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ON A PROPERTY OF FUNCTIONS

Abstract

In this article, I propose a new property (a) of functions f : X — Y,
where X and Y are metric spaces. A function f : X — Y has the

property (a) if for each real > 0, the union |J (K (x,n) x K(f(z),n))
reEX
contains the graph of a continuous function g : X — Y and K(z,r)

denotes the open ball {t € X : px(t,z) < r} with center x and radius
r > 0. The class of functions with the property (a) contains all functions
almost continuous in the sense of Stallings and all functions graph con-
tinuous. Moreover, I examine the sums, the products, and the uniform
and discrete limits of sequences of functions from this class.

Let (X, px) and (Y, py) be metric spaces. The symbol K (z,r) denotes
the open ball {t € X : px(¢,x) < r} with center x and radius » > 0. For a
function f: X — Y and a positive real 7, let

Aq(f) = | (K (z,n) x K(f(x),n)).

zeX

We say that a function f : X — Y has the property (a) if for each positive
real 7), there is a continuous function g : X — Y such that the graph Gr(g) of
g is contained in A, (f).

In [7], Stallings introduces the notion of almost continuous functions. Re-
call that a function f : X — Y is almost continuous (in the sense of Stallings)
if for each open set U C X xY containing Gr(f), there is a continuous function
g: X — Y with Gr(g) C U.

Since each set A, (f) is open in X x Y and contains Gr(f), we obtain that
each almost continuous function f: X — Y has the property (a).

In [2], the notion of an A-continuous function is introduced. Later in
[5, 6], K. Sakdlové calls A-continuous functions graph continuous. Recall that
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a function f : X — Y is said to be graph continuous if the closure cI(Gr(f)) of
the graph of f contains the graph Gr(g) of a continuous function g : X — Y.

Theorem 1. FEach graph continuous function f : X — Y has the property

(a).
PRrROOF. Observe that for each function f: X — Y, the equality

cd(@r(f) = [ Au(f) =) AL(f)

n>0 n>1

holds. Of course, if (x,y) € cl(Gr(f)) and n > 0 is a real, then there is a point
(u, f(u)) € Gr(f) such that v € K(z,n) and f(u) € K(y,n). Consequently,
(x,y) € K(u,n) x K(f(u),n). So, for each n > 0, we have cl(Gr(f)) C A,(f),
and consequently,

c(Gr(f) < () Aq(f).

n>0

Now we prove the inclusion () A, (f) C cl(Gr(f)). For this, fix a point
n>0
(x,y) € (N Ay(f) and a positive real €. Since (z,y) € A-(f), there is a point
n>0
u € X such that x € K(u,¢) and y € K(f(u),e). But € may be an arbitrary

positive real, so (x,y) € cl(Gr(f)), and consequently, () A, (f) C cl(Gr(f)).
n>0

Since for 1 > 12 > 0 the inclusion A, (f) D A,,(f) is true, the equality

) 4y(f) = () A2 (f)

n>0 n>1

is evident.
If f: X — Y is a graph continuous function, then there is a continuous
function g : X — Y with

Gr(g) C c(Gr(f)) C A,(f) for each >0,
so f has the property (a). This completes the proof. O
Remark 1. Let f : X — Y be a function. If there is an element y € Y

such that the level set f~1(y) is dense in X, then f is graph continuous, and
consequently has the property (a).
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Remark 2. Let f: X — Y be a function. If there is a continuous function
g: X =Y such that the set {x € X : f(x) = g(x)} is dense in X, then f is
graph continuous, and consequently has the property (a).

Remark 3. Let R be the set of all reals. There are functions f : [—-1,1] = R
with the property (a) and the closed graph Gr(f) which are neither almost
continuous nor graph continuous.

PROOF. Let

f(0)=0 and f(z) = é for z € [-1,0) U (0, 1].

Fix a real n > 0 and observe that the interval

22 2 e ain

Let

and
g(z) = f(x) otherwise on [—1,1].

