Real Analysis Exchange
RESEARCH ISSN:0147-1937

Vol. 32(1), 2006/2007, pp. 3-18

Ewa Stronska, Institute of Mathematics, Kazimierz Wielki University, Plac
Weyssenhoffa 11, 85-072 Bydgoszcz, Poland. email: stronska@neostrada.pl

ON THE MAXIMAL FAMILIES FOR SOME
CLASSES OF STRONGLY
QUASICONTINUOUS FUNCTIONS ON R™

Abstract

Some generalizations of the notions of approximate quasicontinuity
on R™ and the maximal families (additive, multiplicative, lattice and
with respect to the composition) for these classes of functions are inves-
tigated.

1 Preliminaries.

Let R, Q, Z and N denote, respectively, the set of all real numbers, of all
rationals, of all integers and of all positive integers.

Throughout the present paper we shall use the following differentiation
basis P in the product space R™ for m € N. For every n € N and for each
system of integers ki,...,k, we define the m-dimensional cube

pr I e I O - Tl I SO . Rl
ki,.oiskm on ’ on om ’ on on ’ on :

Moreover, let

ki, ky €72} and P = UP"'

n=1

Py = {Plzll, k

sV

Observe that:

m

(1) if (k1,... km) # (I, ..., lm), then B ok OB = 0,
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(2) R™ = Uk1 ..... km €Z PIZ,...,k,,ﬁ

(3) if ny > ng, then for each system (ki,..., k) there is a unique system
(l,...0y) such that Pt C P |

llwnyl'm

(4) for each point x € R™ and for each n € N there is a unique system

(k1(x), ..., km(x)) such that x € B ko = P (x).

Evidently, for each index k € N and each point x € R™, we have

P*(x) c P*(x), {x} = ﬁ P¥(x) and lim diam(P*(x)) =0,

k—oo
k=1

where diam(P) denotes the diameter of the cube P.

Let A%,, (Am) denote outer Lebesgue measure in R™, (Lebesgue measure in
R™ respectively), let £,, denote the family of all A,,-measurable sets (i.e., the
sets measurable in the Lebesgue sense) in R™ and let A C R™ be an arbitrary
set.

For x € R™ we define the upper outer density (the lower density) of the set
A at the point x by

dy(A, x) = lim supAm(AmP (x))

A5 (AN P”(x)))
D W e%)

M di(4, x) = lim inf—™
( e TR P )

A point x € R™ is called an outer density point (with respect to the basis
P) of the set A C R™ iff d;j(A, x) = 1. A point x € R™ is called a density
point (with respect to the basis P ) of the set A C R™ iff there exists a
Am-measurable set B C A such that d;(B, x) = 1. Let

#(A) = {x € R™;x is a density point of A with respect to P}

and put
Ta={A€L,; AC ¢(A)}.

The family 7; is a topology called the density topology ([1], [2] and [15]).
Denote by 7, the Euclidean topology in R™. Observe that 7, C 75 and 7, # 14.
If A € 7., then we will say that A is an open set.

If x € R™ is a continuity point of the mapping f : (R™, 7.) — (R, 7o),
then we say simply that x is continuity point of the function f : R™ — R.

A point x € R™ is called an approximate continuity point of the function
f:R™ — Rif x is a continuity point of the mapping f : (R™, 73) — (R, 7,).

We will denote by C(f) (by A(f)) the set of all continuity points (approx-
imate continuity points respectively) of the function f : R™ — R. The set
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D(f) = R™\ C(f) denotes the set of all discontinuity points of the function
/-

Moreover, denote by C, (by A), [by Cqe| the class of all continuous functions
f : R — R (approximately continuous functions f : R™ — R), [the class of all
functions f : R™ — R which are \,,-almost everywhere continuous ; i.e., for
which A, (D(f)) = 0, respectively |.

Let 7 be any topology of subsets of the space R™ and let x € R™ be a
point.

