_{k} \leq d_{2 m-2 k+1}+k-1 \leq d_{2 m-2 k+1}+2 k-4 \leq d_{2 m-3}<d_{2 m-3}+1$ for $3 \leq k \leq n$. The power of 3 in the denominator of $\frac{b_{2 m-3}}{3!}$ is $d_{2 m-3}+1$. Therefore, the power of 3 in the denominator of

$$
\sum_{k=2}^{n} 2^{2 k^{2}-5 k+2} \frac{b_{2 m-2 k+1}}{(2 k-1)!}
$$

is $d_{2 m-3}+1$. Then the denominator of

$$
\sum_{k=2}^{n} 2^{2 k^{2}-5 k+2} \frac{b_{2 m-2 k+1}}{(2 k-1)!}
$$

is divisible by 3 . Hence,

$$
4^{m-1}-1 \neq \sum_{k=2}^{n} \frac{2^{2 k^{2}-5 k+2} b_{2 m-2 k+1}}{(2 k-1)!}
$$

as required.
From Lemma 3.5 it follows that equations (*) have no solution when $a \in S$ because the necessary condition (3.10) is not satisfied.

4 Successive Approximations to the Solution.

In Section 2 and Section 3, we proved part (ii) of Theorem 2.1. We also showed that if $a \in S$, equations ($*$) have no solution. In Section 4, we show that equations $(*)$ have a solution for every $a \notin S$. According to the following remark, this solution is unique. Remark 3.1. Let f be a solution of $(*)$ and $x \in\left[0, \frac{1}{2}\right]$. Then $f(x)=f(0)+\int_{0}^{x} f^{\prime}(t) d t=2-a+\int_{0}^{x} a f(2 t) d t=$ $2-a+\frac{a}{2} \int_{0}^{2 x} f(t) d t$. Let n be the smallest integer such that $2|a|<4^{n}$. Now, we use the above equation to define a sequence of functions $\left\{h_{k}\right\}_{k=0}^{\infty}$ which approximates f on the interval $\left[0, \frac{1}{4^{n-1}}\right]$ by

$$
\begin{cases}h_{0}(x) & =x \tag{4.1}\\ h_{k}(x) & =2-a+\frac{a}{2} \int_{0}^{2 x} h_{k-1}(t) d t \text { for } 0 \leq x \leq \frac{2}{4^{n}} \\ h_{k}\left(\frac{2}{4^{n}}+x\right) & =p_{2 n-1}(x)-h_{k}\left(\frac{2}{4^{n}}-x\right) \text { for } 0<x \leq \frac{2}{4^{n}}\end{cases}
$$

Proposition 4.1. The functions h_{k} are continuous for all $k \geq 2$.
Proof. The functions h_{k} are continuous on the intervals $\left[0, \frac{2}{4^{n}}\right]$ and $\left(\frac{2}{4^{n}}, \frac{1}{4^{n-1}}\right]$.
Now, we show that h_{k} is continuous at $\frac{2}{4^{n}}$. From the first equation of (4.1) and $x=\frac{2}{4^{n}}$, we have that

$$
\begin{aligned}
h_{k}\left(\frac{2}{4^{n}}\right) & =2-a+\frac{a}{2} \int_{0}^{\frac{1}{4^{n-1}}} h_{k-1}(t) d t \\
& =2-a+\frac{a}{2} \int_{0}^{\frac{2}{4^{n}}} h_{k-1}(t) d t+\frac{a}{2} \int_{\frac{2}{4^{n}}}^{\frac{1}{4^{n-1}}} h_{k-1}(t) d t \\
& =2-a+\frac{a}{2} \int_{0}^{\frac{2}{4^{n}}} h_{k-1}(t) d t+\frac{a}{2} \int_{0}^{\frac{2}{4^{n}}} h_{k-1}\left(\frac{2}{4^{n}}+u\right) d u \\
& =2-a+\frac{a}{2} \int_{0}^{\frac{2}{4^{n}}} h_{k-1}(t) d t+\frac{a}{2} \int_{0}^{\frac{2}{4^{n}}}\left[p_{2 n-1}(u)-h_{k-1}\left(\frac{2}{4^{n}}-u\right)\right] d u \\
h_{k}\left(\frac{2}{4^{n}}\right) & =2-a+\frac{a}{2} \int_{0}^{\frac{2}{4^{n}}} p_{2 n-1}(u) d u .
\end{aligned}
$$

