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RESIDUALITY OF GAMILIES OF Fσ SETS

Abstract

We prove that two natural definitions of residuality of families of
Fσ sets are equivalent. We make use of the Banach-Mazur game in the
proof.

1 Introduction

Properties of a typical compact set in the Euclidean space are often discussed.
Here we say that a property P is fulfilled by a typical compact set if the set
of all compact sets satisfying P is residual in the space of all compact sets
endowed with the Hausdorff metric. It is well-known that a typical compact
set in the Euclidean space is Lebesgue null (see [3], for example). In this
paper we consider what a typical Fσ set means, namely we define residuality
of families of Fσ sets. To the best of the author’s knowledge, there has been
no definition of such residuality.

We shall work in a compact, dense-in-itself metric space (X, ρ) throughout
this article. Without loss of generality, we may assume that ρ(x, y) 5 1 for
any x, y ∈ X. An Fσ set means an Fσ subset of X, and Fσ stands for the
set of all Fσ sets. Let K denote the set of all compact (or equivalently closed)
subsets of X. For x ∈ X and r > 0, the closed ball of centre x and radius r is
denoted by B̄(x, r). For K ∈ K and r > 0, we put K[r] =

⋃
x∈K B̄(x, r). It

is well-known that the Hausdorff metric d makes K a compact metric space.
Here we define d(K, ∅) = 1 for any nonempty set K ∈ K. Then for K, L ∈ K
and r ∈ (0, 1), we have d(K, L) 5 r if and only if K ⊂ L[r] and L ⊂ K[r],
even when either K or L is empty.

Giving Fσ a topology would suffice to define residuality of families of Fσ

sets, but no good topology on Fσ has been found so far. Bearing in mind that
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each Fσ set is the union of a sequence in K, we look at the space of sequences
in K instead. Here we might worry whether we should restrict ourselves only
to increasing sequences, but our main theorem removes this concern. Let us
proceed to rigorous definitions.

Convention 1.1. Every sequence begins with the term of subscript one and
the set N of all positive integers does not contain zero.

The set of all sequences of sets in K is denoted by KN and endowed with
the product topology. The closed subset KN

↗ of KN is defined as the set of all
increasing sequences:

KN
↗ =

{
(Kn) ∈ KN ∣∣ K1 ⊂ K2 ⊂ · · ·

}
.

Definition 1.2. For a family F of Fσ sets, we put

KN
F =

{
(Kn) ∈ KN

∣∣∣∣∣
∞⋃

n=1

Kn ∈ F

}
.

We say that F is KN-residual if KN
F is residual in KN and that F is KN

↗-residual
if KN

F ∩KN
↗ is residual in KN

↗.

Our main theorem asserts that these two notions of residuality agree with
each other:

Main Theorem 1. A family of Fσ sets is KN-residual if and only if it is
KN
↗-residual.

The equivalence seems to show the appropriateness of our definitions.
Moreover our definitions match the properties of a typical compact set men-
tioned at the beginning. We prove a lemma before we state the precise relation.

Lemma 1.3. Let Y be a second countable topological space and Z a nonempty
Baire space. Then a subset A of Y is residual if and only if A×Z is residual
in Y × Z.

Proof. It suffices to show that a subset A of Y is meagre if and only if A×Z
is meagre in Y × Z.

Suppose that A is meagre. Then there exist nowhere dense sets A1, A2,
. . . such that A =

⋃∞
n=1 An. It is easy to see that An×Z is nowhere dense in

Y × Z for every n ∈ N. Thus A× Z =
⋃∞

n=1(An × Z) is meagre.
Conversely suppose that A × Z is meagre. Then the Kuratowski-Ulam

theorem shows that for every z in a residual set in Z, the set { y ∈ Y | (y, z) ∈
A × Z } = A is meagre. Therefore A is meagre since Z is a nonempty Baire
space.
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Remark 1.4. We shall use this lemma for Y = K and Z = KN in the next
proposition. In this situation, the ‘if ’ part can be replaced by the following
lemma, which is Lemma 4.25 of [2] by Phelps:

Let M be a complete metric space, Y a Hausdorff space and f : M −→
Y a continuous open surjective mapping. If G is the intersection
of countably many dense open subsets of M , then its image f(G)
is residual in Y .