Then the function g is continuous and Gr(g) C A,(f). So, f has the property
(a). Moreover, Gr(f) is a closed subset of [—1,1] x R, but there is not a
continuous function A : [-1,1] — R with Gr(h) C Gr(f) = cl(Gr(f)). So f is
not graph continuous.

Since f does not have the Darboux property and since each almost con-
tinuous function ¢ : [—1,1] — R has the Darboux property ([7, 4]), we obtain
that f is not almost continuous and the proof is completed. O

Remark 4. There is a function f: R — R with closed graph which does not
have the property (a).

PROOF. For example, such is the function

f(0) =0 and f(x):% for « #0.
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Remark 5. There are monotone bounded and simultaneously on the right
continuous functions f : [0,1] — [0, 1] which do not have the property (a).

PROOF. Let (w,) be an enumeration of all rationals from [0, 1] such that
Wy, # W, for n # m and wy = 3, and let

f(z) = Z 2% for x €10,1].

wyn <z

Then f is increasing and continuous on the right hand at each point z €
[0,1), but it does not have the property (a), because for n € (0,1—10) and
for each continuous function h : [0,1] — R, the difference Gr(h) \ A,(f) is
nonempty. O

Theorem 2. Let (X, px) and (Y, py) be metric spaces. If functions f, : X —
Y have the property (a) forn > 1 and if the sequence (fy,) uniformly converges
to a function f: X — Y, then f has also the property (a).

PrOOF. Fix a real n > 0. There is an index k£ with
py (fr(x), f(x)) < g forall z € X.

Since fj has the property (a), there is a continuous function h : X — Y such
that Gr(h) C Az (fk). Observe that

(%) Az (fi) C Ap(f)-
Of course, if (z,y) € A%(fk), then there is a point u € X with
n n
px(u,2) < 5 and py(fi(u)y) < 3.

Since py (fx, f) < 3, we obtain

py (F(u).w) < py (f(w), fi(w)) + py (Fielw).w) < 3 + 5 <.

So (z,y) € Ay(f) and the inclusion (x) holds. Consequently, Gr(h) C Az (fx) C
A, (f), and the proof is completed. O

It is well known ([4]) that each function f : R — R is the pointwise limit of a
sequence of almost continuous functions and the sum of two almost continuous
functions. In this article, I prove the following theorems.
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Theorem 3. Let (X, px) be a metric space dense in itself, and let (Y, py,+)
be a metric group. Then for each function f : X — Y, there are two graph
continuous functions f1,fo : X — Y (so having the property (a)) such that

f=rf+fo.

PROOF. There are two disjoint sets A, B C X dense in X. Let
fi(x) =0 and fa(x) = f(z) for = € A,

fo(x) =0 and fi(z) = f(z) for z € B,

and
fi(z) = f(z) and fa(z) =0 for z € X\ (AU B).

Since the level sets (f1)71(0) D A and (f2)~1(0) D B are dense in X, functions
f1 and f5 are graph continuous. Evidently, f = f; + f2, and the proof is
completed. O

Theorem 4. Let (X, px) be a metric space dense in itself, and let Y1, Y2, Z
be normed spaces. Moreover, let ® : (Y1 X Y2) — Z be a bilinear continuous
function for which there are elements a € Y1 and b € Yo such that for all
elements z € Z, there are elements a/(z) € Yo with ®(a,a’(z)) = z and V' (z) €
Yy with ®(b'(2),b) = z. Then for each function [ : X — Z, there are two graph
continuous functions f1 : X — Y1 and fo : X — Ya such that f = ®(f1, f2).

PROOF. There are two disjoint sets A, B C X dense in X. Let
fi(z) =a and fo(z) =d'(f(x)) for z € X\ B
and
fa(z) =b and fi(z) =V (f(z)) for z € B.