Fig. 3: The approximations h_{1}, h_{2} and h_{3} to the solution of $(*)$ for $a=1.99$

From (3.2), we have that $a p_{2 n-1}(u)=p_{2 n}^{\prime}\left(\frac{u}{2}\right)$. Then

$$
\begin{aligned}
& h_{k}\left(\frac{2}{4^{n}}\right)=2-a+\frac{1}{2} \int_{0}^{\frac{2}{4^{n}}} p_{2 n}^{\prime}\left(\frac{u}{2}\right) d u=2-a+\int_{0}^{\frac{1}{4^{n}}} p_{2 n}^{\prime}(u) d u \\
& h_{k}\left(\frac{2}{4^{n}}\right)=2-a+p_{2 n}\left(\frac{1}{4^{n}}\right)-p_{2 n}(0)=2-a+b_{2 n-1}-2+a=b_{2 n-1}
\end{aligned}
$$

From the second equation of (4.1), we obtain

$$
\begin{aligned}
& h_{k}\left(\frac{2}{4^{n}}+\right)=\lim _{x \rightarrow 0^{+}} f\left(\frac{2}{4^{n}}+x\right)=\lim _{x \rightarrow 0^{+}}\left[p_{2 n-1}(x)-h_{k}\left(\frac{2}{4^{n}}-x\right)\right] \\
& h_{k}\left(\frac{2}{4^{n}}+\right)=p_{2 n-1}(0)-h_{k}\left(\frac{2}{4^{n}}-\right)=2 b_{2 n-1}-b_{2 n-1}=b_{2 n-1}
\end{aligned}
$$

Therefore,

$$
h_{k}\left(\frac{2}{4^{n}}\right)=h_{k}\left(\frac{2}{4^{n}}+\right)=b_{n-1} .
$$

The function h_{k} is right continuous at $x=\frac{2}{4^{n}}$ and so it is continuous on the interval $\left[0, \frac{1}{4^{n-1}}\right]$.

When $a=1.99$, then $n=1$, because $2|a|<4$. The sequence of functions $\left\{h_{k}\right\}_{k=0}^{\infty}$ approximates the solution of $(*)$ on the interval $[0,1]$. The graphs of the first three approximations h_{1}, h_{2} and h_{3} are given on Fig. 3. The solution of equations $(*)$ for $a=2$ is $4 F_{2}$ (Fig. 2). The solutions of (*) for $a=1.99$ and $a=2$ differ by less than 0.015 . Now we define a system of functional
differential equations on the interval $\left[0, \frac{1}{4^{k-1}}\right]$. Let k be a positive integer, and denote by $E q n s[k]$ the following functional differential equations.

$$
\begin{cases}f^{\prime}(x) & =a f(2 x) \text { for } 0 \leq x \leq \frac{2}{4^{k}} \\ f\left(\frac{2}{4^{k}}+x\right) & =p_{2 k-1}(x)-f\left(\frac{2}{4^{k}}-x\right) \text { for } 0<x \leq \frac{2}{4^{k}} \quad(\text { Eqns }[k]) \\ & =2-a\end{cases}
$$

Proposition 4.2. Let f be a solution of Eqns $[k]$. Then

$$
f\left(\frac{1}{4^{k-1}}\right)=b_{2 k-2} \quad \text { and } \quad f^{\prime}\left(\frac{1}{4^{k-1}}\right)=a b_{2 k-3}
$$

Proof. From the second equation of $\operatorname{Eqns}[k]$ and $x=\frac{2}{4^{k}}$, we have that

$$
f\left(\frac{1}{4^{k-1}}\right)=p_{2 k-1}\left(\frac{2}{4^{k}}\right)-f(0)=p_{2 k-1}\left(\frac{2}{4^{k}}\right)-2+a=b_{2 k-2}
$$