Definition 1. The function f : R™ — R is 7- quasicontinuous at the point
x if for every € > 0 and for every set U € 7 containing x there is a nonempty
set V € T such that V. C U and f(V) C (f(x) —e, f(x) +¢).

If T = 7., then we say simply that f is quasicontinuous at x ([10], [11]). If
T =714, then f is called approximately quasicontinuous (with respect to P) at
the point x and we write f € Qqp(x). If for every x € R™, f € Qqp(x), then
we say that f is approxzimately quasicontinuous (with respect to P). The class
of all approximately quasicontinuous functions f : R™ — R we denote by Q4
(4], [5))-

Let A C R be an arbitrary set. For z € R we define the lower bilateral
density of the set A at x by

. M([x—=h,x+h]NA)
Di(4, ) = Jim, 2h '

A point x € R is called a bilateral density point of the set A C R iff there is a
Ar-measurable set B C A such that D;(B,z) = 1. Let

®(A) = {z € R: zis a bilateral density point of A}.

The family 7; = {A € £L1; A C ®(A)} is a topology called the density topology
(11, [13]).

Similarly as above, a point x € R is called an approximate continuity
point of the function f : R — R if = is a continuity point of the mapping
f:R1g) - R, 7). If T = 74, then a function f : R — R which is 74-
quasicontinuous is called approximately quasicontinuous ([4], [5]).

Definition 2. [(Grande [7])]. A function f : R — R is said to be strongly
Tq-quasicontinuous at a point x € R if for every n > 0 and for every set
U € 14 containing x there is an open interval I such that U NI # @ and
|f(t) — f(x)] <nforeveryt e INU.

Denote by int(A) the interior (Euclidean) of the set A. The family
Toe = {A € Tg; A (A \ int(4)) = 0}
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is also a topology ([12]). If a point x € R™ is a continuity point of the
mapping f : (R™, 7,.) — (R, 7.), then we say that the function f:R™ — R
is Tge- continuous at a point x. A function f : R™ — R is 7 .-continuous
(everywhere) iff f € ANCy ([12], [3]). The class of all 7,.-continuous
functions f : R™ — R we denote by C(7Zge).

2 New Definitions and Notions.

Now we define some classes of strongly quasicontinuous functions f : R™ — R,
which we will investigate in this paper. By analogy, classes of such functions
for the case m = 1 were introduced by Z. Grande ([9]) with respect to the
bilateral density.

Definition 3. Let f : R™ — R be a function and let x € R™ be a point.
Then

o f € Qs(x); ie., fis called strongly quasicontinuous at a point x if for
every real € > 0 and for each set A € 7; containing x, there is a nonempty
open set O such that ANO # 0 and f(ONA) C (f(x) —e, f(x)+¢).

If for every x € R™, f € Q4(x), then we say that f is strongly quasicon-
tinuous. Denote by Qs the class of all strongly quasicontinuous functions
f:R™ =R

o f € Qs (x)(f € Qs,(x)); 1e., fis called sy-strongly quasicontinuous
(f is called so- strongly quasicontinuous respectively) at a point x if
for each real ¢ > 0 and for each set A € 7; containing x there exists a
nonempty open set O such that ONA # 0, ONA C C(f) (ONA C A(f)
respectively) and f(ONA) C (f(x) —e, f(x)+¢).

If for each x € R™, f € Qs, (X) (f € Qs,(x)), then we say that f is s;-
strongly quasicontinuous (f is se-strongly quasicontinuous respectively ).
Denote by Qs,, by Qs,) the class of all functions f : R™ — R which are
s1-strongly quasicontinuous (sg-strongly quasicontinuous respectively).