Since the level sets (f1)~!(a) D A and (f2)~1(b) D B are dense in X, functions
f1 and fy are graph continuous. Evidently, f = ®(f1, f2), and the proof is
completed. O]

Theorem 5. Let (X, p) be a metric space, and let Y be a normed space. If
f:X =Y is a continuous function and if g : X — Y has the property (a),
then f + g has the property (a).
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ProOOF. For a function ¢ : X — Y and a set K C (X x Y), we denote by
¢+ K the set {(x,y + ¢(z)) : (x,y) € K}. Fix a real n > 0. Observe that

Ay(f +9) = | (K(z,n) x K(f(x) + g(x),m) =

reX

— £ | (K (m) x K(g(),m) = £+ Ay(9).
zeX
Of course, if a point (u,v) € A,(f + g), then there is a point # € X with
(u,v) € Kz, 1) x K(f(2)+9(x), 7). S0, u € K(z,1) and v € K(f(x)+9(x),),
and [[v—(f(z)+g(@))| = ||(v=f(x)) —g(x)|| <n. Thus, v—f(z) € K(g(x),n)
and v € f(x) + K(g(x),n) C f* A,(g). Similarly, we can prove the inverse
inclusion f x A, (g9) C A, (f + 9)-

Since g has the property (a), there is a continuous function A : X — Y such
that Gr(h) C A,(g). The function f + h is also continuous and Gr(f + h) C
f*Ayg) = A,(f +g). So, f+ g has the property (a), and the proof is
completed. O]

Theorem 6. Let (X,p) be a metric space, and let Y be a normed space.
Assume that for a function f1 : X — Y, there is a continuous function f :
X =Y such that the set {x € X : f(x) = fi(x)} is dense in X. If a function
g: X — Y has the property (a), then fi + g also has the property (a).

PROOF. Fix a real n > 0. By the proof of last theorem, we have the equality

Ay(fi+9) = | (K(x,n) x K(fi(2) + g(x),n)) =

zeX

= fo | () x K(g(e)m) = fi # Ay(o).
zeX
Since g has the property (a), there is a continuous function A : X — Y such
that Gr(h) C A(g,n). The function f + h is also continuous and Gr(f + h) C
fi % Ay(9) = Ay(fi +9). So, fi + g has the property (a), and the proof is
completed. O

However, the product of a continuous function and a function having the
property (a) need not have the property (a).
Example. Let X =[-1,1], Y =R, and let f(z) =z and
1

g(z) = 2l for x € X\ {0} and ¢(0) =0.
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Then f is continuous, g has the property (a), and the product
f(z)g(x) =1 for x € (0,1], f(0)g(0) =0, and f(z)g(x) =—1 for z € [-1,0)
does not have the property (a).

Remark 6. Let (X, p) be a metric space, and let Y1, Yo, Z be normed spaces.
If @ : (Y1 xYs) — Z is a bilinear continuous function, and if a function
fi : X — Yy is such that the set (f1)~1(0) is dense in X, then for each
function fo : X — Ys, the superposition g(x) = ®(f1(x), f2(x)) for x € X has
the property (a).

In the article [1], the authors introduced the notion of the discrete conver-
gence of sequences of functions and investigated the discrete limits in different
families, for example, in the family C of all continuous functions.

Let (X,px) and (Y, py) be metric spaces. We say that a sequence of
functions f, : X — Y, n=1,2,..., discretely converges to the limit f (f =
d —lim f,) if

n—0o0

V3V falz) = f(x).

Theorem 7. Let (X, px) be a separable metric space dense in itself, and let
(Y, py) be a metric space. Then for each function f : X — Y, there is a
sequence of functions f, : X — Y having the property (a) which discretely
converges to f.

PROOF. Since (X, px) is dense in itself and separable, there is an infinite
countable set A = {a; : ¢ > 1} dense in X. Fix an element b € Y. For
n=12,..., put

fn(a;)) =b for i >n and f,(z) = f(x) otherwise on X.

Evidently, the sequence (f,) discretely converges to f. Since the level sets
(fn)71(b) D {a; : i > n} are dense in X for n > 1, the functions f,, have the
property (a), and the proof is completed. O
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