Indeed it suffices to substitute K×KN for M , K for Y , and the first projection
for f . In order to prove this lemma, Phelps used the Banach-Mazur game,
which we shall look at from the next section onwards.

Proposition 1.5. Let I be a σ-ideal on X. Then I ∩ K is residual in K if
and only if I ∩ Fσ is KN-residual.

Proof. Since{
(Kn) ∈ KN

∣∣∣∣∣
∞⋃

n=1

Kn ∈ I

}
=

{
(Kn) ∈ KN ∣∣ Kn ∈ I for every n ∈ N

}
=

∞⋂
n=1

(
K × · · · × K︸ ︷︷ ︸

n− 1 times

×(I ∩ K)×K ×K × · · ·
)
,

we see that I ∩Fσ is KN-residual if and only if (I ∩K)×K×K×· · · is residual
in KN. Lemma 1.3 shows that this is equivalent to the condition that I ∩K is
residual in K.

This proposition shows, for example, that a typical Fσ subset of the interval
[0, 1] is null.
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2 Banach-Mazur games

It is known that we can grasp residuality in terms of the Banach-Mazur game.

Definition 2.1. Let Y be a topological space, S a subset of Y , and A a
family of subsets of Y . Suppose that every set in A has nonempty interior
and that every nonempty open subset of Y contains a set in A. The (Y, S,A)-
Banach-Mazur game is described as follows. Two players, called Player I and
Player II, alternately choose a set in A with the restriction that they must
choose a subset of the set chosen in the previous turn. Player II will win if the
intersection of all the sets chosen by the players is contained in S; otherwise
Player I will win.

Remark 2.2. The assumptions on A ensure that the players can continue to
take sets.

Fact 2.3. The (Y, S,A)-Banach-Mazur game has a winning strategy for Player II
if and only if S is residual in Y .

For the proof of this fact, we refer the reader to Theorem 1 in [1].

In order to prove our main theorem, we look at the following Banach-Mazur
games:

Definition 2.4. Let F be a family of Fσ sets.
Let B denote the family of all sets of the form

B̄
(
(Kn), a, r

)
=

{
(An) ∈ KN ∣∣ d(An,Kn) 5 r for n = 1, . . . , a

}
,

where a is a positive integer, (Kn) is a sequence in KN such that K1, . . . , Ka

are pairwise disjoint finite sets, and r is a positive real number less than 1
such that any two distinct points in

⋃a
j=1 Kj have distance at least 3r. The

(KN,KN
F ,B)-Banach-Mazur game is called the (KN,F)-BM game for ease of

notation.
Let B↗ denote the family of all sets of the form

B̄↗
(
(Ln), b, s

)
=

{
(An) ∈ KN

↗
∣∣ d(An, Ln) 5 s for n = 1, . . . , b

}
,

where b is a positive integer, (Ln) is a sequence in KN
↗ such that L1, . . . , Lb

are finite, and s is a positive real number less than 1 such that any two distinct
points in Lb have distance at least 3s. The (KN

↗,KN
F∩KN

↗,B↗)-Banach-Mazur
game is called the (KN

↗,F)-BM game.
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Remark 2.5. Notice that the families B and B↗ satisfy the assumptions in
Definition 2.1 since X is dense-in-itself.

Convention 2.6. Whenever we write B̄
(
(Kn), a, r

)
or B̄↗

(
(Ln), b, s

)
, we

assume that (Kn), a, r; (Ln), b, s satisfy the conditions in Definition 2.4.

Remark 2.7. A trivial observation shows that B̄
(
(Kn), a, r

)
⊂ B̄

(
(K ′

n), a′, r′
)

implies a = a′ and r 5 r′ and that B̄↗
(
(Ln), b, s

)
⊂ B̄↗

(
(L′n), b′, s′

)
implies

b = b′ and s 5 s′.

Fact 2.3 enables us to translate our main theorem into the following:

Theorem 2.8. For a family F of Fσ sets, the (KN,F)-BM game has a win-
ning strategy for Player II if and only if the (KN

↗,F)-BM game does.

3 Proof of our main theorem

In this section we shall prove Theorem 2.8, which, as we have already men-
tioned, implies our main theorem. Hereafter we fix a family F of Fσ sets and
call the Banach-Mazur games without referring to F .