By differentiating the second equation of Eqns $[k]$, we obtain

$$
f^{\prime}\left(\frac{2}{4^{k}}+x\right)=p_{2 k-1}^{\prime}(x)+f^{\prime}\left(\frac{2}{4^{k}}-x\right)
$$

Put $x=\frac{2}{4^{k}}$ in the above equation,

$$
\begin{aligned}
& f^{\prime}\left(\frac{1}{4^{k-1}}\right)=p_{2 k-1}^{\prime}\left(\frac{2}{4^{k}}\right)+f^{\prime}(0)=a p_{2 k-2}\left(\frac{1}{4^{k-1}}\right)+a f(0) \\
& f^{\prime}\left(\frac{1}{4^{k-1}}\right)=a\left(b_{2 k-3}-2+a\right)+a(2-a)=a b_{2 k-3}
\end{aligned}
$$

By Proposition 4.2, equations $(*)$ are the same as Eqns[1].
Lemma 4.1. (i) The sequence of functions $h_{k}(x)$ converges uniformly. (ii) The limit function $f_{n}(x)=\lim _{k \rightarrow \infty} h_{k}(x)$ is continuously differentiable and satisfies Eqns[n].
Proof. (i) Let $M_{k}=\sup _{x \in\left[0, \frac{1}{4^{n-1}}\right]}\left|h_{k}(x)-h_{k-1}(x)\right|$. From the second equation of (4.1), we have that

$$
M_{k}=\sup _{x \in\left[0, \frac{2}{\left.4^{n}\right]}\right.}\left|h_{k}(x)-h_{k-1}(x)\right|
$$

From the first equation of (4.1),

$$
\begin{aligned}
& h_{k}(x)-h_{k-1}(x)=\frac{a}{2} \int_{0}^{2 x} h_{k-1}(u) d u-\frac{a}{2} \int_{0}^{2 x} h_{k-2}(u) d u \\
& \left|h_{k}(x)-h_{k-1}(x)\right| \leq \frac{a}{2} \int_{0}^{2 x}\left|h_{k-1}(u)-h_{k-2}(u)\right| d u
\end{aligned}
$$

Therefore,

$$
M_{k} \leq \frac{a}{2} \int_{0}^{2 x} M_{k-1} d u=\frac{|a|}{2} 2 x M_{k-1} \leq \frac{2|a|}{4^{n}} M_{k-1}
$$

Let $t=\frac{2|a|}{4^{n}}$. Then $0<t<1$, because n is chosen such that $2|a|<4^{n}$. Therefore, $M_{k} \leq t M_{k-1}$. By induction, we obtain $M_{k} \leq t^{k-1} M_{1}$. Then

$$
\begin{aligned}
\sup _{x \in\left[0, \frac{1}{4} \frac{1}{4^{n-1}}\right]}\left|h_{s}(x)-h_{r}(x)\right| & \leq \sum_{k=r+1}^{s} \sup _{x \in\left[0, \frac{1}{4} \frac{1}{4-1}\right]}\left|h_{k}(x)-h_{k-1}(x)\right| \\
& \leq \sum_{k=r+1}^{s} M_{k} \leq M_{1} \sum_{k=r+1}^{s} t^{k-1} \leq M_{1} \sum_{k=r}^{\infty} t^{k} \leq \frac{M_{1} t^{r}}{1-t}
\end{aligned}
$$

for $s>r$. Therefore, h_{k} is a Cauchy sequence, and so, it converges uniformly.
(ii) The function f_{n} is continuous because it is a uniform limit of continuous functions. In the proof of Proposition 4.1, we showed that $h_{k}\left(\frac{2}{4^{n}}\right)=b_{2 n-1}$ for $k \geq 2$. Then $f_{n}\left(\frac{2}{4^{n}}\right)=b_{2 n-1}$. By letting $k \rightarrow \infty$ in (4.1), we obtain

$$
\begin{cases}f_{n}(x)=2-a+\frac{a}{2} \int_{0}^{2 x} f_{n}(t) d t & \text { for } 0 \leq x \leq \frac{2}{4^{n}} \tag{4.2}\\ f_{n}\left(\frac{2}{4^{n}}+x\right)=p_{2 n-1}(x)-f_{n}\left(\frac{2}{4^{n}}-x\right) & \text { for } 0<x \leq \frac{2}{4^{n}}\end{cases}
$$