The notion of strong quasicontinuity (for the bilateral density topology in
R) introduced by Z. Grande in [7] is more general than that above (for m = 1).
For example, if f: R — R is defined by

fz) =

0 forz<0
1 for x>0,

then the function f is strongly quasicontinuous at 0 in the sense of Grande,
but f ¢ Qs(0). If f: R — R is strongly quasicontinuous at x in the above
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sense (f € Qs(x)), then f is strongly quasicontinuous at x in the sense of
Grande.

From the definitions above it follows that Q,, C Qs, C Qs C Qqap. The
inclusions above are proper ([13]); moreover, Qs C Cqe, ([6]).

Let £(x) be a property of a function f : R™ — R at a point x (we will
write f € £(x)) such that the following are true.

- If f is continuous at x, then f € &(x);

- if f € &(x), then —f € &(x);

- if f € &(x) and the restricted function glo = f|o for some open set O
containing x, then g € £(x).

Denote by S the family of all functions f : R™ — R such that for every
real ¢ > 0, for every point x and for every set A € 7; containing x there is a
nonempty open set O such that ONA # 0, f(ONA) C (f(x) —¢, f(x)+¢)
and f € £(t) for every t € ON A.

For a set H C R™ and for a real n > 0, let

O(H,n) = U K(x,n), where K(x,n) = {u € R™;|x —u| < n}.
xeH

The following lemma will be used in the proofs of the next results.

Lemma 1. Let x € R™ and let H C R™ be a nonempty set such that the
upper density d, (int(H),x) = ¢ > 0. Then, there exists a sequence of pairwise
disjoint sets H, C int(H), (n=1, 2, ...) such that

(1) each set H,, n=1, 2, ..., is the union of a finite family of cubes from
P whose closures are pairwise disjoint;

(2) x ¢ H,, for eachn=1, 2, ...;

(8) the family (Hy), converges to the point x in the sense of the Hausdorff
metric;

(4) the upper density d., (U, ey int(Hy),x) = c.

PRrROOF. Let U = O(H, 1). There is the first positive integer n(1) such that
the cube P"(V)(x) € P,1) is contained in U and

Am ((int(H)) N PW(x))

e (PTO(x))

1
PR— c'
2
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There is also a finite family of cubes
Q1n1)s Q2,n(1)s -+ Qitn(1)),n) €P
whose closures are pairwise disjoint and contained in int(P™™M)(x) N H) \ {x}

and
1(n(1
>\m (Uq;(=1( ) Qi,n(l)) - (1 1
AnPr(x) S\ 2) "

2

Let Hi = U;<i(nq)) Qin(1) and observe that cl(H1) = U1 ¢ (Qinn) -

In general, for j > 1 we find the first positive integer n(j) such that the cube
PO)(x) € Ppjy, PPV (x) € PPU=D(x)\ cl(H;_1) with diam (P")(x)) <
% - diam (P”(j_l)(x)) and

Am (int(H) NP0 (x)) 1
A (PO (x)) (1 ) 2)

For such an integer n(j) there is a finite family of cubes
Qun()» Q2n(): -+ Qi) €P

whose closures are pairwise disjoint and contained in the set [ (P™9)(x) N H)\
{x} and such that

Am (Uéi"f”) Qz‘,n(j)) 1

Let Hj = U,;<i(n(j)) @i,n(s) and observe that
(i) = J ed(Qin)-
i<i(n(5))

The sequence (H;); satisfies the conditions (1)—(4) of our lemma. O

3 The Maximal Families.

In this paper the main results are the m-dimensional analogs of the results
from [8, 14]. Now, let

o Maxaqq(S)={f:R™ = R;f+g¢€ S forevery g € S};
o Max,,:(S)={f:R™ —=R;f-ge Sforevery g € S};
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o MaZmay(S) ={f:R™ — R;max(f,g) € S for every g € S};
o Maxm,in(S)={f:R™ — R;min(f,g) € S for every g € S};
o MaZcomp(S)={f:R—R;foge S forevery g € S}.

Remark 1. FEvidently, C C SUC(Te) C Qs. So, every function f € S is
Am-almost everywhere continuous (f € Cae) ([6],][7]).