3.1 Outline of the proof

This subsection is devoted to the outline of the proof that KN
↗-residuality

implies KN-residuality, or equivalently, that if the KN
↗-BM game has a winning

strategy for Player II then so does the KN-BM game. Figure 1 illustrates this,
and Figure 2 allows us to guess easily the outline of the proof of the other
implication.

Suppose that Player I chose B̄
(
(K(1)

n ), a(1), r(1)
)

in the first turn. Player II
transfers it to a certain set, say B̄↗

(
(K̃(1)

n ), ã(1), r̃(1)
)
, in the KN

↗-BM game.
Then the winning strategy in the KN

↗-BM game tells Player II to take a

set B̄↗
(
(L(1)

n ), b(1), s(1)
)
. Player II transfers it to a set B̄

(
L̃

(1)
n , b̃(1), s̃(1)

)
,

which will be the real reply in the KN-BM game. In a similar way, after
Player I replies B̄

(
(K(2)

n ), a(2), r(2)
)
, Player II obtains B̄↗

(
(K̃(2)

n ), ã(2), r̃(2)
)
,

B̄↗
(
(L(2)

n ), b(2), s(2)
)
, and B̄

(
(L̃(2)

n ), b̃(2), s̃(2)
)
. Player II continues this strat-

egy.
Since KN and KN

↗ are compact, the intersections of the closed sets chosen
by the players are nonempty. By modifying the winning strategy for the KN

↗-
BM game, we may assume that limm→∞ s(m) = 0, so that the intersection in
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KN-BM game KN
↗-BM game

Player I: B̄
(
(K(1)

n ), a(1), r(1)
)
−→ B̄↗

(
(K̃(1)

n ), ã(1), r̃(1)
) y

strategyPlayer II: B̄
(
(L̃(1)

n ), b̃(1), s̃(1)
)
←− B̄↗

(
(L(1)

n ), b(1), s(1)
)

Player I: B̄
(
(K(2)

n ), a(2), r(2)
)
−→ B̄↗

(
(K̃(2)

n ), ã(2), r̃(2)
) y

strategyPlayer II: B̄
(
(L̃(2)

n ), b̃(2), s̃(2)
)
←− B̄↗

(
(L(2)

n ), b(2), s(2)
)

...
...

...
↓ ↓

(Pn) (Qn)

Figure 1: Outline of the proof that KN
↗-residuality implies KN-residuality

KN-BM game KN
↗-BM game

Player I:
strategy x

B̄
(
(L̃(1)

n ), b̃(1), s̃(1)
)
←− B̄↗

(
(L(1)

n ), b(1), s(1)
)

Player II: B̄
(
(K(1)

n ), a(1), r(1)
)
−→ B̄↗

(
(K̃(1)

n ), ã(1), r̃(1)
)

Player I:
strategy x

B̄
(
(L̃(2)

n ), b̃(2), s̃(2)
)
←− B̄↗

(
(L(2)

n ), b(2), s(2)
)

Player II: B̄
(
(K(2)

n ), a(2), r(2)
)
−→ B̄↗

(
(K̃(2)

n ), ã(2), r̃(2)
)

...
...

...
↓ ↓

(Pn) (Qn)

Figure 2: Outline of the proof of that KN-residuality implies KN
↗-residuality
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this game is a singleton. Furthermore, since the transfers are executed so that
s̃(m) 5 s(m) holds for every m ∈ N as will be stated below, the intersection in
the KN-BM game is also a singleton.

We write
∞⋂

m=1

B̄
(
(K(m)

n ), a(m), r(m)
)

=
∞⋂

m=1

B̄
(
(L̃(m)

n ), b̃(m), s̃(m)
)

=
{
(Pn)

}
and

∞⋂
m=1

B̄↗
(
(K̃(m)

n ), ã(m), r̃(m)
)

=
∞⋂

m=1

B̄↗
(
(L(m)

n ), b(m), s(m)
)

=
{
(Qn)

}
.

Notice that

lim
m→∞

(K(m)
n ) = lim

m→∞
(L̃(m)

n ) = (Pn) and lim
m→∞

(K̃(m)
n ) = lim

m→∞
(L(m)

n ) = (Qn).

Since Player II follows the winning strategy in the KN
↗-BM game, we have

(Qn) ∈ KN
F ∩ KN

↗, or equivalently
⋃∞

n=1 Qn ∈ F . Thus all we have to show is
that (Pn) ∈ KN

F , and to this aim it suffices to prove that
⋃∞

n=1 Pn =
⋃∞

n=1 Qn.