Form the first and second equations of (4.2), the function f_{n} is continuously differentiable on the intervals $\left[0, \frac{2}{4^{n}}\right]$ and $\left(\frac{2}{4^{n}}, \frac{1}{4^{n-1}}\right]$. Now, we show that f_{n} is differentiable at $x=\frac{2}{4^{n}}$. Let $f^{\prime}(x-)$ and $f^{\prime}(x+)$ denote

$$
f^{\prime}(x+)=\lim _{t \rightarrow x^{+}} \frac{f(t)-f(x)}{t-x} \text { and } f^{\prime}(x-)=\lim _{t \rightarrow x^{-}} \frac{f(t)-f(x)}{t-x}
$$

Then

$$
\begin{aligned}
& f_{n}^{\prime}\left(\frac{2}{4^{n}}+\right)=\lim _{x \rightarrow 0^{+}} \frac{f_{n}\left(\frac{2}{4^{n}}+x\right)-f_{n}\left(\frac{2}{4^{n}}\right)}{x} \\
&=\lim _{x \rightarrow 0^{+}} \frac{p_{2 n-1}(x)-f_{n}\left(\frac{2}{4^{n}}-x\right)-f_{n}\left(\frac{2}{4^{n}}\right)}{x} \\
&=\lim _{x \rightarrow 0^{+}} \frac{p_{2 n-1}(x)-p_{2 n-1}(0)-f_{n}\left(\frac{2}{4^{n}}-x\right)+f_{n}\left(\frac{2}{4^{n}}\right)}{x} \\
& \begin{aligned}
&\left(\text { because } p_{2 n-1}(0)-f_{n}\left(\frac{2}{4^{n}}\right)=2 b_{2 n-1}-b_{2 n-1}=f_{n}\left(\frac{2}{4^{n}}\right)\right) \\
&=\lim _{x \rightarrow 0^{+}} \frac{p_{2 n-1}(x)-p_{2 n-1}(0)}{x}+\lim _{x \rightarrow 0^{+}} \\
&=p_{2 n-1}^{\prime}(0)+f_{n}^{\prime}\left(\frac{2}{4^{n}}-\right)=a p_{2 n-2}(0)+f_{n}^{\prime}\left(\frac{2}{4^{n}}-\right) \\
&=f_{n}^{\prime}\left(\frac{2}{4^{n}}-\right)
\end{aligned}
\end{aligned}
$$

Therefore, f_{n} is differentiable at $x=\frac{2}{4^{n}}$. From the second equation of (4.3), we have that

$$
f_{n}^{\prime}\left(\frac{2}{4^{n}}+x\right)=p_{2 n-1}^{\prime}(x)+f_{n}^{\prime}\left(\frac{2}{4^{n}}-x\right)
$$

Then

$$
\lim _{x \rightarrow 0^{+}} f_{n}^{\prime}\left(\frac{2}{4^{n}}+x\right)=p_{2 n-1}^{\prime}(0)+\lim _{x \rightarrow 0^{+}} f_{n}^{\prime}\left(\frac{2}{4^{n}}-x\right)=f_{n}^{\prime}\left(\frac{2}{4^{n}}-\right)
$$

Therefore, f_{n} is continuously differentiable at $x=\frac{2}{4^{n}}$, and so f_{n} is continuously differentiable at each point of the interval $\left[0, \frac{1}{4^{n-1}}\right]$. From the first equation of (4.2), we have that $f_{n}(0)=2-a$ and $f_{n}^{\prime}(x)=a f_{n}(2 x)$ for $0 \leq x \leq \frac{2}{4^{n}}$. Therefore, f_{n} satisfies $E q n s[n]$ as required.