Remark 2. The inclusion
Maz,q4(S) U M axmu(S) U Maz e, (S) U Mazy,in(S) C S

s true.

PROOF. Since the constant functions g3 = 0 and g, = 1 belong to S, for all
functions f1 € Maxaq4(S), fo € Maxmu(S) we obtain that fi = f1+g1 € S
and fo = fo-go € S. So, Maxaqq(S) U Mazmu:(S) C S.

If f € S, then there are areal ¢ > 0, a point x and a set A € 7 containing x
such that for every nonempty open set O with ONA # () there is a point t € ON
A such that |f(t) — f(x)| > € or f & £(t). Then the functions max(f, f(x) —¢)
and min(f, f(x) + €) are not in {(x). So, f € MaZmaz(S) U Maxm,(S), and
the proof is completed. O

3.1 The Family Max,qq(S).

In this part we suppose that the property £(x), x € R™, is such that if
f, g € £(x), then f + g € £(x); i.e., that £(-) has the additive property.

Theorem 1. Assume that £(x), x € R™, has the additive property. Then
C('Zw) ns = Maxadd(S).

PROOF. Let f € C(7Tae) NS and g € S. Fix a real € > 0, a point x € R™ and
a set A € 7, containing x. Since f € C(7,.), the point x is a density point of

the set
B = int ({t ER™:|f(t) — f(x)| < g}) .

Consequently, x is a density point of the set B N A. Since g € S, there is a
nonempty open set O C B such that ONA # 0, |g(t) —g(x)| < § and g € £(t)
for every t € ONA. From the relation f € S it follows that there is a nonempty
open set O’ C O such that O'N A # () and f € £(t) for each point t € O’ N A.
Consequently, O' N A # 0, f+ g € &(t) and

(F(6) +9(8) ~ (FGx) +g(x)] < 5 + 5 ==
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for each point t € O N A. So, f € Max,44(S) and the inclusion C(7,.) N S C
Maxqqq(S) is proved.

For the proof of the inclusion Maxz,qq(S) C C(Zge) NS, fix a function
f € Max,q4(S). By Remark 2, the function f € S. If f & C(7,.), there are a
point x € R™ and a real ¢ > 0 such that the set cl({t € R™;|f(t)— f(x)| > €})
has a positive upper density at a point x. Without loss of generality, we can
assume that

dy(cl({t € R™; f(t) > f(x) +€}), x) > 0.

Since f € S C Qs is Ap,-almost everywhere continuous ([6]), we obtain

Am (cl({t; f(t) > f(x) +e}) \ {t; f(t) = f(x) +¢}) =0,

and consequently,
dy, (int ({t eR™; f(t) > f(x) + %}) , X) > 0.

For H = {t € R™; f(t) > f(x) + £}, there exists a sequence of pairwise dis-
joint sets H,, C int(H), n = 1, 2, ... which satisfies conditions (1)—(4) of
Lemma 1.

Now, put

(t) = —fx)+5 if(t=x)Vv(te H,, n=12,...)
TH= - ft) otherwise on R™.
The function g € S. Indeed, fix areal n > 0, a point u € R™ and aset A € 7
containing u. If u € H,, for some n € N, then there is a nonempty open set
O C H, with ONA # 0 and g(O N A) C (g(u) — n,g(u) + n). Moreover,
g € &(u) for each point u € ON A (in this case the function glo is constant
and equals —f(x) + § on the set O). Note, if u = x, then by (4) of Lemma
1 there is an index n € N with A Nint(H,) # 0. So, it is enough to suppose
that O = int(H,,) in this case. If u & |J,-; H,, U {x}, then there is an open
set O such that O N (Jo—, H, U {x}) =0 and O N A # 0. Since glo = —flo,
fONA) C (f(u)—n, f(u)+n) and f € {(u) for every u e ONA, we obtain

g(ONA)=—-f(ONA) C(~f(u) —n,—f(u)+n)=(g(u) —n,g(u)+n)

and ¢ € £(u) for each point u € O N A.