3.2 Details of the transfers

3.2.1 Conditions and definitions

A stage consists of two moves (one in the KN-BM game and one in the KN
↗-BM

game) which lie at the same height in Figures 1 and 2. When we describe the
situation at a fixed stage, we omit the integer m indicating the stage unless
ambiguity may be caused: for example, we write Kn in place of K

(m)
n . This

is not only for simple notation; we try to offer explanation of the transfers
which will go in the proofs of both implications, and this omission solves the
problem that when we describe the stage having, say, K

(m)
n , the previous stage

can have L
(m−1)
n or L

(m)
n depending on which implication we look at.

The transfers are executed so that the following conditions, written as (∗)
afterwards, are fulfilled:

(1) ã = a, b̃ = b, r̃ 5 r/2, and s̃ 5 s/2;

(2)
⋃n

j=1 Kj ⊂ K̃n for n = 1, . . . , a, and
⋃n

j=1 L̃j ⊂ Ln for n = 1, . . . , b;

(3)
⋃a

n=1 Kn = K̃ã and
⋃b̃

n=1 L̃n = Lb.

For x ∈
⋃a

n=1 Kn = K̃ã, its affiliation (n1, n2) is the pair of the integer
n1 ∈ {1, . . . , a} with x ∈ Kn1 , called the first affiliation of x, and the least
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integer n2 ∈ {1, . . . , ã} with x ∈ K̃n2 , called the second affiliation of x. We give
a similar definition for the points in

⋃b̃
n=1 L̃n = Lb: for x ∈

⋃b̃
n=1 L̃n = Lb, its

affiliation (n1, n2) is the pair of the integer n1 ∈ {1, . . . , b̃} with x ∈ L̃n1 , called
the first affiliation of x, and the least integer n2 ∈ {1, . . . , b} with x ∈ Ln2 ,
called the second affiliation of x. Strictly speaking, we should specify the
stage at which the affiliations are defined, because, for instance, it may be
that L

(m)

b(m) ∩ L
(m′)

b(m′) 6= ∅ for distinct m and m′. However, since we can easily
guess the stage from the context, we choose not to specify it in order to avoid
complexity.

Remark 3.1. Condition (2) in (∗) is equivalent to the condition that the first
affiliation is always greater than or equal to the second affiliation.

Let us look at B̄
(
(Kn), a, r

)
∈ B and B̄↗

(
(K̃n), ã, r̃

)
∈ B↗ at any stage

except the first one. We have B̄
(
(L̃n), b̃, s̃

)
∈ B and B̄↗

(
(Ln), b, s

)
∈ B↗ at

the previous stage. Since B̄
(
(Kn), a, r

)
⊂ B̄

(
(L̃n), b̃, s̃

)
, for each x ∈

⋃b̃
n=1 Kn

there exists a unique y ∈
⋃b̃

n=1 L̃n = Lb satisfying ρ(x, y) 5 s̃, where unique-

ness follows from the assumption that any two distinct points in
⋃b̃

n=1 L̃n

have distance at least 3s̃. This y is called the parent of x. Observe that
if x ∈ Kn then y ∈ L̃n. We give a similar definition also when we look at
B̄↗

(
(Ln), b, s

)
∈ B↗ and B̄

(
(L̃n), b̃, s̃

)
∈ B: the parent of x ∈ Lã is the

unique y ∈
⋃a

n=1 Kn = K̃ã satisfying ρ(x, y) 5 r̃.

3.2.2 Transfers from the KN-BM game to the KN
↗-BM game

Given a move B̄
(
(Kn), a, r

)
∈ B, we shall construct its transfer B̄↗

(
(K̃n), ã, r̃

)
∈

B↗. If it is the first move of Player I, then we put ã = a, r̃ = r/2, and K̃n =⋃n
j=1 Kj for every n ∈ N, and we can easily see that the conditions (∗) are

fulfilled. So suppose otherwise. Then we already know B̄↗
(
(Ln), b, s

)
∈ B↗

and its transfer B̄
(
(L̃n), b̃, s̃

)
∈ B, and we have B̄

(
(Kn), a, r

)
⊂ B̄

(
(L̃n), b̃, s̃

)
.