Lemma 4.2. Suppose that $g_{1}(x)$ is a continuously differentiable function which satisfies Eqns $[k+1]$. Let $g_{2}(x)$ be an extension of $g_{1}(x)$ defined by

$$
\left\{\begin{array}{lll}
g_{2}(x) & =g_{1}(x) & \text { if } 0 \leq x \leq \frac{1}{4^{k}} \tag{4.3}\\
g_{2}\left(\frac{1}{4^{k}}+x\right) & =p_{2 k}(x)+g_{2}\left(\frac{1}{4^{k}}-x\right) & \text { if } 0<x \leq \frac{1}{4^{k}} \\
g_{2}\left(\frac{2}{4^{k}}+x\right) & =p_{2 k-1}(x)-g_{2}\left(\frac{2}{4^{k}}-x\right) & \text { if } 0<x \leq \frac{2}{4^{k}}
\end{array}\right.
$$

Then $g_{2}(x)$ is continuously differentiable on $\left[0, \frac{1}{4^{k-1}}\right]$, and satisfies Eqns $[k]$.
Proof. The function g_{2} is continuously differentiable on the intervals $\left[0, \frac{1}{4^{k}}\right]$, $\left(\frac{1}{4^{k}}, \frac{2}{4^{k}}\right]$ and $\left(\frac{2}{4^{k}}, \frac{1}{4^{k-1}}\right]$. Now, we show that g_{2} is differentiable at $x=\frac{1}{4^{k}}$.

$$
\begin{aligned}
g_{2}^{\prime}\left(\frac{1}{4^{k}}+\right) & =\lim _{x \rightarrow 0^{+}} \frac{g_{2}\left(\frac{1}{4^{k}}+x\right)-g_{2}\left(\frac{1}{4^{k}}\right)}{x} \\
& =\lim _{x \rightarrow 0^{+}} \frac{p_{2 k}(x)+g_{2}\left(\frac{1}{4^{k}}-x\right)-g_{2}\left(\frac{1}{4^{k}}\right)}{x} \\
& =\lim _{x \rightarrow 0^{+}} \frac{p_{2 k}(x)-p_{2 k}(0)}{x}-\lim _{x \rightarrow 0^{+}} \frac{g_{2}\left(\frac{1}{4^{k}}-x\right)-g_{2}\left(\frac{1}{4^{k}}\right)}{-x} \\
& =p_{2 k}^{\prime}(0)-g_{2}^{\prime}\left(\frac{1}{4^{k}}-\right)
\end{aligned}
$$

By Proposition 4.2, $g_{2}^{\prime}\left(\frac{1}{4^{k}}-\right)=a b_{2 k-1}$. Then

$$
g_{2}^{\prime}\left(\frac{1}{4^{k}}+\right)=a p_{2 k-1}(0)-a b_{2 k-1}=2 a b_{2 k-1}-a b_{2 k-1}=g_{2}^{\prime}\left(\frac{1}{4^{k}}-\right)
$$

Therefore, g_{2} is differentiable at $x=\frac{1}{4^{k}}$, and $g_{2}^{\prime}\left(\frac{1}{4^{k}}\right)=a b_{2 k-1}$. Now we show that g_{2}^{\prime} is continuous at $x=\frac{1}{4^{k}}$. It is enough to show that

$$
\lim _{x \rightarrow 0^{+}} g_{2}^{\prime}\left(\frac{2}{4^{k}}+x\right)=g_{2}^{\prime}\left(\frac{2}{4^{k}}\right)
$$

because g_{2}^{\prime} is continuous on $\left[0, \frac{1}{4^{k}}\right]$. From the second equation of (4.3), we have that

$$
g_{2}^{\prime}\left(\frac{1}{4^{k}}+x\right)=p_{2 k}^{\prime}(x)-g_{2}^{\prime}\left(\frac{1}{4^{k}}-x\right)
$$