But, observe that f(x) +g(x) = 5, f(t) +g(t) > ¢ fort e Hy, (n=
1,2,...) and f(t) + g(t) = 0 otherwise on R™. So, f+g¢g ¢ S and
consequently f & Max,qq4(S). This contradiction finishes the proof. O
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Corollary 1. If the property {(x), x € R™, denotes that
e f(x) €R™, then S = Qs and Mazaqa(Qs) = C(Tae) N Qs;
e x € C(f), then S = Q,, and Mazaqa(Qs,) = C(Tae) N Qsy;
e x € A(f), then S = Qs, and Mazq4a(Qs,) = C(Zae) N Qs -

3.2 The Families Max ., (S) and Max,;,(S).

In this part we suppose that if f, g € £(x), x € R™, then max(f,g), min(f,g) €
&(x). Then, we say that £(-) has the lattice property.

Theorem 2. Let £(x), x € R™, has the lattice property. Then,
Mazmar(S) = Maxmin(S) = C(Zae) N S.
PROOF. For the proof of the inclusion
C(Toe) NS C Maxpmas(S) N Mazmin(S),

we take a function f € C(7,.) NS and a function g € S. Fix a real ¢ > 0, a
point x € R™ and a set A € 7, containing x. Let h = max(f, g). Consider the
following cases.

(1) f(x) > g(x). Let a = f(x) — g(x) and let b = min (%,¢). Since
f € C(7,.), x is a density point of the set B = int({t;|f(t) — f(x)| < b}). By
the relation g € S being applied to the point x and the set BN A € 7y, it
follows that there is an open set O such that O N (AN B) # (), g € £(t) and
lg(t) — g(x)| < b for each point t € O N (AN B).

Since f € S, there is an open set O’ C O N B with O’ N (AN B) # () and
f € &(t) for each point t € O’ N (AN B). Observe that for u € O’ N (AN B),
we have

fw) > f(x) =b>g(x) +2b—b=g(x) + b > g(u),
so h(u) = f(u). Moreover, h(x) = f(x), and for each point u € O N (AN B)
we have h € {(u) and |h(u) — h(x)| = |f(u) — f(x)| < b <e.

(2) f(x) < g(x). In this case the proof is analogous as above.

<
(3) f(x) = g(x). Let b = ¢ and choose an open set O’ as above in case
(1). Then, O'N (AN B) # 0 and for u € O’ N (AN B) we obtain i € £(u) and

[h() = h(x)| < max(|f(u) = f(x)],|g(u) —g(x)|) <b=e.

So, h = max(f,g) € S. The proof min(f, g) € S is analogous.
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Finally, since by Remark 2 the inclusion MaXnq:(S) U Mazmin(S) C S
is true, we shall show the inclusion

Maz e (S)UMazmin(S) C C(Zae)-

Let f € Max,q.(S) be a function. By Remark 2, f € S. If f & C(Zge),
then there are a point x € R™ and a real € > 0 such that

du(cl({t € R™; [f(t) = f(x)| > €}), x) > 0.

If dy(cl({t € R™; f(t) > f(x) +¢€}),x) > 0, then, as before in the proof of
Theorem 1, for H = {t € R™; f(t) > f(x) + £}, there exists a sequence of
pairwise disjoint sets H,, C int(H), n =1, 2, ... such that conditions (1)—(4)
of Lemma 1 are satisfied. Let the function ¢; : R™ — R be defined by

) fx)—e if(t=x)V(tc Hyy, n=12,...)
a(t) = {f(x) +¢& otherwise on R™.

Note that g1 € S. Moreover, max(f(x), g1(x)) = f(x) and max(f(t), g1(t)) >
f(x) 4 § for t # x. So, max(f,g1) ¢ S and consequently f ¢ Mazmas(S5),
yielding a contradiction.

