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VERTICALLY RIGID FUNCTIONS

Abstract

A function f : R → R is said to be vertically rigid provided its graph
G(f) = {〈x, f(x)〉 : x ∈ R} is isometric with the graph of the function
kf for every non-zero k ∈ R. We show that the group homomorphisms
f from 〈R, +〉 into 〈R+, ·〉 is vertically rigid if and only if it is an epi-
morphism. Some other examples of vertically rigid functions will also be
given. A problem of characterizing all vertically rigid functions remains
open.

1 Vertically Rigid Sets.

A subset A of the plane R2 is vertically rigid if for every k > 0 its vertical
stretching A(k) = {〈x, ky〉 : 〈x, y〉 ∈ A} is isometric with A. Notice that if
A ⊆ R2 is vertically rigid, then A is isometric with A(k) for every non-zero
k ∈ R, since A(−k) is isometric with A(k) via reflection with respect to the
x-axis. A function f : R → R is vertically rigid provided so is its graph.

Note that if A ⊆ R2 is vertically rigid, then neither its inner Lebesgue mea-
sure m∗(A) nor its outer Lebesgue measure m∗(A) can be finite and positive,
since isometries preserve Lebesgue measure, while m∗(A(k)) = km∗(A) and

Key Words: vertically rigid function, group homomorphism
Mathematical Reviews subject classification: Primary: 54C30; Secondary: 51M04,

33B10, 54A10.
Received by the editors August 5, 2005
Communicated by: Krzysztof Chris Ciesielski

∗This work comes out of an undergraduate senior seminar directed by the last author.
The authors are very grateful to the editor, Krzysztof Ciesielski, for major improvement
in the presentation of this note. Special thanks also goes to Fatima Rashid, and Reginald
Richardson, participants in the seminar who were not directly involved in the preparation
of this paper.

515



516 Brandi Cain, John Clark and David Rose

m∗(A(k)) = km∗(A) for every k > 0. (See e.g. [6, thm 1, p. 57].) It is also
clear that the complement of a vertically rigid set is also vertically rigid. The
simplest vertically rigid sets are of the form S × I, where I is any unbounded
interval in R and S is an arbitrary subset of R. Also, any line and any half
plane, open or closed, are vertically rigid.

For this paper the most interesting example of a vertically rigid set is the
graph of the exponential function f(x) = ax. In fact, it is vertically rigid only
via horizontal translation, since for every k > 0 we have kf(x) = aloga kax =
ax+loga k = f(x+loga k). Other examples of vertically rigid sets via horizontal
translation include {〈x, y〉 : 0 ≤ y ≤ ax} and {〈x, y〉 : − ax ≤ y ≤ ax}.

2 Vertically Rigid Functions.

First notice the following simple fact.

Fact 1. If f : R → R is vertically rigid, then so are bf and f + b for every
b ∈ R.

Proof. Clearly mf is vertically rigid. We need to show that so is f + b. Let
k > 0. Then G(k(f + b)) = G(kf + kb) = G(kf) + 〈0, kb〉 = (Tkb ◦ i)[G(f)],
where i is an isometry with i[G(f)] = G(kf) and Tkb is a vertical translation
by kb.

Since all exponential functions f(x) = ax are vertically rigid, so are also
the functions h(x) = b+ax. In addition, all linear functions f(x) = mx+b are
vertically rigid. Dragan Janković of Cameron University has conjectured, in
private communication, that these are the only types of continuous vertically
rigid functions. So far, we were not able to prove this claim. However, the
next theorem provides a multitude of discontinuous vertically rigid functions.

Theorem 2. Let f be a non-constant group homomorphism from the additive
group 〈R,+〉 to the multiplicative group 〈R+, ·〉. Then f is vertically rigid if
and only if f is an epimorphism, that is, when f [R] = R+.

Proof. If f is surjective and k > 0, then k = f(a) for some a ∈ R. Thus
kf(x) = f(a)f(x) = f(x + a) for all x ∈ R. So, f is vertically rigid via
horizontal translation.

Conversely, assume that f [R] 6= R+. We will show that f is not vertically
rigid. For this, let d ∈ R+ \ f [R] and let k > 0 be such that d ∈ kf [R]. (Take
k = d/z for any z ∈ f [R].) We will show that G(f) is not isometric with
G(kf). First notice, that there exists an additive function g (i.e., a group
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homomorphism from 〈R,+〉 into itself) such that f = exp ◦g. This easy fact
can be found in Kuczma [6, p. 308]. Since g is not of the form g(x) = ax (as
then we would have f [R] = R+), the graph of g is dense in R2. (See [6, p.
277] or [3].) Thus, G(f) and G(kf) are dense in R× R+.

Now, by way of contradiction, assume that there is an isometry i of the
plane with i[G(f)] = G(kf). The closure of each set G(f) and G(kf) is
R× [0,∞) and so, being a homeomorphism, i must map the upper half plane
into itself. In particular, i maps the x-axis L = R×{0} onto itself. Now, since
i preserves the distance, for every x, y ∈ R with i(〈x, f(x)〉) = 〈y, kf(y)〉 we
have

f(x) = dist(〈x, f(x)〉, L) = dist(i(〈x, f(x)〉), L) = kf(y).

Using this equation with y for which kf(y) = d we obtain that d = kf(y) =
f(x) ∈ f [R], contradicting the choice of d.

As mentioned in the proof, f is a homomorphism from 〈R,+〉 into 〈R+, ·〉
if and only if f = exp ◦g for an additive function g. This representation
and Theorem 2 allow an easy transformation of additive functions into the
vertically rigid functions, which is very useful due to the extensive literature on
the additive functions. (See e.g. [1, 2, 4, 5, 6, 7, 8].) For example, there exists
a vertically rigid homomorphism f from 〈R,+〉 to 〈R+, ·〉 with ker(f) = Q,
since there exists an additive function g onto R with ker(g) = Q. There
exists a vertically rigid f : R → R+ with c-dense graph, since there is an
appropriate additive function. For the same reason, there exists a vertically
rigid homomorphism f from 〈R,+〉 to 〈R+, ·〉 whose kernel is uncountable
and contains no perfect set, so it is not Borel. This last example can be
constructed using [3, thm. 7.3.4], which states that a Hamel basis H and a
function h : H → R exist such that h−1(r) is a Bernstein set for every r ∈ R.

3 Final Remarks and Questions.

Notice that the set of vertically rigid functions is not closed under addition.

Example 3. Since ex and e−x are vertically rigid functions, so also are 1
2ex

and 1
2e−x. However, the sum of these functions, f(x) = coshx is not vertically

rigid. For the point 〈0, 1〉 on the graph is a unique point of maximum curvature
1. But, for each k > 1, G(kf) has a unique point of maximum curvature k.
So G(kf) cannot be isometric to G(f), since the isometry preserves curvature.

We will finish with some questions.

Question 1. Do vertically rigid functions exist which are neither in form
b + exp ◦g for some additive g nor have a line graph?
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A negative answer to Question 1 would prove the conjecture of Janković.

Question 2. Can non-linear additive functions be vertically rigid via rota-
tion?

Question 3. Are functions with line graphs the only ones which are both
vertically rigid and horizontally rigid?
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