Then

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} g_{2}^{\prime}\left(\frac{1}{4^{k}}+x\right) & =\lim _{x \rightarrow 0^{+}}\left[p_{2 k}^{\prime}(x)-g_{2}^{\prime}\left(\frac{1}{4^{k}}-x\right)\right] \\
& =p_{2 k}^{\prime}(0)-g_{2}^{\prime}\left(\frac{1}{4^{k}}-\right)=2 a b_{2 k-1}-a b_{2 k-1} \\
& =a b_{2 k-1}=g_{2}^{\prime}\left(\frac{1}{4^{k}}\right) .
\end{aligned}
$$

Therefore, g_{2} is continuously differentiable at $x=\frac{1}{4^{k}}$. The proof that g_{2} is continuously differentiable at $x=\frac{2}{4^{k}}$ is similar. Now we show that g_{2} satisfies the conditions of Eqns $[k]$. By the definition of g_{2}, we have that $g_{2}(0)=0$ and

$$
g_{2}\left(\frac{2}{4^{k}}+x\right)=p_{2 k-1}(x)-g_{2}\left(\frac{2}{4^{k}}-x\right)
$$

for $0<x \leq \frac{2}{4^{k}}$. Also, $g_{2}^{\prime}(x)=a g_{2}(2 x)$ for $0<x \leq \frac{2}{4^{k+1}}$ because $g_{2}(x)=g_{1}(x)$ on the interval $\left[0, \frac{1}{4^{k}}\right]$ and g_{1} satisfies Eqns $[k+1]$. By the third equation of $\operatorname{Eqns}[k+1]$, we have that

$$
g_{2}\left(\frac{2}{4^{k+1}}+x\right)=p_{2 k+1}(x)-g_{2}\left(\frac{2}{4^{k+1}}-x\right)
$$

for $0<x \leq \frac{2}{4^{k+1}}$. By differentiating the above equation, we obtain

$$
\begin{aligned}
& g_{2}^{\prime}\left(\frac{2}{4^{k+1}}+x\right)=p_{2 k+1}^{\prime}(x)+g_{2}^{\prime}\left(\frac{2}{4^{k+1}}-x\right) \\
& g_{2}^{\prime}\left(\frac{2}{4^{k+1}}+x\right)=a p_{2 k}(2 x)+a g_{2}\left(\frac{1}{4^{k}}-2 x\right)=a g_{2}\left(\frac{1}{4^{k}}+2 x\right)
\end{aligned}
$$

By the second equation of (4.3),

$$
g_{2}\left(\frac{1}{4^{k}}+x\right)=p_{2 k}(x)+g_{2}\left(\frac{1}{4^{k}}-x\right)
$$

for $0<x \leq \frac{1}{4^{k}}$. Then

$$
\begin{aligned}
& g_{2}^{\prime}\left(\frac{1}{4^{k}}+x\right)=p_{2 k}^{\prime}(x)-g_{2}^{\prime}\left(\frac{1}{4^{k}}-x\right) \\
& g_{2}^{\prime}\left(\frac{1}{4^{k}}+x\right)=a p_{2 k-1}(2 x)-a g_{2}\left(\frac{2}{4^{k}}-2 x\right)=a g_{2}\left(\frac{2}{4^{k}}+2 x\right) .
\end{aligned}
$$

Therefore, $g_{2}^{\prime}(x)=a g_{2}(2 x)$ for all $0<x \leq \frac{2}{4^{k}}$. Then g_{2} is a continuously differentiable function on $\left[0, \frac{1}{4^{k-1}}\right]$ which satisfies Eqns[k].

Let $n=\left\lfloor\log _{4} 2 a\right\rfloor+1$. In Lemma 4.1, we showed that f_{n} satisfies Eqns $[n\rfloor$. Let $\left\{\tilde{f}_{k}\right\}_{k=1}^{n}$ be a sequence of functions where $\tilde{f}_{n}=f_{n}$, and \tilde{f}_{k} is the extension of \tilde{f}_{k+1} to the interval $\left[0, \frac{1}{4^{k-1}}\right]$ with formulas (4.3) for $k=1,2, \ldots, n-1$. By Lemma 4.2, the functions \tilde{f}_{k} satisfy Eqns $[k]$ for all $k=1,2, \ldots, n$.