Put ã = a and r̃ = min{s − s̃, r/2}, and define K̃n =
⋃n

j=1 Kj for n > b̃.
We define K̃n for n 5 b̃ by declaring that the second affiliation of each x ∈⋃b̃

n=1 Kn is the same as that of the parent of x.

Claim 1. We have d(K̃n, Ln) 5 s̃ for n = 1, . . . , b.

Proof. Fix such an integer n.
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Let x ∈ K̃n and denote its affiliation by (n1, n2). Then the parent y of x
has affiliation (n1, n2) and so belongs to Ln2 . It follows from y ∈ Ln2 ⊂ Ln

and ρ(x, y) 5 s̃ that x ∈ Ln[s̃].
Conversely let y ∈ Ln and denote its affiliation by (n1, n2). Then there

exists a point x ∈ Kn1 with ρ(x, y) 5 s̃ because d(Kn1 , L̃n1) 5 s̃. Since y is
the parent of x, the affiliation of x is (n1, n2). Therefore x ∈ K̃n2 ⊂ K̃n and
so y ∈ K̃n[s̃].

We may deduce from this claim that B̄↗
(
(K̃n), ã, r̃

)
⊂ B̄↗

(
(Ln), b, s

)
using the triangle inequality and r̃ + s̃ 5 s. Therefore B̄↗

(
(K̃n), ã, r̃

)
is a

valid reply in the KN
↗-BM game. It is easy to see that the conditions (∗) are

fulfilled.

3.2.3 Transfers from the KN
↗-BM game to the KN-BM game

Given a move B̄↗
(
(Ln), b, s

)
∈ B↗, we shall construct its transfer B̄

(
(L̃n), b̃, s̃

)
∈

B. If it is the first move of Player I, then we put b̃ = b, s̃ = s/2, L̃1 = L1,
and L̃n = Ln \ Ln−1 for every n = 2. We can easily see that the condi-
tions (∗) are fulfilled in this case. So suppose otherwise. Then we already
know B̄

(
(Kn), a, r

)
∈ B and its transfer B̄↗

(
(K̃n), ã, r̃

)
∈ B↗, and we have

B̄↗
(
(Ln), b, s

)
⊂ B̄↗

(
(K̃n), ã, r̃

)
.

Put b̃ = b + 1 and s̃ = min{r − r̃, s/2}, and define L̃n = Ln−1 for n > b̃.
We define L̃n for n 5 b̃ by determining the first affiliation of each point in Lb

as follows. Let x ∈ Lb and denote its second affiliation by n2. If n2 > ã, then
the first affiliation of x is n2. Suppose n2 5 ã, and let y ∈ K̃n2 denote the
parent of x. If the second affiliation of y is n2, then the first affiliation of x is
the same as that of y; otherwise the first affiliation of x is b̃.

Claim 2. We have d(L̃n,Kn) 5 r̃ for n = 1, . . . , a.

Proof. Fix such an integer n.
Let x ∈ L̃n and denote its parent by y. Then it follows that x and y have

the same affiliation, and so y ∈ Kn. Hence we may infer from ρ(x, y) 5 r̃ that
x ∈ Kn[r̃].

Conversely let y ∈ Kn and denote its second affiliation by n2. Then there
exists a point x ∈ Ln2 with ρ(x, y) 5 r̃ because d(K̃n2 , Ln2) 5 r̃. Since y is
the parent of x and has the same second affiliation as x, the first affiliation of
x is n. Therefore y ∈ L̃n[r̃].
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We may deduce from the claim that B̄
(
(L̃n), b̃, s̃

)
⊂ B̄

(
(Kn), a, r

)
using

the triangle inequality and r̃ + s̃ 5 r. Therefore B̄
(
(L̃n), b̃, s̃

)
is a valid reply

in the KN-BM game. It is easy to see that the conditions (∗) are fulfilled.

3.3 Proof of
⋃∞

n=1 Pn =
⋃∞

n=1 Qn

We shall prove that
⋃∞

n=1 Pn =
⋃∞

n=1 Qn, which will complete the proof of
Theorem 2.8 and hence of our main theorem. Recall that (K(m)

n ) and (K̃(m)
n )

converge to (Pn) and (Qn) respectively as m tends to infinity. In other words
we have limm→∞K

(m)
n = Pn and limm→∞ K̃

(m)
n = Qn for every n ∈ N.

