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ON A PROPERTY OF FUNCTIONS

Abstract

In this article, I propose a new property (a) of functions f : X → Y ,
where X and Y are metric spaces. A function f : X → Y has the
property (a) if for each real η > 0, the union

S
x∈X

(K(x, η)×K(f(x), η))

contains the graph of a continuous function g : X → Y and K(x, r)
denotes the open ball {t ∈ X : ρX(t, x) < r} with center x and radius
r > 0. The class of functions with the property (a) contains all functions
almost continuous in the sense of Stallings and all functions graph con-
tinuous. Moreover, I examine the sums, the products, and the uniform
and discrete limits of sequences of functions from this class.

Let (X, ρX) and (Y, ρY ) be metric spaces. The symbol K(x, r) denotes
the open ball {t ∈ X : ρX(t, x) < r} with center x and radius r > 0. For a
function f : X → Y and a positive real η, let

Aη(f) =
⋃

x∈X

(K(x, η)×K(f(x), η)).

We say that a function f : X → Y has the property (a) if for each positive
real η, there is a continuous function g : X → Y such that the graph Gr(g) of
g is contained in Aη(f).

In [7], Stallings introduces the notion of almost continuous functions. Re-
call that a function f : X → Y is almost continuous (in the sense of Stallings)
if for each open set U ⊂ X×Y containing Gr(f), there is a continuous function
g : X → Y with Gr(g) ⊂ U .

Since each set Aη(f) is open in X ×Y and contains Gr(f), we obtain that
each almost continuous function f : X → Y has the property (a).

In [2], the notion of an A-continuous function is introduced. Later in
[5, 6], K. Sakálová calls A-continuous functions graph continuous. Recall that
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a function f : X → Y is said to be graph continuous if the closure cl(Gr(f)) of
the graph of f contains the graph Gr(g) of a continuous function g : X → Y .

Theorem 1. Each graph continuous function f : X → Y has the property
(a).

Proof. Observe that for each function f : X → Y , the equality

cl(Gr(f)) =
⋂
η>0

Aη(f) =
⋂
n≥1

A 1
n
(f)

holds. Of course, if (x, y) ∈ cl(Gr(f)) and η > 0 is a real, then there is a point
(u, f(u)) ∈ Gr(f) such that u ∈ K(x, η) and f(u) ∈ K(y, η). Consequently,
(x, y) ∈ K(u, η)×K(f(u), η). So, for each η > 0, we have cl(Gr(f)) ⊂ Aη(f),
and consequently,

cl(Gr(f)) ⊂
⋂
η>0

Aη(f).

Now we prove the inclusion
⋂

η>0
Aη(f) ⊂ cl(Gr(f)). For this, fix a point

(x, y) ∈
⋂

η>0
Aη(f) and a positive real ε. Since (x, y) ∈ Aε(f), there is a point

u ∈ X such that x ∈ K(u, ε) and y ∈ K(f(u), ε). But ε may be an arbitrary
positive real, so (x, y) ∈ cl(Gr(f)), and consequently,

⋂
η>0

Aη(f) ⊂ cl(Gr(f)).

Since for η1 > η2 > 0 the inclusion Aη1(f) ⊃ Aη2(f) is true, the equality⋂
η>0

Aη(f) =
⋂
n≥1

A 1
n
(f)

is evident.
If f : X → Y is a graph continuous function, then there is a continuous

function g : X → Y with

Gr(g) ⊂ cl(Gr(f)) ⊂ Aη(f) for each η > 0,

so f has the property (a). This completes the proof.

Remark 1. Let f : X → Y be a function. If there is an element y ∈ Y
such that the level set f−1(y) is dense in X, then f is graph continuous, and
consequently has the property (a).
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Remark 2. Let f : X → Y be a function. If there is a continuous function
g : X → Y such that the set {x ∈ X : f(x) = g(x)} is dense in X, then f is
graph continuous, and consequently has the property (a).

Remark 3. Let R be the set of all reals. There are functions f : [−1, 1] → R
with the property (a) and the closed graph Gr(f) which are neither almost
continuous nor graph continuous.

Proof. Let

f(0) = 0 and f(x) =
1
|x|

for x ∈ [−1, 0) ∪ (0, 1].

Fix a real η > 0 and observe that the interval[
−η

3
,
η

3

]
×

{3
η

}
⊂ Aη(f).

Let
g(x) =

3
η

for x ∈
[
−η

3
,
η

3

]
and

g(x) = f(x) otherwise on [−1, 1].