Corollary 4.1. The function \tilde{f}_{1} is continuously differentiable and satisfies equations (*).

Proof. The function \tilde{f}_{1} satisfies Eqns[1] and by Proposition 4.2: $\tilde{f}_{1}(1)=$ $2+a$. Therefore \tilde{f}_{1} satisfies $(*)$.

When $a=7.999$, the sequence $\left\{h_{k}\right\}_{k=0}^{\infty}$ defined with (4.1) and $h_{0}(x)=x$ converges to the solution of $(*)$ on the interval $\left[0, \frac{1}{4}\right]$. The graphs of h_{2} and h_{3} are given on Figure 4 (left). Let \bar{f}_{3} be the extension of h_{3} with formulas (4.3) where $g_{1}=h_{3}$ and $g_{2}=\bar{f}_{3}$. The function \bar{f}_{3} is an approximation to the solution f of $(*)$ on $[0,1]$. Although the values of f are in the interval [$-85400,85400$], the graph of the third approximation \bar{f}_{3} already resembles the graph of f (Fig. 4). When $a=2$, the solution of $(*)$ is $4 F_{2}$ and the Fabius function F_{2} is infinitely differentiable and nowhere analytic in $[0,1]$. Now we show that this is the only infinitely differentiable solution of ($*$).

Corollary 4.2. Let f be the solution of (*) where $a \neq 2$ and $a \notin S$. Then $f^{\prime \prime}(x)$ is discontinuous at $\frac{1}{2}$.

Proof. By differentiating the first two equations of $(*)$ we obtain

Fig. 4: The graphs of h_{2} and h_{3} (left) and \bar{f}_{3} and f on the same axis (right) for $a=7.999$

$$
\begin{cases}f^{\prime \prime}(x)=2 a^{2} f(4 x) & \text { if } \quad 0 \leq x \leq \frac{1}{4} \tag{4.4}\\ f^{\prime \prime}(x)=2 a^{2} f(2-4 x) & \text { if } \quad \frac{1}{4}<x \leq \frac{1}{2} \\ f^{\prime \prime}(x)=-2 a^{2} f(4 x-2) & \text { if } \quad \frac{1}{2}<x \leq \frac{3}{4} \\ f^{\prime \prime}(x)=-2 a^{2} f(4-4 x) & \text { if } \quad \frac{3}{4}<x \leq 1\end{cases}
$$

From the second and the third equations of (4.4) and $x=\frac{1}{2}$, we obtain

$$
f^{\prime \prime}\left(\frac{1}{2}-\right)=2 a^{2}(2-a)
$$

and

$$
f^{\prime \prime}\left(\frac{1}{2}+\right)=-2 a^{2}(2-a)
$$

Therefore, $f^{\prime \prime}$ is discontinuous at $x=\frac{1}{2}$.

References

[1] N. G. De Bruijn, The Difference-Differential Equation $F^{\prime}(x)=e^{\alpha x+\beta} F(x-1)$, Indagationes Math., 15 (1953), 449-464.
[2] Y. Dimitrov, Polynomially-divided Solutions of Bipartite Self-differential Functional Equations, Ph.D. Thesis, (2006).
[3] G. Edgar, Integral, Probability and Fractal Measure, Springer-Verlag, New York, 1998.
[4] J. Fabius, A Probabilistic Example of a Nowhere Analytic C^{∞}-Function, Z. Wahrsch. Verw. Gebiete, 5 (1966), 173-174.
[5] T. Kato and J. B. McLeod, The Functional-Differential Equation $y^{\prime}(x)=a y(\lambda x)+b y(x)$, Bull. Amer. Math. Soc., 77 (1971), 891-937.
[6] S. Wolfram, The Mathematica Book, 4th ed., Wolfram Media/Cambridge University Press, 1999.

[^0]: Key Words: linear functional differential equations, iteration
 Mathematical Reviews subject classification: 34K06, 26A18
 Received by the editors May 15, 2005
 Communicated by: Zbigniew Nitecki