Now, consider the case d,(cl({t € R™; f(t) < f(x) —€}), x) > 0. Then, as
before in this proof, there are disjoint sets

Kncint({teRm;f(t)<f(x)—§}), n=1,2, ...

which satisfy conditions (1)—(4) of Lemma 1. Let the function go : R™ — R
be defined as g; before, but for the sets K,,, n =1, 2, .... Then, go € S

and max(f(x), g2(x)) = f(x), max(f(t),g2(t)) < f(x) — 5 for t € Ky, (n =

1,2,...) and max(f(t), g2(t)) > f(x)-+¢€ otherwise on R™. So, in this case also,

max(f,g2) € S and consequently f & Max,,q.(S), yielding a contradiction.
We can prove the inclusion M a,,,,(S) C C(Z,.) analogously. O

Corollary 2. If the property £(x), x € R™, denotes that

o f(x) € R™, then S = Qs and MaZ 4 (Qs) = Maxmin(Qs) = C(Tae) N
Qs?

o x € C(f), then S = Qs, and MaZa.(Qs,) = Maxpmin(Qs,) = C(Zge) N
Qsl;

® XE A(f); then S = Qsz and Maxmar(Q52) = Maxmin(QSQ) = C(,]:zc) N
Qs
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3.3 The Family Maxcomp(S).

Suppose that for every functions f : R — R belonging to C and for every
function g € £(x), x € R™, we have fog € £(x), i.e., &(-) is invariant with
respect to the composition with the continuous functions from R to R.

Theorem 3. Assume that {(x), x € R™, is invariant with respect to the
composition with the continuous functions from C. Then, MaZ omp(S) = C.

PROOF. Let f: R — R be a continuous function and let g € S be a function.
Fix areal € > 0, a point x and a set A € 73 containing x. Since f is continuous
at g(x), there is areal 6 > 0 such that if ju—g(x)| < §, then |f(u)— f(g(x))| <
€. Since g € S, there is a nonempty open set O such that O N A # 0, g € £(t)
and |g(t) — g(x)| < 6 for each point t € O N A. Observe that for every point
t € ON A we obtain fog € £(t) and |f(g(t)) — f(g9(x))] <e.So, foge S,
and consequently C C MaZcomp(S).

Suppose that f : R — R is not continuous at a point y € R. Then there
is a sequence of points vy, # y,n = 1,2,..., such that lim, .y, = y and
limy, oo f(yn) # f(y). Let P1(0) € P; be a cube containing a point x = 0. For
x = 0 and H = P'(0) there exists a family of sets H; C int(P'(0)),j = 1,2,...
which satisfies conditions (1)—(4) of Lemma 1. Put

Yo fxeH, n=12 ...
gx)=<y ifx=0
y1 otherwise on R™.

The function g € S. Indeed, fix a real ¢ > 0, a point x € R™ and a set
A € T, containing x. If x # 0, then there exists a cube P(x) € P containing
x such that the restricted function g|cp(x)) is constant and there exists an
open set O C P(x) such that ON A # 0,g(0O N A) C (g9(x) —&,9(x) + ¢)
and g € &(u) for each point u € U N A. If x = 0, then there exists an index
n € N such that |y, — y| < e and there is a nonempty open set O C H,
such that O N A # 0. Obviously, glona is constant. So, g € £(u) for each
u € ON A and since |g(u) — g(0)] = |y, — y| for each u € O, we obtain
g(ONA) C (g(0) —¢e,9(0) +¢). But observe, fog & Q4(0) and thus fog & S.
This contradiction shows that for every function g € S'if fog € S, then f € C
and the proof is completed. O

Corollary 3. If the property £(x), x € R™, denotes that
o f(x) €R™, then S = Qs and MaZcomp(Qs) =C;
o x € C(f), then S = Qs, and MaZcomp(Qs,) =C;
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o x € A(f), then S = Qs, and Mazcomp(Qs,) = C.