Then the function g is continuous and Gr(g) ⊂ Aη(f). So, f has the property
(a). Moreover, Gr(f) is a closed subset of [−1, 1] × R, but there is not a
continuous function h : [−1, 1] → R with Gr(h) ⊂ Gr(f) = cl(Gr(f)). So f is
not graph continuous.

Since f does not have the Darboux property and since each almost con-
tinuous function φ : [−1, 1] → R has the Darboux property ([7, 4]), we obtain
that f is not almost continuous and the proof is completed.

Remark 4. There is a function f : R → R with closed graph which does not
have the property (a).

Proof. For example, such is the function

f(0) = 0 and f(x) =
1
x

for x 6= 0.
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Remark 5. There are monotone bounded and simultaneously on the right
continuous functions f : [0, 1] → [0, 1] which do not have the property (a).

Proof. Let (wn) be an enumeration of all rationals from [0, 1] such that
wn 6= wm for n 6= m and w1 = 1

2 , and let

f(x) =
∑

wn≤x

1
2n

for x ∈ [0, 1].

Then f is increasing and continuous on the right hand at each point x ∈
[0, 1), but it does not have the property (a), because for η ∈ (0, 1

10 ) and
for each continuous function h : [0, 1] → R, the difference Gr(h) \ Aη(f) is
nonempty.

Theorem 2. Let (X, ρX) and (Y, ρY ) be metric spaces. If functions fn : X →
Y have the property (a) for n ≥ 1 and if the sequence (fn) uniformly converges
to a function f : X → Y , then f has also the property (a).

Proof. Fix a real η > 0. There is an index k with

ρY (fk(x), f(x)) <
η

3
for all x ∈ X.

Since fk has the property (a), there is a continuous function h : X → Y such
that Gr(h) ⊂ A η

3
(fk). Observe that

(∗) A η
3
(fk) ⊂ Aη(f).

Of course, if (x, y) ∈ A η
3
(fk), then there is a point u ∈ X with

ρX(u, x) <
η

3
and ρY (fk(u), y) <

η

3
.

Since ρY (fk, f) < η
3 , we obtain

ρY (f(u), y) ≤ ρY (f(u), fk(u)) + ρY (fk(u), y) <
η

3
+

η

3
< η.

So (x, y) ∈ Aη(f) and the inclusion (∗) holds. Consequently, Gr(h) ⊂ A η
3
(fk) ⊂

Aη(f), and the proof is completed.

It is well known ([4]) that each function f : R → R is the pointwise limit of a
sequence of almost continuous functions and the sum of two almost continuous
functions. In this article, I prove the following theorems.



On a Property of Functions 473

Theorem 3. Let (X, ρX) be a metric space dense in itself, and let (Y, ρY ,+)
be a metric group. Then for each function f : X → Y , there are two graph
continuous functions f1, f2 : X → Y (so having the property (a)) such that
f = f1 + f2.

Proof. There are two disjoint sets A,B ⊂ X dense in X. Let

f1(x) = 0 and f2(x) = f(x) for x ∈ A,

f2(x) = 0 and f1(x) = f(x) for x ∈ B,

and
f1(x) = f(x) and f2(x) = 0 for x ∈ X \ (A ∪B).

Since the level sets (f1)−1(0) ⊃ A and (f2)−1(0) ⊃ B are dense in X, functions
f1 and f2 are graph continuous. Evidently, f = f1 + f2, and the proof is
completed.

Theorem 4. Let (X, ρX) be a metric space dense in itself, and let Y1, Y2, Z
be normed spaces. Moreover, let Φ : (Y1 × Y2) → Z be a bilinear continuous
function for which there are elements a ∈ Y1 and b ∈ Y2 such that for all
elements z ∈ Z, there are elements a′(z) ∈ Y2 with Φ(a, a′(z)) = z and b′(z) ∈
Y1 with Φ(b′(z), b) = z. Then for each function f : X → Z, there are two graph
continuous functions f1 : X → Y1 and f2 : X → Y2 such that f = Φ(f1, f2).

Proof. There are two disjoint sets A,B ⊂ X dense in X. Let

f1(x) = a and f2(x) = a′(f(x)) for x ∈ X \B

and
f2(x) = b and f1(x) = b′(f(x)) for x ∈ B.

Since the level sets (f1)−1(a) ⊃ A and (f2)−1(b) ⊃ B are dense in X, functions
f1 and f2 are graph continuous. Evidently, f = Φ(f1, f2), and the proof is
completed.