In order to prove
⋃∞

n=1 Pn ⊂
⋃∞

n=1 Qn, it is enough to show that
⋃n

j=1 Pj ⊂
Qn for every n ∈ N. The set

{
(A,B) ∈ K2

∣∣ A ⊂ B
}

is closed in K2 and
contains (

⋃n
j=1 K

(m)
j , K̃

(m)
n ) for all m ∈ N. Since (

⋃n
j=1 K

(m)
j , K̃

(m)
n ) converges

to (
⋃n

j=1 Pj , Qn) as m tends to infinity, which follows from the continuity of
the map (A1, . . . , An) 7−→

⋃n
j=1 Aj from Kn to K, we obtain

⋃n
j=1 Pj ⊂ Qn.

Now we shall prove
⋃∞

n=1 Qn ⊂
⋃∞

n=1 Pn. Let x ∈
⋃∞

n=1 Qn, and denote
by n the least positive integer with x ∈ Qn. Since it is easy to observe that
K

(m)
1 = K̃

(m)
1 for every m ∈ N, which implies P1 = Q1, we may assume

that n = 2. Because Qn−1 is closed and x /∈ Qn−1, there exists a positive real
number r less than 1 satisfying B̄(x, 4r)∩Qn−1 = ∅, that is, x /∈ Qn−1[4r]. Fix
a positive integer m0 such that ã(m) = n, r̃(m) 5 r, and d(K̃(m)

n−1, Qn−1) 5 r

for every m = m0. Observe that x /∈ K̃
(m)
n−1[3r] for every m = m0.

Set k0 = d1/re. For each k = k0, choose mk = m0 satisfying d(K̃(m)
n , Qn) 5

1/k for every m = mk, and for each m = mk take ykm ∈ K̃
(m)
n with ρ(x, ykm) 5

1/k and let zkm ∈ K̃
(m0)
n denote the unique point satisfying ρ(ykm, zkm) 5

r̃(m0).

Claim 3. The two points ykm and zkm have the same affiliation.

Proof. By an ancestor of ykm we mean a point that can be written as ‘the
parent of . . . the parent of ykm.’ Observe that zkm is an ancestor of ykm.
Indeed if we denote by z′km the ancestor of ykm in K̃

(m0)
n , then

ρ(ykm, z′km) < r̃(m0) +
r̃(m0)

2
+

r̃(m0)

22
+ · · · = 2r̃(m0)

and so ρ(zkm, z′km) < 3r̃(m0), which implies zkm = z′km.
In order to prove our claim, it suffices to prove that the second affiliation

of the ancestor w ∈ K̃
(m′)
n of ykm is n for any m′ ∈ {m0, . . . ,m}. We can see
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ρ(w, ykm) 5 2r̃(m′) 5 2r by the same reasoning as above. Therefore we have

ρ(w, x) 5 ρ(w, ykm) + ρ(ykm, x) 5 2r +
1
k

5 3r.

Thus the second affiliation of w cannot be less than n because x /∈ K̃
(m′)
n−1 [3r].

Note that all zkm belong to the single finite set K̃
(m0)
n . We can choose

zk ∈ K
(m0)
n for k = k0 inductively so that the set

{m = mk | zk0m = zk0 , . . . , zkm = zk }

is infinite for any k = k0. Then we take z ∈ K
(m0)
n for which { k = k0 | zk = z }

is infinite, and put { k = k0 | zk = z } = {k1, k2, . . .}, where k1 < k2 < · · · .
Since the set

{m = mkj
| zk1m = · · · = zkjm = z }

is infinite for every j ∈ N, we may construct a strictly increasing sequence m′
1,

m′
2, . . . of positive integers satisfying zk1m′

j
= · · · = zkjm′

j
= z.

Let l denote the first affiliation of z. Then the foregoing claim shows
that whenever i 5 j, the first affiliation of ykim′

j
is l, which implies that

x ∈ K
(m′

j)

l [1/ki]. For any i ∈ N, since d(K
(m′

j)

l , Pl) 5 1/ki for sufficiently large
j, we have x ∈ Pl[2/ki]. Hence x ∈

⋂∞
i=1 Pl[2/ki] = Pl. This completes the

proof.
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