3.4 The Family Max;.,;+(S).

Suppose that the property {(x), x € R™, is such that

- if f,g € £(x), then f-g € &(x);

- if f € £(x) and there is an open set O such that d,(0,x) = 1 and
f(x) #0 & f(O), then every extension of the function h(t) L for

O]
t € O U {x} belongs to £(x).

Lemma 2. If a function f € S is not T,.-continuous at a point x € R™ at
which f(x) # 0, then there is a function g € S such that the product f-g & S.

PROOF. Arguing as in the proof of Theorem 1, we can show that there is a real
€ > 0 and a family of sets H,, C int ({t eR™; f(t) > f(x) + %}) ,n=1,2,...
which satisfy conditions (1)—(4) of Lemma 1.
Put
¢ 1 if(t=x)V(te Hy,n=12,...),
9(t) = 0 otherwise on R™,

and observe that g € S. But f(x) - g(x) = f(x) # 0 and for every point t # x
we have f(t) - g(t) = 0 or |£(t) - g(t) — F(x) - g(x)| = () — f(x)] > 5. So,
f-g ¢ Qs(x), and thus f - g & S. This completes the proof. O

Lemma 3. Let f € S be a function and let x € R™ be a point such that
f(x) =0. If d,({t € R™; f(t) = 0},x) > 0, then for every function g € S, for
every real € > 0 and for every set A € Ty containing x there is an open set
O such that O N A # 0, the product f - g € £(t) and |f(t) - g(t)| < & for each
pointt € O N A.

PRrROOF. Fix a function g € S, a real ¢ > 0 and a set A € 73 containing x.
Since f,g € S, they are \,,-almost everywhere continuous. Observe that the
set

B ={t e A; f(t) =0 and f is continuous at t}

is of positive \,,-measure. Find a point u € B such that f(u) = 0 and the
function g is continuous at u. Let O be an open set containing u such that
there is a real r > 0 with |g(t)] < r for each point t € O. Observe that
ueONAe€T,. Since f € S and f(u) =0, there is an open set O’ C O such
that O'NA# 0, f € £(t) and |f(t)] < £ for each point t € O'NA. But g € S
and 0 # O’ N A € Ty, so there is an open set O” C O’ such that 0" N A #
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and g € &(t) for each point t € O” N A. Finally, observe that for t € O” N A,
we have

frgeg(t)and [f(t) - g(t) — f(x)-g(x)[=|f(t)-g(t)] < ; T=Ee.
This completes the proof. O

Lemma 4. Suppose that the function f € S is not T,.- continuous at a point
x at which f(x)=0. If

dy({t € R™; f(t) = 0}, x) =0,
there is a function g € S such that f-g & S.

PROOF. Since f is Aj-almost everywhere continuous, we obtain
Am (cl({t € R™; f(t) = 0}) \ {t € R™; f(t) = 0}) =0

and d, (1 ({t e R™; f(t) =0}), x) =0.

Since f is not 7,.-continuous at x, there is a real ¢ > 0 such that the set
cl({t € R™;|f(t)| > €}) has positive upper density at a point x. Moreover,
since {t € R™;|f(t)| > e} = {t € R™; f(t) > e} U {t € R™; f(t) < —¢}, we
obtain

dy({t eR™; f(t) > €}, x) >0o0rd,({t e R™; f(t) < —¢}, x) >0. (3.1)