Theorem 5. Let (X, ρ) be a metric space, and let Y be a normed space. If
f : X → Y is a continuous function and if g : X → Y has the property (a),
then f + g has the property (a).
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Proof. For a function φ : X → Y and a set K ⊂ (X × Y ), we denote by
φ ∗K the set {(x, y + φ(x)) : (x, y) ∈ K}. Fix a real η > 0. Observe that

Aη(f + g) =
⋃

x∈X

(K(x, η)×K(f(x) + g(x), η)) =

= f ∗
⋃

x∈X

(K(x, η)×K(g(x), η)) = f ∗Aη(g).

Of course, if a point (u, v) ∈ Aη(f + g), then there is a point x ∈ X with
(u, v) ∈ K(x, η)×K(f(x)+g(x), η). So, u ∈ K(x, η) and v ∈ K(f(x)+g(x), η),
and ||v−(f(x)+g(x))|| = ||(v−f(x))−g(x)|| < η. Thus, v−f(x) ∈ K(g(x), η)
and v ∈ f(x) + K(g(x), η) ⊂ f ∗ Aη(g). Similarly, we can prove the inverse
inclusion f ∗Aη(g) ⊂ Aη(f + g).

Since g has the property (a), there is a continuous function h : X → Y such
that Gr(h) ⊂ Aη(g). The function f + h is also continuous and Gr(f + h) ⊂
f ∗ Aη(g) = Aη(f + g). So, f + g has the property (a), and the proof is
completed.

Theorem 6. Let (X, ρ) be a metric space, and let Y be a normed space.
Assume that for a function f1 : X → Y , there is a continuous function f :
X → Y such that the set {x ∈ X : f(x) = f1(x)} is dense in X. If a function
g : X → Y has the property (a), then f1 + g also has the property (a).

Proof. Fix a real η > 0. By the proof of last theorem, we have the equality

Aη(f1 + g) =
⋃

x∈X

(K(x, η)×K(f1(x) + g(x), η)) =

= f1 ∗
⋃

x∈X

(K(x, η)×K(g(x), η)) = f1 ∗Aη(g).

Since g has the property (a), there is a continuous function h : X → Y such
that Gr(h) ⊂ A(g, η). The function f + h is also continuous and Gr(f + h) ⊂
f1 ∗ Aη(g) = Aη(f1 + g). So, f1 + g has the property (a), and the proof is
completed.

However, the product of a continuous function and a function having the
property (a) need not have the property (a).
Example. Let X = [−1, 1], Y = R, and let f(x) = x and

g(x) =
1
|x|

for x ∈ X \ {0} and g(0) = 0.
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Then f is continuous, g has the property (a), and the product

f(x)g(x) = 1 for x ∈ (0, 1], f(0)g(0) = 0, and f(x)g(x) = −1 for x ∈ [−1, 0)

does not have the property (a).

Remark 6. Let (X, ρ) be a metric space, and let Y1, Y2, Z be normed spaces.
If Φ : (Y1 × Y2) → Z is a bilinear continuous function, and if a function
f1 : X → Y1 is such that the set (f1)−1(0) is dense in X, then for each
function f2 : X → Y2, the superposition g(x) = Φ(f1(x), f2(x)) for x ∈ X has
the property (a).

In the article [1], the authors introduced the notion of the discrete conver-
gence of sequences of functions and investigated the discrete limits in different
families, for example, in the family C of all continuous functions.

Let (X, ρX) and (Y, ρY ) be metric spaces. We say that a sequence of
functions fn : X → Y , n = 1, 2, . . ., discretely converges to the limit f (f =
d− lim

n→∞
fn) if

∀
x
∃

n(x)
∀

n>n(x)
fn(x) = f(x).

Theorem 7. Let (X, ρX) be a separable metric space dense in itself, and let
(Y, ρY ) be a metric space. Then for each function f : X → Y , there is a
sequence of functions fn : X → Y having the property (a) which discretely
converges to f .

Proof. Since (X, ρX) is dense in itself and separable, there is an infinite
countable set A = {ai : i ≥ 1} dense in X. Fix an element b ∈ Y . For
n = 1, 2, . . . , put

fn(ai) = b for i ≥ n and fn(x) = f(x) otherwise on X.

Evidently, the sequence (fn) discretely converges to f . Since the level sets
(fn)−1(b) ⊃ {ai : i ≥ n} are dense in X for n ≥ 1, the functions fn have the
property (a), and the proof is completed.
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