Without loss of generality, we can assume that the first of the inequalities (3.1)
is true. Since f is A;,-almost everywhere continuous, we have d,, (int(H), x) >
0for H = {t € R™; f(t) > §}nP"M(x), where n(1) is the first positive integer
such that P"M(x) € P,y and P"M(x) C O ({t eR™; f(t) > £}, 1). By
Lemma 1 applied to the set H and the point x, there exists a sequence (H,,)n
of subsets of int(H) such that conditions (1)—(4) of Lemma 1 are satisfied.
Let K = {t € P"M(x); f(t) = 0}. The upper density d,(cl(K), x) = 0. We
will prove that there is an open (in P*(Y)(x)) set V O cl(K) \ {x} contained
in P (x)\ >, Hy, \ {x} such that

dy(V, x) =0and A\, (cl(V)\ V) = 0.
Let (sn)n be a sequence of positive numbers such that

. Sn
lim

n00 A (pn+2(x))’ = 0.
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Since the set
T =l (P"(x)\ P""(x)) Ncl(K)

is compact for each n > n(1), there exists a finite family of open balls

By, By, ..., Bj,) C P"(x)\c(P""(x)) \d <U H, )

n=1

such that
U Br > T and A, UB"\T <

=1

4"'

Observe that the set V = Un>n 1) Ul(" B!' is open and satisfies all require-

ments. Let
B =P (x)\ (V ulJHau {x}>

n=1
and put
5 if(t=x)vV({teH, n=12...),
0 if (t€V)V(te Bandd,(V, t)>0),
7 ift e Band d,(V, t) =0
ft) ifteR™\ Pr(x).

We can prove that g € S by methods used above. But the product f-g & Qs(x).
Indeed, observe that on P™*(Y)(x) we have

f(t)-g(t) > %int( fort € H,, n €N,
F(£) - g(t) =0if t € PV (x)\ (Uply Hy U{x}) and du (V. t) >
F(t) - g(t) =1if t € B and du(V, t) =0,

and for each t € R™\ P"1)(x) we have g(t) - f(t) = (f ( f(£))%. If A is the set of
all density points of the set BUJ,—, H, and n = % { —} then x € A

and for each open set O with O N A # () the image f(O N A) is not contained
in (f(x) =n, f(x)+n) = (=n, n). S0, f-g&5. O
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Lemma 5. If a function f € S is Tyc-continuous at a point x € R™, then
for every function g € S, for every set A € 1; containing x and for every real
€ > 0 there is a nonempty open set O such that ONA # @, f-g € £(t) and
If(t) - g(t) — f(x)-g(x)| < e for each point t € O N A.

PROOF. Fix areal € > 0, a set A € 7; containing x. Since f is 7,.-continuous
at x, the point x is a density point of the set

B = int {t ER™IfF(6) — ) < 5 max(Tg(X)l 1) } 7

Consequently, x is a density point of the set BN A. Since f € S, there is a
nonempty open set O C B such that ON A # 0 and f € £(t) for each point
t € ONA. Since g € S, there is a nonempty open set O’ C O such that

O'NA+D,
13

<
2 - max(supgeorna |f(t)], 1)

and g € £(t) for each t € O’ N A. Consequently, we obtain that f-g € S(t)
and

1F(6) - g(t) = F(x) - g < [F(®)] - |g(t) — g()[ + [9(x)| - [F(t) — fF(x)] <

S 9

sup |f(t)] - + |g9(x)|- < e
o/ S e 7oL D T 2 Gl D
So, f-g € S and the proof is completed. O

From Lemmas 2, 3, 4 and 5 we immediately obtain the following theorem.

Theorem 4. A function f € Max,u(S) if and only if f € S and satisfies
the following condition.

(m) if f is not Tye-continuous at a point x € R™, then f(x) =0 and
2 ({t € R™; () = 0}, %) > 0.

Corollary 4. If the property £(x),x € R™, denotes that

o f(x) ER, then S = Qs and f € Maxmyu(Qs) if and only if f € Qs and
satisfies the condition (m);

e x € C(f), then S = Qs, and f € Maxpmut(Qs,) if and only if f € Q,
and satisfies the condition (m);

o x € A(f), then S = Qs, and [ € Maxpu(Qs,) if and only if f € Qs,
and satisfies the condition (m).
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